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Atomistic simulations of binary amorphous systems with over 4 million atoms are performed.
Systems of two interatomic potentials of the Lennard Jones type, LJ12-6 and LJ9-6, are simulated.
The athermal quasi-static shearing protocol is adopted, where the shear strain is applied in a stepwise
fashion with each step followed by energy minimization. For each avalanche event, the shear stress
drop (∆σ), the hydrostatic pressure drop (∆σh) and the potential energy drop (∆E) are computed.
It is found that, with the avalanche size increasing, the three become proportional to each other
asymptotically. The probability distributions of avalanche sizes are obtained and values of scaling
exponents fitted. In particular, the distributions follow a power-law, P (∆U) ∼ ∆U−τ , where ∆U

is a measure of avalanche sizes defined based on shear stress drops. The exponent τ is 1.25± 0.1 for
the LJ12-6 systems, and 1.15± 0.1 for the LJ9-6 systems. The value of τ for the LJ12-6 systems is
consistent with that from an earlier atomistic simulation study by Robbins et al. [K. M. Salerno,
C. E. Maloney, and M. O. Robbins, Phys. Rev. Lett. 109, 105703 (2012)], but the fitted values
of other scaling exponents are different, which may be because the shearing protocol used here is
different than in that study.

I. INTRODUCTION

Many systems in nature evolve in an intermittent fash-
ion under external forcing [1]. Examples include earth-
quakes [2], biological extinction [3], magnetization [1],
and fracture of porous materials [4], to name a few. One
common feature of these phenomena is that the response
of the systems is comprised of discrete events, termed
“avalanches” or “bursts”, which span a wide range of
scales [1]. The same behavior is also observed in the plas-
ticity of materials, evidenced by acoustic emission signals
[5], or serrations in stress-strain curves [6, 7].
In crystalline materials, the “bursts” in dislocation mo-

tion are the cause of intermittency of plastic flows. More
importantly, it is found that the motion of dislocations
self-organizes to display a power-law probability distri-
bution of avalanches sizes, P (S) = S−τ , where S is the
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magnitude of the avalanches given by the stress drops or
the strain jump sizes. (Appendix B gives a list of sym-
bols used in the paper.) The value of τ obtained from
experiments on different crystals is 1.5 ∼ 1.6 [5, 8–10],
consistent with the mean field exponent τ = 1.5 [11, 12].
In particular, scaling collapses of the experimental data
of slip avalanches at different stresses for slowly com-
pressed nanopillars are consistent with the predictions of
mean field theory [10–13]. Mesoscale models for crys-
tal plasticity [14] also give similar results. Some two-
dimensional (2D) discrete dislocation dynamics (DDD)
simulations give slightly lower values for τ [15], while
others give the mean field scaling behavior [16]. Phase
field crystal simulations also support mean field scaling
[17] and recent three-dimensional (3D) DDD simulations
yield values close to the mean field scaling exponents [18].
Amorphous materials deform via a different mecha-

nism than crystals. Instead of deforming via dislocation
slips, in amorphous materials, plastic deformations are
accommodated by the activation of shear transforma-
tion zones (STZs), where relative slips between atoms,
or jumping of atoms to “vacancies” [19] take place. The
operation of STZs gives rise to an intermittent plastic



2

flow. Experiments by Sun et al. [6] on different types of
metallic glasses showed that the probability distribution
of stress drops in the stress-strain curves follows a power-
law. The exponent τ ranges from 1.37 to 1.49, depending
on the specific type of metallic glasses being tested. It
is known that too low a time resolution can make the
power law exponent appear lower than its real value [20].
Higher time resolution measurements on metallic glasses
have been done by Wright et al. [21]. They were con-
sistent with the mean field value of τ = 1.5 and the
scaling behavior of about 12 different statistical quan-
tities agreed with predictions of mean field theory [22],
providing exceptionally strong confirmation for the mean
field theory predictions in bulk metallic glasses. Another
support for the mean field results comes from a spring-
lattice-based model recently proposed in Ref. [23], which
gave τ = 1.5 ± 0.1 for anti-plane deformations of a 2D
spring lattice. Values of τ close to the mean field predic-
tion are also obtained from the simulations in Ref. [24].
However, some simulations of mesoscale models in 2D,
i.e. for sheared thin sheets of bulk metallic glasses, in
the literature produce different results. A 2D mesoscale
lattice model of Talamali et al. [25] gives τ = 1.25±0.05,
while a later simulation study based on the same model
gives a slightly different value of τ ≈ 1.35 [26]. Simu-
lations of a recent elasto-plastic model proposed by Lin
et al. [27] predict that τ = 1.36 for 2D and τ = 1.45
for 3D. The latter result in 3D is very close to the mean
field exponent of 1.5. The deviation for simulations in
2D is not so surprising as renormalization group calcu-
lations predict that for 1D shear bands in 2D systems,
one expects corrections to the mean field theory results.
In contrast, for 2D shear bands in 3D solids, the renor-
malization group predicts mean field scaling behavior (up
to small logarithmic corrections) [12, 28]. A mean field
model has recently been suggested to study the density of
shear transformation zones in simulations of amorphous
solids during steady state deformation [29].

Atomistic simulation is an important tool for the study
of avalanche behavior in amorphous materials, because it
can be used to test some of the assumptions that the
coarse grained models are based on. However, atom-
istic simulations have assumptions of their own that need
to be tested as well. The dependence of avalanche size
on system size is investigated by many researchers us-
ing atomistic simulation [30–33]. Maloney and Lemâıtre
[30] simulated the quasi-static shear deformation of a 2D
amorphous system with the atomic interaction governed
by a soft-particle potential, where a power-law distri-
bution of energy drops during avalanches was observed:
P (∆E) = ∆E−τ ′

. (The exponent τ is primed, in or-
der to differentiate from the τ obtained from measures
of stress drops.) It was found that the exponent τ ′ de-
creases from 0.7 to 0.5 as the system size increases and,
in addition, a linear geometric structure of avalanches
is observed, which explains their finding that avalanche
sizes scale linearly with system width, S ∼ L. The scal-
ing of avalanche size with system size, S ∼ Lα, is also the

focus of the 2D study by Lerner et al. [31] and the 3D
study by Bailey et al. [33], but different values for the
scaling exponent α were obtained. 3D simulations are
also performed by Lerner et al. [32] on three different
atomic systems. The probability distributions of energy
drops and stress drops are virtually the same for those
different systems. A comprehensive study of the scaling
properties of avalanches in amorphous samples is done
by Salerno et al. [34, 35]. Systems with up to 1 mil-
lion atoms are used. A viscous damping is introduced,
which can be tuned to model three different cases: over-
damped, underdamped and critically damped. The val-
ues of τ (τ ′) and avalanche finite-size-scaling exponents
are obtained. One important issue with atomistic simu-
lation is how to simulate a quasi-static deformation. In
Salerno’s study, the samples are sheared at a fixed strain
rate, but shearing is paused whenever the kinetic energy
of the system shoots up (a sign of avalanches) and re-
sumed when the kinetic energy is dissipated. Another
way of modeling quasi-static shear reported in the lit-
erature, which is more common and straightforward, is
to increase the strain incrementally with each strain in-
crement followed by energy minimization [30, 32, 36–38].
Since energy is always minimized before the next strain
increment is applied, this shearing protocol corresponds
to the overdamped case in Refs. [34, 35]. It is neces-
sary to check whether both methods produce the same
results. However, except Ref. [30] mentioned above, we
have found no atomistic simulations that adopt the sec-
ond protocol of shearing to obtain a measure of τ (τ ′) . In
addition, the effect of step size on the resultant statistics
has not yet been discussed.
The study reported in this paper adopts the second

method with small strain steps to simulate quasi-static
simple shear deformation of amorphous samples in 2D.
The largest systems contain 4, 096, 000 atoms, which
are larger than the systems in all previous studies of
avalanches in amorphous materials in the literature. The
reason for using such a big system size is to rule out pos-
sible finite size effects on the scaling properties. In addi-
tion, two types of atomic systems are simulated, in order
to check whether the scaling properties are independent
of the interatomic potential.
The paper is organized as follows. Section 2 briefly

describes the simulation method. In Section 3, the rela-
tionship between the shear stress drop, the hydrostatic
pressure drop and the potential energy drop for each
avalanche event is studied. The probability distributions
of avalanche sizes are plotted. Finally, the values of τ
and finite-size-scaling exponents are extracted from the
probability distributions. Readers can refer to Table IV
for a list of values of the exponents.

II. METHOD

The samples are 2D, containing two different atom
species, A and B, with two atomic systems (I and II)
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studied. The potential I is a smoothed Lennard-Jones
potential [35].

Eij = 4E0

[

(aij
r

)12

−
(aij

r

)6
]

+Ec (r < 1.2aij) (1)

where E0 is the characteristic energy, Ec is an energy
offset, aij is the “interaction length” between atoms of
type i and of type j. The “interaction length” between
two atoms A (aAA) is the characteristic length unit a,
the “interaction length” between two atoms B (aBB) is
0.6a. The mixed “interaction length” aAB = aBA = 0.8a.
The systems are non-dimensionalized with energy unit
ǫ and length unit a. In the region where 1.2aij < r <
1.5aij, atomic interactions are approximated by a quartic
smoothing function, to make sure the energy, force, and
the first derivative of force are continuous at both the
inner cutoff radius 1.2aij, and the outer cutoff radius
1.5aij. Outside of the outer cutoff radius, the interatomic
energy and force are zero. The number of atoms A to the
number of atoms B is

(

1 +
√
5
)

/4, the value used in Refs.
[34, 35].
The potential II is a Lennard-Jones 9-6 potential,

Eij = 4E0

[

(aij
r

)9

−
(aij

r

)6
]

+ Ec (r < rc) (2)

The definitions and values of the parameters are listed in
Table I. The values are chosen such that the potential
curves are comparable to that used in [39]. The number
of atoms A relative to the number of atoms B is 43 : 57
[39]. According to the mean field theory, the scaling prop-
erties of avalanches are universal in nature [11, 12]. We
use a potential that differs from those used in other stud-
ies [30, 31, 35, 40] (which also differ amongst themselves
with respect to the potentials they use). Thus, we are
further testing whether the simulation results are uni-
versal with respect to the choice of potential. Potentials
that correspond to real amorphous materials, e.g. effec-
tive medium theory potentials [41] or embedded atom
method potentials [42], may be used in future studies,
although the maximum system size might be limited due
to the more expensive computational cost.
The molecular dynamics code LAMMPS is used to per-

form the simulations. Periodic boundary conditions are
applied on all sides of the samples [34, 35, 37, 40, 43]. For
both systems, the initial samples are prepared by a melt-
quench procedure [31, 37, 44, 45], i.e. the systems are first
heated up to well above the melting point and then cooled
down very fast, with a quenching rate of ∼ 2× 1012 K/s
to a temperature close to 0K (∼ 1/1, 000 of the initial
temperature). A Nosé-Hoover thermo/barostat [46] is
used to control the temperature and the pressure during
quenching, while the pressure is controlled to be zero. Fi-
nally, potential energy minimization using the conjugate
gradient method is performed on the samples to drive
the systems to an equilibrium state. Samples with dif-
ferent numbers of atoms are obtained. For each system,
different strain increments are used. The numbers of re-
alizations for each combination of system size and strain

TABLE I: Parameters for potential II (c.f. Eq. (2)).
There are two types of atoms: A and B. As a result,
there are three different types of atom pairs: A-A (a
pair of atoms A), A-B (a pair of one atom A and one
atom B), and B-B (a pair of atoms B). The parameters

in Eq. (2) are different for the three different atom
pairs, as listed in the table. E0 is the characteristic
energy, Ec is an energy offset. aij is the “interaction

length” between atoms of type i and of type j. rc is the
cutoff distance.

Pair E0 (eV) aij (Å) Ec (eV) rc (Å )
A-A 0.75250 2.87048 0.032138 6.000
A-B 0.59915 2.60136 0.021667 5.600
B-B 0.45251 2.32493 0.014511 5.112

FIG. 1: (Color online) A sample with 8,000 atoms using
potential I (big: atom A, small: atom B)

increment are listed in Table II and Table III. Note that
the smallest strain increment is much smaller than those
in [33, 37], and is comparable with the smallest ones in
[31]. For potential I, the largest samples have 4, 096, 000
atoms, considerably larger than the samples in most pre-
vious studies of this kind [32–34, 37], and also 4 times
larger than the largest atomistic simulations we have seen
so far in this area [34]. For potential II, the largest sam-
ples have 512, 000 atoms. One sample using potential I
with 8, 000 atoms is shown in Figure 1.

Simple shear deformation is then applied incremen-
tally on the samples, and, after each shear strain incre-
ment, the box is held fixed and the potential energy is
minimized using the aforementioned conjugate gradient
algorithm before the next strain increment is applied.
Since no thermal vibration is considered, the model cor-
responds to a zero temperature limit. If the strain incre-
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TABLE II: Number of realizations of different
combinations of system size N (number of atoms) and
strain increment ∆ǫ (increase of shear strain in each
step) using the LJ12-6 potential (Cells that are blank

mean no realizations)

N
∆ǫ

1 × 10−4 5 × 10−5 2 × 10−5 1 × 10−5 5 × 10−6 2 × 10−6

8,000 10 10 10 10 10 10
16,000 10 10 10 10 10 10
32,000 10 10 10 9 8 5
64,000 8 6 8 8 10 5
128,000 10 10 10 10 3
256,000 2 4 2
512,000 4 4 2
1,024,000 2 2
4,096,000 3

TABLE III: Number of realizations of different
combinations of system size N (number of atoms) and
strain increment ∆ǫ (increase of shear strain in each
step) using the LJ9-6 potential (Cells that are blank

mean no realizations)

N
∆ǫ

1 × 10−4 5 × 10−5 2 × 10−5 1 × 10−5 5 × 10−6 2 × 10−6

4,000 31 30 40 30 20 20
8,000 30 30 40 30 20 20
16,000 30 30 40 30 30 20
32,000 20 30 40 30 20 10
64,000 10 10 10 9
128,000 10
256,000 4
512,000 2

ment is small enough, we are able to approach the limit of
zero strain rates. It was pointed out that many granular
materials and glassy systems can be considered athermal
[37]. This approach has also been widely used in the
study of metallic glasses at slow strain rates [38, 47, 48].
The effect of strain increment is discussed below. The
samples lie in the xy-plane, and simple shear is applied
in the positive x-direction.

III. RESULTS

A. Stress and energy change during avalanches

Figure 2 shows examples of stress components and
potential energy when the samples are sheared. The
deformation is initially elastic, and then turns into a
plastic regime full of serrations, which are signs of slip
avalanches. No fracture was observed in the samples
throughout the deformations. Only the avalanche events
after the stress has stabilized are used for the following
analyses.
Many studies have reported that the plastic deforma-

tion of metallic glasses is associated with a free volume in-
crease, or local dilation [49–54]. Our simulation is able to
confirm this by tracking the change of hydrostatic stress
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FIG. 2: (Color online) Stress vs. strain and potential
energy vs. strain of (a-b)potential I and (c-d)potential

II. The number of atoms is 256, 000.
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during shear (Figure 2, similar to those obtained from
the 3D simulation of Cu-Zr amorphous alloys by Ogata
et al. [38]). As we increase the shear strain, the mag-
nitude of hydrostatic stress is also increasing. Because
the area of the sample is conserved during simple shear,
such a change in hydrostatic stress implies a tendency of
the material to dilate, pressing harder and harder on the
boundaries. An actual increase in the area of the system
would be observed if there were free-surface boundaries.
To avoid confusion, we use the term “hydrostatic pres-
sure” to refer to the absolute value of the hydrostatic
stress.
The hydrostatic pressure drop ∆σh and the shear stress

drop ∆σ for an avalanche event occurring in the i-th
shear step are defined as follows:

∆σh = (σh)i − (σh)i+1 (3)

∆σ = σi − σi+1 (4)

where (σh)i and (σh)i+1 are the hydrostatic pressure be-
fore and after the i-th shear step, respectively; and σi

and σi+1 are the shear stress before and after the i-th
shear step, respectively. The values of ∆σh and ∆σ for
each avalanche event are plotted with scattered crosses in
Figure 3(a). The events are then logarithmically binned
according to their values of ∆σ and the average of the
values of ∆σh are computed in each bin, to get an average
hydrostatic pressure drop 〈∆σh〉 vs. ∆σ. It is seen that
with increasing ∆σ, the data points become less scattered
and, more importantly, 〈∆σh〉 tends to become linear in
∆σ asymptotically. It is also worth noting that, when
the strain increment ∆ǫ is reduced, the distribution of
the data points are not altered except that more data
points are added to the left due to more small events be-
ing captured. In addition, the 〈∆σh〉 vs. ∆σ curves for
different system sizes are compared in Figure 4(a). The
curves collapse for large events, suggesting that the re-
lationship between 〈∆σh〉 and ∆σ is not affected by the
system size.
Similarly, we can define the energy drop in each

avalanche event as

∆E = Ei − Ei+1 (5)

where Ei and Ei+1 are the potential energy of the system
before and after the i-th shear step, respectively. Similar
analysis to the above can be applied to the relationship
between ∆E and ∆σ and the results are shown in Fig-
ure 3(b). Again, we see the data points become less scat-
tered, and 〈∆E〉 becomes linear in ∆σ asymptotically, as
the event size increases. Alternatively, shear stress drop
and potential energy drop can be defined as

∆σ = σi + µ∆ǫ− σi+1 (6)

∆E = Ei +Aσi∆ǫ − Ei+1 (7)

where µ is the shear modulus of the system measured
from the elastic portion of the stress-strain curve, and
A is the area of the system [33]. σi + µ∆ǫ is what the
stress should be after the strain increment ∆ǫ if there
were no slips, whereas σi+1 is the actual stress after the
strain increment. Therefore, the ∆σ given by Eq. (6) is
purely the change in stress brought about by the slips.
Similarly, since Aσi∆ǫ is the external work during the
strain increment ∆ǫ, Ei + Aσi∆ǫ is what the potential
energy should be after the strain increment if there were
no slips, whereas Ei+1 is the actual potential energy after
the strain increment. Therefore, the ∆E given by Eq. (7)
is the potential energy dissipated during the slip. More-
over, the plastic strain accumulated during the slip, ∆ǫpl,
is equal to ∆σ/µ, if we use ∆σ defined by Eq. (6) [33].
Due to the reasons above, we consider Eqs. (6) and (7)
to be better characterizations of the avalanche sizes than
Eqs. (4) and (5). While plotting the relationship between
hydrostatic pressure drops and shear stress drops, we use
Eq. (4) to compute the shear stress drops. The reason is
because the way of computing ∆σ should be consistent
with that of ∆σh, and a correction term for ∆σh that is
analogous to µ∆ǫ is hard to determine due to the fact
that hydrostatic pressure does not increase linearly with
strain during the elastic deformation (Figure 2). But the
relative error of neglecting the correction terms µ∆ǫ and
Aσi∆ǫ is only significant for small events. Figure 3(c)
shows the scatter plots for ∆E and ∆σ, based on the
definition from Eqs. (6) and (7). It can be seen that only
the data points for small events are redistributed, which
does not affect our conclusions above for large events.
The effect of system size on the relationship between

〈∆E〉 and ∆σ is shown in Figure 4(b-c). As the system
size increases, 〈∆E〉 approaches a linear dependence on
∆σ more quickly. More importantly, when 〈∆E〉 is scaled
by the area of the system L2, the right hand side of all
the curves collapse, i.e. 〈∆E〉 ∼ ∆σL2 for large events.
In summary, for large events,

∆σh ∼ ∆E

L2
∼ ∆σ (8)

B. Probability distributions of avalanche sizes

For the reasons mentioned above, we use Eq. (6) to
define ∆σ and Eq. (7) to define ∆E, for the following
analysis. Similar to Ref. [34], we define

∆U =
〈σ〉∆σ

µ
A (9)

where 〈σ〉 is the steady-state shear stress. From this def-
inition,

∆U ∼ ∆σ

µ
A ∼ ∆ǫpl (10)

where ∆σ
µ
A is a 2D version of the “slip volume” defined

in [33], which can be considered as “a measure of the
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FIG. 3: (Color online) Relationship between hydrostatic pressure drop (∆σh), shear stress drop (∆σ) and energy
drop (∆E) for potential I. The number of atoms is 64, 000. The strain increments are labeled by the subcaptions.
Each blue cross represents a single event. The red curves are obtained by first logarithmically binning the events

according to their stress drops, and then averaging the hydrostatic pressure drops (for (a)) or the energy drops (for
(b-c)) within each bin. The black dashed lines have a slope of 1. ∆σh is defined by Eq. (3). In (b), ∆σ and ∆E are

calculated using Eqs. (4) and (5), respectively. In (c), ∆σ and ∆E are calculated using the corrected formulas
Eqs. (6) and (7), respectively.

number of elementary transformations which contribute

to the macroscopic stress relaxations”. ∆U can then be
understood as an estimate of the work by the external
stress on the “slip volume”. ∆U and ∆E both have the
unit of energy. In the following analysis, we will focus on
the probability distributions of ∆U and ∆E, which are
denoted by P (∆U) and P (∆E), respectively.

To determine the distributions, we first count the
number of events in each bin, and then divide it by
the width of the bin. The entire distributions are fur-

ther divided by the width of the strain interval within
which slip avalanche events were counted. Therefore,
P (∆U) d (∆U) is the number of events that fall in the
range [∆U,∆U + d (∆U)] per unit strain interval. Sim-
ilarly, P (∆E) d (∆E) is the number of events that fall
in the range [∆E,∆E + d (∆E)] per unit strain interval.
We have verified that the length and position of the strain
interval do not affect the final distributions as long as the
interval lies in the plastic regime. The probability distri-
butions at different strain increments are plotted in Fig-
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FIG. 4: (Color online) (a)Average hydrostatic pressure drop (〈∆σh〉), (b)average energy drop (〈∆E〉) and (c)scaled
average energy drop (〈∆E〉 /L2) for potential I and potential II with different system sizes. L is the side length of

the system. The strain increment is ∆ǫ = 5× 10−6. In each subfigure, the curves are obtained by first
logarithmically binning the events according to their stress drops, and then averaging the hydrostatic pressure drops

(for (a)) or the energy drops (for (b-c)) within each bin. ∆σh is defined by Eq. (3). In (b-c), ∆σ and ∆E are
calculated using the corrected formulas Eqs. (6) and (7), respectively. The black dashed lines have a slope of 1.

ure 5. It is seen that reducing the strain increment sim-
ply extends the curves further to the left because smaller
events are better captured, while the right portion of the
curves remain unaffected. We choose a strain increment
of 5.0×10−6 and plot the distributions as the system size
varies (Figure 6).
For potential I, the curves of P (∆U) follow a power

law, with an exponential cutoff on the right. The expo-
nent of the power-law is estimated to be τ = 1.25± 0.1.
For potential II, the curves of P (∆U) have a “hump”

on the left, but the middle part also follows a power law.
The exponent of the power-law is estimated to be τ =
1.15± 0.1.
In contrast to P (∆U), the curves of P (∆E) cannot be

fit with a power law with high certainty. A similar issue
has been reported in Ref. [34] with the distributions of
∆E, where the distributions of ∆U (a quantity propor-
tional to ∆U , to be exact) were used to determine the
power law exponent of the avalanches.
The following finite-size scaling is performed on the

original distributions:

P (χ)

Lβ
= f

( χ

Lα

)

(11)

where χ represents either ∆U or ∆E [34]. The scaled dis-

tributions are shown in Figure 7. For potential I, P (∆U)
shows a good collapse under the scaling when α = 1.25
and β = −0.5. For potential II, α = 1.2 and β = −0.3
gives a good collapse of P (∆U) curves. On the other
hand, the curves of P (∆E) cannot be collapsed closely
under finite-size scaling neither for potential I nor for po-
tential II, because the shapes of the curves change slightly
with the system size.

Another scaling property that is investigated is the
scaling of the number of slip events of a given size with
the system size. Salerno et al. [34, 35] found the scal-
ing to be subextensive, i.e. the number of events does
not increase linearly with the number of particles, which
scales with LD, where D is the dimension of the system.
Instead, the number of events scales as Lγ , with γ < D.
To get γ, we scale the original curves of P (χ) by Lγ .
The objective is to find a proper γ such that the power-
law portions of the curves collapse. The scaled curves
are shown in Figure 8. With potential I, for P (∆U),
γ = 1.05± 0.10 and for P (∆E), γ = 1.00± 0.05. As ex-
pected, these two γ’s have overlapping error bars. With
potential II, γ = 1.15±0.10 for both P (∆U) and P (∆E).
A full list of all the scaling exponents from our simula-
tions, together with the values from Refs. [34, 35] that
correspond to the 2D overdamped case, is shown in Ta-
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FIG. 5: (Color online) Original P (∆U) (probability
distribution of ∆U , with ∆U defined in Eq. (9)) and
P (∆E) (probability distribution of energy drop ∆E,

with ∆E defined in Eq. (7)) at different strain
increments, which are indicated by the legends. The

number of atoms in each system is 64,000.
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FIG. 6: (Color online) Original P (∆U) (probability
distribution of ∆U , with ∆U defined in Eq. (9)) and
P (∆E) (probability distribution of energy drop ∆E,

with ∆E defined in Eq. (7)). The system sizes, given in
the numbers of atoms, are indicated by the legends.
The strain increment is 5× 10−6. The slopes of the

straight reference lines are −1.25 in (a-b), −1.15 in (c)
and −1.0 in (d). Plotting the reference lines in (b) and

(d) is just to show the rough trend.
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FIG. 7: (Color online) Finite-size scaled P (∆U)
(probability distribution of ∆U , ∆U defined in Eq. (9))
and P (∆E) (probability distribution of energy drop

∆E, ∆E defined in Eq. (7)). L is the side length of the
system. The definition of the finite-size scaling is given
in Eq. (11). The system sizes, given in the numbers of

atoms, are indicated by the legends. The strain
increment is 5.0× 10−6. The slopes of the straight

reference lines are −1.25 in (a-b), −1.15 in (c) and −1.0
in (d). Plotting the reference lines in (b) and (d) is just
to show the rough trend, since the shapes of the curves
cannot be fit with a straight line. In (a), α = 1.25 and
β = −0.5. In (b), α = 1 and β = 0. In (c), α=1.2 and
β = −0.3. In (d), α = 1.2 and β = −0.05. A better

collapse in (b) and (d) cannot be achieved by choosing
different values for α and β.
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FIG. 8: (Color online) P (∆U) (probability distribution
of ∆U , ∆U defined in Eq. (9)) and P (∆E) (probability
distribution of energy drop ∆E, ∆E defined in Eq. (7))
scaled by Lγ . L is the side length of the system. The

system sizes, given in the numbers of atoms, are
indicated by the legends. The strain increment is

5.0× 10−6. γ is 1.05 for (a), 1.00 for (b), and 1.15 for
(c-d). The slopes of the straight reference lines are

−1.25 in (a-b), −1.15 in (c) and −1.0 in (d). Plotting
the reference lines in (b) and (d) is just to show the

rough trend.
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ble IV.
In Refs. [34, 35], two relations between the scaling

exponents are proposed: γ = β + ατ and β = 2 − 2α.
The first relation is derived from the definitions of the
scaling exponents. The second one is derived based on
the energy conservation at steady-state shear. We can
see that all the exponents in Table IV satisfy these rela-
tions approximately. In Appendix A, a scaling relation
that involves the “waiting time” , which is defined as the
additional strain required to trigger the next avalanche
after one avalanche is observed, is proposed and it is sup-
ported by scaling collapses of avalanche data from our
simulations. Furthermore, it is seen that the value of τ
from our simulations using potential I is close to those
from Refs. [34, 35], which is expected, since the same
interatomic potential is used. However, our simulations
give values of α, β and γ different than those in Refs.
[34, 35] and it is likely so because our quasi-static shear-
ing protocol is different than that in Refs. [34, 35]. In
our simulation, we apply strain increment ∆ǫ, and mini-
mize the potential energy. This is equivalent to applying
a sudden increase in strain, and then giving the system
enough time to relax to the nearest stable state. When
the strain is being applied, the system is not allowed to
respond. But in Refs. [34, 35], molecular dynamics sim-
ulation is used between adjacent avalanches. i.e. when
the strain is being applied, the system is responding si-
multaneously. Therefore, even though both methods are
approximating quasi-static deformation, the difference in
the way of applying strains can lead to different system
behavior. Other values of α are found in the literature
based on slightly different interpretations of the expo-
nent. Lerner et al. [31] found the average avalanche size
to scale with the system size as L0.74 from their atomistic
simulation. But the system sizes are much smaller than
ours. Lin et al. used an elasto-plastic model to predict
the scaling of the cutoff avalanche size, Sc ∼ Ldf , where
the value of df is reported to be 0.77 or 0.71 in Ref. [55]
and 1.1 in Ref. [27]. Finally, the error bars of the two
τ ’s corresponding to the two potentials overlap, therefore,
within error bars, our simulations are consistent with the
prediction that τ is independent of the potential.

IV. CONCLUSIONS

In this study, the simple shear deformation of two dif-
ferent binary amorphous systems is simulated. An ather-
mal quasi-static shearing protocol is used, where shear
strains are applied stepwise, with each shearing step fol-
lowed by energy minimization. The LJ12-6 systems have
a maximum of 4, 096, 000 atoms, and the LJ9-6 systems
have a maximum of 512, 000 atoms. Each avalanche event
is accompanied by a shear stress drop (∆σ), a hydro-
static pressure drop (∆σh) and a potential energy drop
(∆E). For large avalanche events, the three are propor-
tional to each other. In order for the deformation to be
quasi-static, the strain increment in each step needs to be

small enough. To this end, a variety of strain increments
are tested. It is then shown that reducing the strain in-
crement does not affect the probability distributions of
avalanches except that a larger number of smaller events
are captured. In addition, for each avalanche event, a
measure of the avalanche size, ∆U , is computed based
on the shear stress drop, ∆σ. It is proportional to the
shear stress drop ∆σ, and the plastic strain accumulated
during the avalanche. The probability distributions of
∆U are found to follow a power law. The exponent τ
of the power-law is 1.25 ± 0.1 for the LJ12-6 systems,
which is consistent with τ = 1.3 ± 0.1 in Ref. [34] and
τ = 1.25 ± 0.05 in Ref. [35] obtained from simulations
of 2D overdamped systems with up to 1 million atoms.
For the LJ9-6 systems, τ is found to have a slightly lower
value of 1.15±0.1. But within overlapping error bars, our
simulations are consistent with the prediction that τ is
universal, i.e. independent of the interatomic potential.

Finally, the probability distributions of ∆U of different
system sizes can be collapsed under a proper finite-size
scaling, P (∆U) /Lβ = f (∆U/Lα), where α = 1.25±0.05
and β = −0.5 ± 0.1 for the LJ12-6 systems, and α =
1.2± 0.1 and β = −0.3± 0.1 for the LJ9-6 systems. The
scaling exponents α and β for the LJ12-6 systems are dif-
ferent than those in Refs. [34, 35], which are α = 0.9±0.05
and β = 0.2± 0.1, even though the same interatomic po-
tential is used. It is then likely that the difference in
the scaling exponents results from the difference between
the shearing protocols in this study and in Refs. [34, 35].
Comparative studies of these two shearing protocols are
needed in the future to clarify this issue. Despite the dis-
crepancy above, both the exponents from our simulations
and those from Refs. [34, 35] satisfy the two relations,
γ = β + ατ and β = 2− 2α.
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Appendix A: Analysis of the “waiting time”

We study how much more strain is needed to record
the next avalanche after an avalanche is observed. The
additional strain that is needed is defined as the “waiting
time”, which we denote by w. Avalanches for a partic-
ular system size are considered to occur when the shear
stress drop is over 1% of the maximum shear stress drop
observed for that system size. The probability distribu-
tions of w are plotted in Figure 9 below. Figure 9 shows
the distributions are shaped like a plateau followed by an
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TABLE IV: Values of scaling exponents. N.A. means the exponents cannot be obtained to a high precision or
cannot obtain a good collapse under scaling. The exponents from Refs.[34, 35] are from 2D simulations in the
overdamped case. τ is the exponent of the probability distributions. α and β are finite-size-scaling exponents

defined in Eq. (11). γ is the exponent for the scaling of the number of avalanches of a given size with the system
size. ∆U is defined in Eq. (9) and ∆E is defined in Eq. (7).

Simulations
τ α β γ

∆U ∆E ∆U ∆E ∆U ∆E ∆U ∆E

Potential I
and from our
simulations

1.25 ± 0.1 N.A. 1.25±0.05 N.A. −0.5± 0.1 N.A. 1.05± 0.1 1.00± 0.05

Potential II
and from our
simulations

1.15 ± 0.1 N.A. 1.2± 0.1 N.A. −0.3± 0.1 N.A. 1.15± 0.1 1.15± 0.1

Potential I
and from

Refs. [34, 35]

1.3± 0.1 [34]
and

1.25 ± 0.05
[35]

1.3 [34] and 1.25
[35], with bigger
uncertainty than

for ∆U

0.9 ± 0.05 0.9± 0.05 0.2± 0.1 0.2± 0.1
1.3± 0.1 [34]
and 1.3± 0.05

[35]

1.3 ± 0.1 [34]
and 1.3± 0.05

[35]

exponential drop for large “waiting times”. After scaling
the horizontal and vertical axes, using

P (w)

Lξ
= h(wLη), (A1)

where L is the side length of the system, the curves col-
lapse. The value of η can be derived from other scal-
ing exponents that are reported in the paper. To derive
η, we notice that the average “waiting time” scales as
〈w〉 ∼ L−η according to Eq. (A1) here, which means the
total number of events per unit strain interval scales as
n ∼ Lη. From the paper, P (∆U) ∼ Lγ∆U−τ . Therefore,

n ∼
∫ ∆Umax

∆Umin

Lγ(∆U)−τd(∆U) ∼ Lγ
(

∆U1−τ
min −∆U1−τ

max

)

(A2)
As mentioned above, we consider the events that are

greater than 1% of the maximum event, i.e. ∆Umin =
0.01∆Umax. Therefore,

n ∼ Lγ
(

∆U1−τ
min −∆U1−τ

max

)

∼ Lγ∆U1−τ
max (A3)

where we assumed τ > 1. Moreover, according to the
definition of the scaling exponent α in Eq. (11) of the
paper, the maximum event ∆Umax ∼ Lα. Hence,

n ∼ Lγ∆U1−τ
max ∼ LγLα(1−τ) (A4)

i.e.

η = γ + α(1− τ) (A5)

Using the values of α, τ and γ for ∆U from Table IV of
the paper, we get η = 0.74 for potential I and η = 0.97 for
potential II. Using these values of η and picking proper
values for ξ, we see the curves in Figure 9 collapse very
well, which serves as a support for the correctness of the
simulations.

Appendix B: List of symbols

A list of all symbols used in the paper is shown in
Table V.
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TABLE V: List of all symbols used in the paper

Symbol Meaning
S Magnitude of avalanches given by stress drops or strain jump sizes
Sc Cutoff avalanche size
τ Power-law exponent for the probability distribution of avalanche sizes

τ ′ Power-law exponent obtained by fitting the probability distribution of energy drops at avalanches

as P (∆E) ∼ ∆E−τ ′

∆E Potential energy drop at an avalanche
L Side length of the square atomic system domain
∆σ Shear stress drop at an avalanche
∆σh Hydrostatic pressure drop at an avalanche
A,B Each represents one of the two atom species in the system
Eij Potential between an atom of type i and an atom of type j, where i and j can be either A or B

E0, aij , Ec Parameters used in the definition of interatomic potentials given by Eq. (1) and Eq. (2)
rc Cutoff distance in the interatomic potential given by Eq. (2)
r Interatomic distance
N Number of atoms in the system
E Potential energy of the system

σxx, σyy, σxy Stress components of the system
∆ǫ Increment of shear strain in each shear step
(σh)i Hydrostatic pressure before the i-th shear step

(σh)i+1 Hydrostatic pressure before the (i+ 1)-th shear step, i.e. after the i-th shear step
σi Shear stress before the i-th shear step

σi+1 Shear stress before the (i+ 1)-th shear step, i.e. after the i-th shear step
Ei Potential energy in the system before the i-th shear step

Ei+1 Potential energy in the system before the (i+ 1)-th shear step, i.e. after the i-th shear step
µ Shear modulus of the system
A Area of the system
D Dimension of the system

〈∆σh〉 Average hydrostatic pressure drop for avalanches whose shear stress drops fall within a bin for ∆σ

∆ǫpl Plastic strain accumulated in an avalanche event
〈∆E〉 Average energy drop for avalanches whose shear stress drops fall within a bin for ∆σ

∆U A measure of avalanche sizes defined as ∆U = 〈σ〉∆σ

µ
A

〈σ〉 Steady-state shear stress
P (·) Probability distribution function of a quantity
α, β Exponents for finite-size scaling defined by Eq. (11)
γ Exponent for the scaling of the number of slip events of a given size with the system size
w Additional strain needed to record the next avalanche after one avalanche is observed

n
Total number of avalanche events observed when shearing a system by a unit strain in the steady

state
ξ, η Exponents for the “waiting time” scaling defined by Eq. (A1)

∆Umax
Maximum ∆U observed for a particular system size, and also the upper bound of the integration

in Eq. (A2)
∆Umin Lower bound of the integration in Eq. (A2)
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FIG. 9: P (w) (probability distribution of the “waiting
time” w) for different system sizes. The subfigures are

(a)P (w) for potential I, (b)P (w) for potential II,
(c)scaled P (w) for potential I, where η=0.74 and ξ=1.5,
and (d)scaled P (w) for potential II, where η=0.97 and
ξ=1.8. L is the side length of the system. ξ and η are
scaling exponents shown in Eq. (A1) in this document.

The strain increment is 5× 10−5. The way of
calculating P (w) is such that P (w) · dw is the number
of events that fall in the range [w,w + dw] per unit

strain interval.
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