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Abstract

We investigate the drag experienced by a spherical intruder moving through a medium consisting

of granular hydrogels immersed in water as a function of its depth, size, and speed. The medium

is observed to display a yield stress with a finite force required to move the intruder in the quasi-

static regime at low speeds before rapidly increasing at high speeds. In order to understand the

relevant time scales that determine drag, we estimate the inertial number I given by the ratio of

the time scales required to rearrange grains due to the overburden pressure and imposed shear,

and the viscous number J given by the ratio of the time scales required to sediment grains in

the interstitial fluid and imposed shear. We find that the effective friction µe encountered by the

intruder can be parameterized by I =
√
ρg/Ppvi, where ρg is the density of the granular hydrogels,

vi is the intruder speed, and Pp is the overburden pressure due to the weight of the medium, over a

wide range of I where the Stokes Number St = I2/J � 1. We then show that µe can be described

by the function µe(I) = µo +α Iβ, where µo, α and β are constants which depend on the medium.

This formula can be used to predict the drag experienced by an intruder of a different size at a

different depth in the same medium as a function of its speed.

∗ akudrolli@clarku.edu
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I. INTRODUCTION

Objects moving through a viscoplastic medium composed of granular materials sedi-

mented in a liquid are encountered widely at the bottom of water bodies, and in the pro-

cessing of petroleum and consumer products [1]. While a number of studies have investigated

the force acting on an object moving through non-cohesive granular matter in air [2–6] and in

liquids [7], a robust friction law for the drag encountered by the intruder is not available. In

the case of granular medium immersed in a liquid where grains are always in contact, friction

encountered has been found to be unchanged from the dry case [8]. Above this quasi-static

limit, the intruder motion leads to inhomogeneous fluidization of the medium giving rise

to challenging problems in modeling their dynamics [9, 10]. Because sedimented grains are

densely packed and in contact, the granular stress can be expected to increase with depth,

leading to sensitive variation in the dissipation encountered by an intruder as a function of

depth. Furthermore, the relative importance of the granular and fluid components of the

medium on the drag experienced by the intruder in this context remains undetermined.

Rheological properties of viscoplastic mediums are typically fitted to the Herschel-Bulkley

model and its variations which relate the stress applied to the medium to the resulting strain

rate of the medium [11, 12]. Further, progress has been made recently [13–15] in describing

the effective friction experienced by granular materials sheared uniformly under steady state

conditions using the inertial number I. This parameter, which is proportional to the strain

rate, characterizes the ratio of time scale over which grains rearrange due to pressure and

the time scale required for grains to move past each other due to applied shear. In the

case of neutrally buoyant non-Brownian suspensions immersed in a fluid, a constitutive law

have been also proposed as a function of the viscous number J that characterizes the ratio

of the time scale over which grains sediment and the time scale over which they rearrange

due to applied pressure under steady state conditions [16]. Further numerical simulations

appear to suggest that the effective friction encountered by a uniformly sheared granular

medium immersed in a fluid can be described by a combination of I and J , as K = γ I2 +J ,

where γ is a constant which depends on the relative importance of inertia and viscosity of

the medium [17]. However, it remains unclear how these descriptions can be extended to

transient systems, and ones in which the solids have a higher mass density compared to the

liquid as in the case of sedimented solids.
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Here, we probe the dynamics of an intruder moving through sedimented granular hydro-

gels immersed in water as a function of the properties of the intruder and the medium. We

use this medium as a model because it enables a subtle examination of inertia, gravity, and

viscosity on the intruder dynamics. We focus our study on the condition where the intruder

is pulled with a constant speed. However, it should be noted that the resulting intruder

motion still leads to unsteady flow of the medium as it is fluidized and accelerated around

the intruder. We obtain the inertial number I and the viscous number J to understand

the relative importance of grain inertia and fluid viscosity on the observed dynamics. By

measuring drag, we find that the effective friction µe given by the ratio of the stress acting

on the intruder and the overburden pressure can be parametrized by I over the range of

experimental parameters investigated. We further discuss the overall form of the observed

µe as a function of I which can be used to relate the drag experienced at a particular depth

and speed to an intruder with a different size moving with different speed and depth.

II. EXPERIMENTAL SYSTEM

A schematic of the experimental apparatus is shown in Fig. 1(a). A large rectangular tank

with length L = 91 cm, width W = 45 cm, and height H = 42.5 cm is filled with granular

hydrogels immersed in water in a temperature controlled room maintained at 24.0± 0.5oC.

The tank size was chosen to be large enough that its boundaries do not affect the drag,

and thus the system can be considered as semi-infinite with only the distance to the bed

surface playing a role in the measurements discussed in this study. The granular hydrogels

were prepared by immersing dehydrated polyacrylamide particles in distilled water. Two

sets of granular hydrogels with hydrated radius rh = 0.5 ± 0.3 mm and rh = 8.5 ± 0.5 mm

and density ρh = 1004 kg m−3 and ρh = 1006 kg m−3, respectively, were used in the study.

Because the grains are athermal and heavier than water (density ρw = 998 kg m−3 at 24oC),

they sediment to the bottom. A layer of clear water on the top prevents capillary effects

from playing any role in the medium. The depth of this clear layer is not observed to have

any measurable effect on the properties of the granular hydrogel medium below.

The volume fraction φ occupied by the sedimented granular hydrogels is estimated by

measuring the volume of water displaced by the hydrogels. In the case of the smaller

hydrogels which are more polydisperse, we find φ ≈ 0.5, and in the case of the larger
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FIG. 1. (a) Schematic of the apparatus used to measure drag as a function of the intruder speed

vi and depth zi. (b) The measured torque T as a function of time t for various vi (zi = 20 cm, and

rh = 0.5 mm). (c) The torque Tr acting on the attachment rod as a function of immersion depth li

with corresponding quadratic fits. The error bars in the measurements are less than the size of the

markers and therefore not drawn. (d) The measured drag Fd as a function of wait time tw after

the medium is stirred and allowed to settle.
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hydrogels which are more monodisperse, φ ≈ 0.6, similar to sedimented frictional glass beads

with similar size distribution [18]. Then, the overburden pressure Pp at depth z due to the

difference of density of the granular hydrogels and the water is given by Pp = φ(ρh− ρw)gz,

where g is the acceleration due to gravity. Although the granular hydrogels are relatively

soft with a Young’s modulus E which is measured [20] to be ≈ 23 kPa, the fractional change

in their volume can be estimated from Pp/E to be less than 0.1% at the deepest point in

the tank. Thus, we assume that the density of the medium, ρm = φρh + (1 − φ)ρw, is

essentially constant for the purpose of our study. Substituting the values for ρh, ρw and

φ, we obtain ρm = 1001 kg m−3 and ρm = 1003 kg m−3 for the small and large granular

hydrogels, respectively.

In order to further quantify the effect of grain elasticity, we evaluate both the time scale

due to elasticity Tk, and the time scale due to gravity Tg [21]. We estimate Tk from the

grain contact time scale Tk =
√
m/kn, where m is the grain mass, and kn ≈ 2Erh is the

grain stiffness assuming linear contact. We then estimate Tg from the time taken by a grain

to fall from rest through a distance rh, i.e. Tg =
√

2rh
(1−ρw/ρh)g

. We obtain Tk/Tg ≈ 1.5× 10−2

and 0.4× 10−2, in the case of the small and large hydrogels used in our study. The friction

coefficient has been found to be relatively constant in numerical simulations for such contact

times, relative to the time scale set by gravity [21].

A spherical intruder with a density similar to the hydrogels and radius ri is fixed to

the end of a stiff thin rod with radius rr and immersed in the medium to a depth zi as

shown in Fig. 1(a). The rod is attached to a torque sensor and is translated along the

length of the tank with speed vi. The measurements are performed in the central third of

the tank to avoid any effects of the tank walls. Because the medium is semi-transparent

because the hydrogels have a refractive index which is close to the water, we can observe

the motion of the intruder and the medium around it. A sample movie of the motion of

the medium obtained using a laser sheet as the intruder advances through the medium is

shown in the supplementary documentation. One observes that the grains accelerate around

the intruder and quickly come to rest after the intruder passes by, similar to what one may

expect in a viscous liquid. However, because the motion of the grains was difficult to track

using automated algorithms, we were unable to extract quantitative information from the

imaging. Hence, we focus on the measurement of drag experienced by the intruder using

the torque sensor attached to the intruder in this study.
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The torque T measured as function of time t is plotted in Fig. 1(b) and is observed to

fluctuate around a constant value for a prescribed value of speed vi. The mean torque 〈T (t)〉

is then obtained by averaging over time. The torque acting at the pivot has contributions

because of the drag due to the intruder as well as the rod which attaches to the intruder

in the medium. Therefore, we perform complementary measurements to account for the

drag contribution due to the rod. The measured torque Tr as a function of the rod length

immersed in the medium lr is plotted in Fig. 1(c) at various speeds in case of dh = 0.5 mm

and can be fitted as shown with a quadratic dependence with lr. This quadratic form of

drag with increase of depth of the rod has been found previously in the case of dry granular

medium in the quasi-static limit [19], and can be understood as follows. If the drag increases

linearly with depth, then Tr = F r
d (zp + 2

3
lr), where zp is the distance from the pivot to the

medium surface as shown in Fig. 1(a). Indeed, as shown by the fit, we find that the torque

increases quadratically with lr consistent with a linear increase of drag for a section of the

rod with depth. This torque contribution is thus subtracted from the total mean torque

to extract an approximate estimate of the torque Ti due to the intruder alone. Then, we

determine the drag acting on the intruder as Fd = Ti/(zp + lr).

Further, we find that a systematic protocol has to be used while preparing the medium

in order to obtain consistent data. In particular, drag measurements were conducted after

stirring the medium and then allowing it to settle, and then waiting a fixed amount of

time before pulling the intruder through the medium. Fig. 1(d) shows the evolution of the

measured drag Fd as a function of wait time tw after the medium is stirred. One observes

a significant variation over the first few minutes after the sediments are allowed to settle.

The behavior stabilizes after approximately 10 minutes. Therefore, we use a wait time of 15

minutes before doing the systematic drag measurements as a function of system parameters

reported in this study.

III. MEASUREMENT OF DRAG

Fd measured as a function of the intruder speed vi is plotted in Fig. 2(a) in the case of

the mediums composed of the small and the large granular hydrogels but otherwise similar

conditions. The data is plotted in log-linear format to emphasize the wide range of intruder

velocities probed. In each case, one observes that Fd appears essentially constant and well
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FIG. 2. (a) The measured drag Fd for an intruder as a function of vi in the medium composed

of the two different sized grains investigated in our experiments but otherwise similar conditions.

The error bars correspond to the standard deviation. The estimated drag in water for the same

intruder size is also plotted for reference and is observed to be significantly lower than for the

granular hydrogel medium. (b) The drag as a function of intruder speed vi for various overburden

pressure Pp corresponding to various depths (rh = 0.5 mm). The errors in the measurement are

similar to the graph above but not drawn for clarity. (c) The drag as a function of intruder sizes

ri at various speeds along with a quadratic fit in case of each velocity (rh = 0.5 mm).
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above zero at low vi, and increases rapidly as the velocity increases above vi ∼ 1 mm s−1.

Further, one observes that Fd is higher in the case of the larger grains compared with the

smaller grains at low vi, before crossing over as vi is increased. Thus, the relative drag

experienced by an intruder appears to not only depend on the medium as one may expect

but also its speed.

To understand the measured drag in relation to the drag corresponding to the Newto-

nian fluid in which the grains are immersed, we obtain the estimate using Fw
d = π

2
Cdv

2
i r

2
i ,

where Cd is the drag coefficient of sphere. Then, using the approximation [25] Cd ≈

24/Re(1 + 0.15Re0.687), where Re is the Reynolds number given by Re = ρwviri/η, with

the dynamic viscosity of water η = 0.91 mPa s, we calculated Fw
d and plot it in Fig. 2(a)

over the same range of velocity. It is noted to be considerably smaller than the measured

drag in the granular medium. Thus, although the hydrogel sediments have similar density

as the interstitial fluid, they have a profound effect on the drag experienced by the intruder.

To further investigate and illustrate the dependence of drag on system parameters, we

plot the measured drag experienced by the intruder as a function of vi in Fig. 3(b) for Pp

obtained at three different depths in the case of the smaller grains. One observes that the

drag increases systematically with the overburden pressure, not only at low speeds where

the granular hydrogels can be expected to be in frictional contact, but also at higher speeds

where the interactions between the intruder and hydrogels can be expected to be collisional.

We also plot the drag experienced by the intruder as a function of its radius ri in Fig. 3(c)

for a few different vi. From the quadratic fit to Fd corresponding to each set of vi, we observe

that the drag increases essentially with the cross-sectional area of the intruder, i.e. Fd ∝ r2i .

However, it should be noted that this scaling can be expected to hold provided the intruder

size is larger than the grain size, with a more tortuous motion expected as the intruder size

decreases below the grain size.

IV. EFFECTIVE FRICTION

To understand the observed variation of drag with system parameters, we define an

effective friction µe experienced by the intruder as the ratio of the drag to the normal forces

acting on the intruder. Estimating the normal force acting on the intruder as the overburden
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FIG. 3. The effective friction µe given by the ratio of the drag and the gravitational force due

to the weight of the grains acting on the intruder versus vi for various Pp in case of rh = 0.5 mm

(a) and rh = 8.5 mm (b) grains. µe is observed to increase less rapidly with increasing Pp in both

cases.

pressure times its cross-sectional area, we have

µe =
Fd

Ppπr2i
. (1)

With this definition, it can be noted that µe is independent of the intruder size because Fd

is proportional to r2i as seen from Fig. 2(c).

Focusing now on the depth dependence, µe as a function of vi is plotted in Fig. 3(a) for

various Pp in the case of rh = 0.5 mm and in Fig. 3(b) in the case of rh = 8.5 mm. We

observe that µe corresponding to the different Pp appear to collapse at low vi in the quasi-

static regime, but clearly do not overlap for vi > 10−1 m s−1 even considering the errors

in the measurements. Above this value, it appears that µe is effectively lower at greater
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depths for the same speeds. Thus, we conclude that the effective friction grows relatively

less quickly with depth above the quasi-static regime as the grains are increasingly imparted

momentum by the intruder.

A. Inertial and Viscous Numbers

We next examine the relative time scales in the system to understand the observed

variation with speed and depth. These include the time scale imposed on the grains due to

the motion of the intruder, the time scale over which grains rearrange due to applied pressure,

and the sedimentation time scale. By comparing these time scales, we can determine the

relative importance of these variables which are affected by vi and Pi on the observed drag.

We first consider the inertial number I corresponding to the ratio of the time scale for

grains to rearrange due to the pressure and the time scale over which grains move past each

other due to the shear resulting from the intruder motion. This dimensionless number is used

to understand the significance of dynamic features in granular systems [13, 14], and is given

by I = γ̇d/
√
P/ρ in the case of grains with size d and density ρ which are sheared uniformly

with shear rate γ̇ under pressure P . Because the intruder system is unsteady even when

the intruder moves at constant velocity – the medium is accelerated as it moves around the

intruder – a steady state shear rate cannot be defined in our system. Nonetheless, we assume

that the time scale relevant to the motion of the hydrogel grains is set by the velocity of the

intruder and is thus inversely proportional to the shear rate γ̇ = vi/rh. Further, assuming

the pressure P ∼ Pp and the grain density [26] ρ ∼ ρh, we have the time scale relevant to

rearrange grains to be
√
Pp/ρh/rh. Thus,

I =
vi√
Pp/ρh

. (2)

Fig. 4(a) shows I plotted as a function of vi for various Pp. We observe that I varies over

many orders of magnitude as vi and Pp are varied in our experiments from below 10−3

associated with the quasi-static regime to above 100 associated with the collisional regime.

Further, I obtained in the case of both hydrogel sizes fall on the same line which scales with

vi.

We then consider the viscous number J which captures the relative importance of the

time scales due to sedimentation of grains and shear [16]. This dimensionless number is given
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FIG. 4. (a) Inertial number I and (b) viscous number J versus vi for various Pp probed in the

study. (c) Stokes number St = I2/J versus vi for both grain sizes are observed to increase over

several orders of magnitude in both cases over the range of experimental parameters investigated.

by J = ηsγ̇d/P where ηs is the viscosity of the liquid. As in the case of the inertial number,

J was introduced for uniform shear rates. Then, assuming γ̇d ∼ vi as in the estimate of I,

we obtain

J =
ηsvi

2Pprh
. (3)
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Then, J versus vs is plotted in Fig. 4(b) with ηs = η corresponding to the viscosity of

water at 24oC. We observe that J also varies over a wide range as a function of vi and Pp

investigated in the experiments, but is significantly smaller in magnitude compared to I.

Further, J for the larger hydrogels are approximately a magnitude smaller than in the case

of smaller hydrogels, because the sedimentation rate for larger particles is higher than for

the smaller particles with the same density.

To further understand the relative importance of the inertial time scale and the sedimen-

tation time scale, we examine the Stokes number St which is given by [17] St = I2/J . Then,

substituting in Eq. 2 and Eq. 3, we have

St =
ρhvi
ηs

. (4)

Plotting St in Fig. 4, we observe that it varies between 10 and 2 × 104 in the case of the

larger hydrogels, and between 0.2 and 103 in case of the smaller hydrogels. Thus, the drag

encountered appears to be in the inertial regime except in the case of the lowest velocities

probed for the smaller grains. Accordingly, the inertial number appears to be the appropriate

non-dimensional number to describe the rate dependence of the friction as probed by the

intruder velocity.

B. Rate Dependence of Effective Friction

We plot the effective friction µe versus I in Fig. 5(a) and Fig. 5(b) for the small and

large sized grains, respectively, investigated in our experiments. In contrast with the plots

of µe versus vi in Fig. 3, we find that µe for the various Pp clearly collapse onto a single

curve for each grain size. Thus, one concludes that the stress acting on the intruder due

to drag, scales linearly with the pressure. A similar conclusion was reached [21] based on

numerical simulations of dry granular materials investigating the role of pressure on the

contact stiffness and its impact on the effective friction encountered in a granular medium.

There, a deviation from linearity was found only at high pressures correlated with changes

in the volume fraction of the medium. Because no significant volume fraction changes were

noted in our experimental system over the range of overburden pressures encountered, the

observed collapse of µe with Pp in Fig. 4 is consistent with that study. Further, one can

note that µe is essentially constant over the range 10−4 ≤ I ≤ 10−2, consistent with the
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FIG. 5. (a) The effective friction µe corresponding to various Pp is observed to collapse onto a

single curve. (rh = 0.5 cm; ri = 2.5 cm). Fits to Eq. 5, where solid line corresponds to µ0 = 1.2,

α = 10.82 ± 0.11, β = 0.62 ± 0.02; dash line µ0 = 1.2, α = 10.38 ± 0.35, β = 1.0. (b) µe

corresponding to various Pp is observed to observed to collapse onto a single curve. (rh = 8.5 mm;

ri = 2.5 cm) Fits to Eq. 5, where solid line µ0 = 1.8, α = 5.01 ± 0.11, β = 1.32 ± 0.04; dash line

µ0 = 1.8, α = 5.92± 0.09, β = 1.0.

range typically associated with quasi-static flow regime in granular media [23]. We further

tested if the collapse improves by plotting µe versus K using γ as a variable [17]. No marked

improvement is observed beyond what is shown in Fig. 5.

To understand the observed form of µe with I above the quasi-static regime, we examine

the scaling for µe above the effective friction coefficient in the quasi-static regime µo with

the form

µe(I) = µo + α Iβ , (5)
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where α and β are fitting constants. The value of β in particular can provide insight into

the nature of the medium as probed by the intruder. Noting that µe is proportional to the

stress at a given depth, and I is proportional to the shear rate, this form is similar to the

Hershel-Bulkley model for stress and strain rate scaling [11, 12, 15]. In that model, β is

called the consistency index with β < 1 corresponding to a shear-thinning fluid, and β > 1

corresponding to a shear thickening fluid. In the case where β = 1, the Hershel-Bulkley

model reduces to the Bingham plastic model of a viscoplastic material in which the medium

behaves like a viscous fluid above yield with viscosity proportional to α. Further, in the limit

where grains in the medium exchange momentum during rapid collisions, one may expect

Bagnold inertial granular rheology in which shear stress is proportional to the square of the

strain rate [24], in which case β = 2.

We fit the functional form in Eq. 5 to the data corresponding to rh = 0.5 mm in Fig. 5(a)

and rh = 8.5 mm in Fig. 5(b). Eq. 5 is observed to capture the trend well, with µ0 = 1.2,

α = 10.82 ± 0.11 and β = 0.62 ± 0.02 in the case of the small grains, and µ0 = 1.8,

α = 5.01±0.11 and β = 1.32±0.04 in the case of the large grains. We observed that µo is of

order 1, which implies that the force required to move the intruder is similar in magnitude

to the weight of the granular sediments that have to be lifted out of the way, around the

intruder.

We also fit the data by fixing β = 1 in Eq. 5 and display the result in Fig. 5 to test if

the simpler Bingham model can describe the observed µe(I). Systematic deviations can be

observed as captured by the greater dispersion in the fitting parameters which are listed in

the figure caption. Thus, we conclude that the drag experienced by the intruder found at a

given depth and speed can be used to predict the drag that the intruder will experience at

a different set of depths and speeds using the function given in Eq. 5.

We further tested if the fit of µe with the empirical functional form proposed by Jop,

et al. [23] for steady state flows can describe the data µe(I) = µo + (µ1 − µo)/(Io/I + 1),

where µ1 and Io are constants which depend on the medium. Such a function implies that

µe increases from µo as I/Io increase toward 1, and then increase toward µ1 as I/Io becomes

well above 1. While this form also appears to give a good description of the data, we find

that fitting constants do not converge with µ1 and Io diverging with increasing number of

iterations used in the fitting.

Now comparing the relative values of effective friction, it can be noted that µe is lower at
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low speeds in the case of the smaller granular hydrogels compared with the larger hydrogels

due to its lower volume fraction which leads to fewer contacts between grains [27]. However,

as the speed of the intruder is increased, the effective friction is observed to rise at a lower

I in case of the smaller grains. This leads µe to be higher in the case of the smaller grains

than the large grains for intermediate values up to I ∼ 1. This appears to occur because of

the relative greater importance of the fluid in the case of the smaller hydrogels as captured

by the lower Stokes number. Further investigations are required to fully understand these

variations which depend on the nature of the medium.

V. CONCLUSIONS

In conclusion, we have measured the drag experienced by an intruder which is pulled

through a sedimented granular medium immersed in water. We find that the drag expe-

rienced depends on the size of the intruder, the intruder depth in the medium, and the

intruder speed. Introducing an effective friction coefficient which corresponds to the average

stress experienced by the drag and normalized by the overburden pressure, we find that

the friction encountered by the intruder can be parameterized by using the inertial number

which increases with the intruder velocity and as the inverse square root of the overburden

pressure.

We propose an empirical formula for the observed variation of friction with the inertial

number inspired by the Hershel-Bulkley model which depends only on the properties of the

medium. Using this friction law, it is possible to relate the drag experienced by a given

spherical intruder at a given depth in the medium to an intruder at a different depth in the

same medium. We also related the drag encountered by a intruder of a given size to that of a

different size given the observation that drag increases quadratically with the intruder size.

We have further shown that the properties of the medium, including the granular packing

and fluid can impact the empirical constants in the formula. However, further work needs

to be done to fully understand these empirical constants and the detailed contribution of

each parameter of the medium to the friction encountered by the intruder.

Among the broader implications of our findings is that the inertial number can be used

to describe the friction encountered by an intruder in a transient flow. The effective friction

in the case of granular systems has previously been only clearly shown to depend on the
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inertial number under steady state conditions. This understanding of the drag experienced

by a intruder in an unsteady flow can not only lead to a better description of the dynamics

of passive objects in sedimented granular medium, but also has implications for a better

description of active motion of organisms through sand and clay using the observed rheology.
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