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A phase-field model of an oxide relevant to corrosion resistant alloys for film thicknesses below
the Debye length LD, where charge neutrality in the oxide does not occur, is formulated. The
phase-field model is validated in the Wagner limit using a sharp interface Gouy-Chapman model for
the electrostatic double layer. The phase-field simulations show that equilibrium oxide films below
the Wagner limit are charged throughout due to their inability to electrostatically screen charge
over the length of the film, L. The character of the defect and charge distribution profiles in the
oxide vary depending on whether reduced oxygen adatoms are present on gas/oxide interface. The
Fermi level in the oxide increases for thinner films, approaching the Fermi level of the metal in the
limit L/LD → 0, which increases the driving force for adsorbed oxygen reduction at the gas/oxide
interface.

PACS numbers: 81.15.Aa, 81.65.Mq, 82.45.Mp, 73.30.+y

I. INTRODUCTION

Corrosion resistant alloys withstand complete oxida-
tion by either preferentially forming or being coated by
an oxide that has slow growth kinetics which deter con-
tinued oxide growth [1, 2]. These protective oxide phases
have such low ionic conductivity that growth effectively
stops after a continuous layer has formed. Two of the
most common protective oxide phases are Cr2O3 and
Al2O3, which provide corrosion resistance in many high
temperature alloys [3]. Although these oxides are ther-
modynamically preferred to the oxide phases of the met-
als they are commonly alloyed with for high temperature
applications, alloy concentration and kinetic effects often
lead to the nucleation of multiple oxide phases during
the onset of oxidation, which can have a strong effect on
the resulting morphology and composition of the surface
oxide layer at later stages [4–8].

Bridging the gap between thin and thick scale oxide
growth models is a well-known challenge, where thin
and thick are defined relative to the electronic screening
length in the oxide [9–12]. The most widely accepted the-
ories for these two limiting cases are the Cabrera-Mott
[13] and and Wagner [14] models, which have been re-
viewed by Atkinson [11]. Both models rely on a sin-
gle process being rate limiting: cation injection in the
Cabrera-Mott limit and diffusion in the Wagner limit. A
more complete model must address a number of coupled
physical processes in order to connect the two regimes,
namely: interfacial redox reactions, mass and charge
transport, and electrostatics. The coupling of these pro-
cesses is crucial to describing oxide growth, but the en-
suing mathematical complexities of the model require a
numerical treatment [12, 15].

Here we employ a phase-field method to model an elec-
trochemical oxide/metal interface in contact with a gas.
The phase-field method is a logical approach for mod-
eling a system with multiple physical processes coupled
at a moving interface [16]. The method replaces a sharp

interface description of a two-phase boundary with a dif-
fuse one, allowing the governing equations to be contin-
uous across a multi-phase system. The phase-field vari-
able generally takes on a distinct value in each phase
and interpolates bulk properties smoothly through the
interfacial region. We treat the interfacial region as a
two phase mixture with distinct phase compositions, fol-
lowing the Kim-Kim-Suzuki (KKS) and Steinbach mod-
els [17, 18]. The KKS model decouples the equilibrium
interfacial energy and thickness from the chemical free
energy expressions and is better suited for treating sys-
tems with steep free energy-composition curves, as is the
case for most metal oxides. Although not addressed here,
it is relatively straightforward to add multiple crystallo-
graphic orientations and additional free energy contribu-
tions such as that stemming from strain to a phase-field
model, which will be important in developing better mod-
els of oxide/metal interfaces in the future [19, 20]. In the
present study we focus on the addition of the electrostatic
free energy contribution to the system to model the elec-
trostatic double layer at the interface. Treating the elec-
trostatic double layer is important for modeling scales
between the Cabrera-Mott and Wagner regimes, but is
computationally challenging due to the exponential de-
cay of space charge away from interfaces, which requires
an extremely fine numerical resolution to model accu-
rately [10, 21]. We employ the simplest defect structure
that allows for oxide growth in order to avoid complica-
tions such as multiple moving interfaces and defect-defect
interactions.

Phase-field models of electrochemical interfaces, first
developed by Guyer et al. [22, 23], have been used to
model a few one-dimensional electrochemical systems
[24, 25]. Guyer et al. studied an electrolyte/electrode
interface and showed that the charge distribution and
electrostatics agree with classic electrochemical interface
theory and that the differential capacitance curves di-
verge from theory but qualitatively agree with the com-
plex curves seen in experiment [22]. A continuing diffi-



2

culty with electrochemical phase-field models is under-
standing the interplay between the electrostatic double
layer and structural interface, as a closed-form solution
for the interfacial free energy and thickness are not cur-
rently known. Here we solve the governing equations for
an equilibrium oxide film to demonstrate that for protec-
tive oxide phases like Cr2O3 and Al2O3, the Debye length
and structural interface width are disparate enough to
treat them independently. This is validated with a sharp
interface description of the electrostatic double layer.

II. MODEL BACKGROUND

Two structural interfaces develop as an oxide layer
forms on the surface of a metal: a gas/oxide and ox-
ide/metal interface. The oxide layer can grow or shrink
by the migration of either interface, with the velocities
of the two interfaces being determined by reaction ther-
modynamics, interface kinetics, and relative mobilities
of the defect structures in the oxide. Anion and cation
transport facilitate the motion of the oxide/metal and
gas/oxide interfaces, respectively. In a standard phase-
field model of a phase transformation, the length scale of
each moving structural interface is defined by the equilib-
rium phase-field interfacial thickness, whereas in a sharp
interface description this interface has zero thickness [16].
In the present study we will only consider anion diffu-
sion in the oxide, so that only the oxide/metal interface
is in motion. In this case we only need to treat the ox-
ide/metal interface with a phase-field description because
the gas/oxide interface is stationary.

In addition to the structural interfaces, charged dou-
ble layers develop at phase boundaries in electrochemical
systems. The double layers form due to the differences in
equilibrium chemical potentials of the charged species in
the materials [26]. An associated electrostatic potential
difference, referred to as the Galvani potential, develops
between the bulk phases that equilibrates the electro-
chemical potentials across the system. The space charge
composing the double layer decays exponentially in the
bulk phases due to screening by mobile charge carriers,
with a characteristic length scale given by the material’s
screening length, referred to as the Debye length in semi-
conductors, classically defined as [27]:

LD =

√
εOkBT

e2cd
(1)

where cd is the native charged defect density
(moles elementary charge/m3) in the oxide, εO is the
permittivity of the oxide, and e is the elementary charge.
Protective oxide phases have Debye lengths on the order
of tens or hundreds of nanometers due to their low native
defect concentrations [11].

Wagner derived the well-known parabolic growth law
for diffusion limited oxide growth by assuming the ox-
ide scale is large compared to its Debye length [14]. In

other words, Wagner assumed that the length scale of the
electrostatic double layer is very short compared to the
oxide scale thickness, which means that the spatial vari-
ations in the electrostatics are localized at the interfaces.
Under this assumption the space charge in the bulk ox-
ide is zero, which results in a spatially invariant electric
field from Gauss’s Law. Wagner then assumed a coupled
currents condition in the oxide, or that the net current
is zero everywhere. With these assumptions the interfa-
cial charging is constant in time and the electric field can
be incorporated into an effective diffusivity for ionic and
electronic transport. Wagner’s assumptions break down,
however, when oxide thickness is not significantly greater
than the Debye length. When the oxide thickness is on
the order of the Debye length, the space charge can no
longer be considered localized at the interfaces. In this
case, the spatially resolved electric field must be treated
in the bulk oxide to accurately model growth. Since,
from Eq. (1), the Debye length in an oxide scales with its

defect density as: LD ∝ c
−1/2
d , modeling the growth of

oxide scales below the Wagner limit is particularly impor-
tant to understanding the growth kinetics of protective
oxide scales, which tend to have low defect densities [11].

III. MODEL DESCRIPTION

We consider a single oxide phase O (Metal Oxide)
growing on a metal M after a thin continuous layer of
thickness L and area A has nucleated on the surface,
shown schematically in Fig. 1. The coordinate system
is chosen such that x̂ is in the growth direction and the
oxide film is uniform in the ŷ and ẑ directions. In or-
der to avoid considering volume expansion during oxide
formation, the lattice constants in the oxide and metal
are treated as equal. The oxide defect structure consists
of neutral anion vacancies, VA, and electrons e−, as is
known to be reflective of alumina growth where oxygen
vacancies are the primary diffusing species [28]. By only
treating neutral anion vacancies we avoid having to con-
sider defect-defect interactions in the oxide that would
need to be accounted for if multiple ionic defects were
included [29, 30]. Although this is a simplification of the
defect structure, it has been shown to capture the cou-
pling of the spatially resolved electric field with ionic dif-
fusion that we are interested in [28, 31, 32]. The electrons
in the oxide are localized on the cation sublattice, so that
they have the same configurational entropy contribution
as the anion vacancies [33]. In this formulation, the con-
duction of negative charge in the oxide is dominated by
electron hopping between cation sites as opposed to, for
example, diffusion of negatively charged cations or a con-
duction band in the oxide [34].

With the preceding assumptions, the mole fractions X
of electrons and anion vacancies in the oxide are given
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FIG. 1. Schematic of a uniform oxide scale of thickness L
grown on a metal surface in gas.

by:

Xi =
molar density of i

molar density of i’s sublattice
for i = e, v (2)

where e and v represent electrons and anion vacancies,
and electrons reside on the cation sublattice. In order to
avoid considering volume changes during diffusion, the
molar volume of the anions and anion vacancies are as-
sumed equal and the molar volume of the electrons is
zero.

The metal is composed primarily of conduction elec-
trons e− and metal atoms M+, with each metal atom
contributing one electron to the conduction band. The
electrons are treated as a free electron gas in the metal
phase and the density of states at the Fermi level is as-
sumed small enough so that the entropic contribution to
the free energy of the electron gas is negligible [35]. We
assume there are no defects in the metal phase, for exam-
ple dissolved oxygen, that contribute significantly to the
oxide growth. However, from a modeling perspective we
cannot set the anion concentration in the metal equal to
zero, and for this reason we must assume a small concen-
tration of negatively charged oxygen defects in the metal.
For simplicity, we treat these oxygen defects as intersti-
tials so that they do not mix with the metal atoms on the
metal lattice. A single interstitial site is associated with
each metal site so that the entropic free energy expression
for the oxygen atoms is equivalent in both phases.

The molar densities, in Kröger-Vink notation, of elec-
trons e′, anions A×A, cations M×M , and anion vacancies V •A
in the oxide/metal system are denoted by ce, ca, cm, and
cv, respectively, which have charge numbers: qe = −1,
qa = qm = 0, and qv = 1. For accounting purposes in
the oxide, we also define electron holes h× on the cation
sublattice that represent cation sites that lack an extra
electron. If we define c as the molar density of the sub-
lattices in the oxide and metal, structure conservation
requires:

cm = ca + cv = c everywhere (3)

ce + ch = c in the oxide (4)

which reflect that the cation molar density cm is fixed
and equal to c across the system, and that the sum of
the anion and anion vacancy molar density must be equal

to c everywhere. The sum of the electron and hole molar
density must be equal to c in the oxide, but there is no
structure conservation requirement for the free electron
gas in the metal. Therefore the system can be fully de-
scribed by the anion vacancy and electron densities. The
molar densities are related to mole fractions defined by
Eq. (2) as Xi = ci/c. Given the charge numbers of each
species listed above, the defect density dependent charge
density ρ is given by:

ρ =
∑

i=e,a,m,v

qiciF = (cv − ce)F (5)

where F is Faraday’s constant. The local electrostatic
potential, ψ, in the system is related to the charge density
through Gauss’s Law:

−∇ · [εE] = ∇ · [ε∇ψ] = −ρ (6)

where ε is permittivity and E is the electric field. Al-
though we do not impose local charge neutrality, the to-
tal charge in the system is conserved since there is no
flux of charge into the oxide/metal system from the gas
phase: ∫

V

ρ dV = 0 =⇒
∫
V

[cv + ce] dV = 0

We only treat anion diffusion in the oxide, however it is
straightforward to adjust the system to describe cation
vacancy diffusion rather than anion vacancy diffusion,
relevant to other oxides such as NiO [36]. In this case
cv would represent the cation vacancy density. In order
to conserve charge in the oxide, mobile holes h• would
replace the conduction electrons e′. The corresponding
defect charge numbers would be: qh = 1, qa = qm = 0,
and qv = −1. Structure conservation would require ca =
cm + cv rather than cm = ca + cv. The rest of the paper
proceeds assuming anion vacancy diffusion.

A. Bulk phase thermodynamic formulation

According to Eqs. (3) and (4), an anion vacancy or
electron cannot be created on their associated sublat-
tices without removing an anion or hole. Therefore the
chemical potential of these single species cannot be eval-
uated without violating structure conservation. To ad-
dress this, we follow Lankhorst et al. by defining the fol-
lowing structure elements in the oxide:

{V •A} = V •A −A×A and {e′} = e′ − h× (7)

which represent an exchange of species occupying a par-
ticular sublattice site [30]. The structure elements have
physical chemical potentials that can be evaluated as dif-
ferences in the non-physical chemical potentials of the
individual species being exchanged.

We start by assuming an ideal solution model for the
Gibbs free energy density of the oxide phase. The ideal
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solution model for the chemical part of the Gibbs free
energy density of the oxide phase is:

GOideal = c
(
µ◦Om + µ◦Oa

)
+
∑
i=v,e

cOi

[
µ◦O{i}

+RT

(
ln
cOi
c

+
c− cOi
cOi

ln
c− cOi

c

)]
The quantity µ◦Om + µ◦Oa is the chemical potential of the
defect-free oxide, which can be evaluated without violat-
ing structure conservation. The quantities µ◦j{i} are the

standard state chemical potentials of the structure ele-
ments defined in Eq. (7) and are differences in the single
species standard state chemical potentials. For exam-
ple, the standard state chemical potential of the vacancy
structure element is given by µ◦O{v} = µ◦Ov − µ◦Oa .

The anion and electron contributions to the chemical
Gibbs free energy density of the metal phase are treated
with an ideal solution and free electron gas model, respec-
tively. A structure element for the anions in the metal
is defined in the same fashion as in Eq. (7) for the oxide
phase. Since there is no condition of structure conserva-
tion for electrons in the metal, the chemical potential of a
single electron in the metal is well defined. The chemical
part of the Gibbs free energy density of the metal phase
is:

GMideal = cµ◦Mm +

∫ cMe

0

µMe dc+
(
c− cMv

) [
µ◦M{a}

+RT

(
cMv

c− cMv
ln
cMv
c

+ ln
c− cMv

c

)]
As with the oxide, the quantity µ◦Mm is the chemical po-
tential of the defect-free metal. The electron density de-
pendent electron chemical potential µMe is taken as the
standard Fermi level expression from free electron gas
theory [35]:

µMe =
NA

5/3h̄2
(
3π2
)2/3

2me

(
cMe
)2/3

where h̄ is the reduced Planck’s constant, me is the mass
of an electron, andNA is Avogadro’s number. To simplify
the notation, we drop the brackets representing structure
elements in the chemical potentials in the rest of the pa-
per, but all defect chemical potentials still refer to struc-
ture element chemical potentials as defined in Eq. (7).

To make the problem more computationally tractable,
we express the composition dependent chemical Gibbs
free energy densities of the metal and oxide phases
as second-order Taylor expansions about the two-phase
equilibrium densities cji,eq, for i = e, v and j = O,M . We
have taken advantage of the fact that the bulk phases
must be charge neutral at equilibrium, which from Eq. (5)
implies that the equilibrium density of electrons and an-
ion vacancies are equal in a given phase:

cjeq ≡ cje,eq = cjv,eq for j = O,M

The Taylor expanded Gibbs free energy densities are
given by:

Gj = G◦j +
∑
i=e,v

[
µji,eq

(
cji − c

j
eq

)
+

1

2
Bji

(
cji − c

j
eq

)2
]

for j = O,M (8)

where µji,eq ≡ (∂Gj
ideal/∂c

j
i)|cjeq are the two-phase equilib-

rium chemical potentials, Bji ≡ (∂2Gj
ideal/∂c

j
i

2)|cjeq are the

second derivatives of the free energy densities at equi-

librium, and G◦j ≡ Gjideal

∣∣∣
cjeq

are the equilibrium free

energy densities. The expressions for µji,eq and Bji are
provided in Appendix A.

We can derive standard expressions for the chemical
and electrochemical potentials of each species from the
Gibbs free energy densities:

µji =
∂Gj

∂ci
= µji,eq +Bji

(
cji − c

j
eq

)
µ̄ji = µji + qiFψ

j for i = e, v and j = O,M (9)

For convenience, we choose the arbitrary zero of the free
energy scale to coincide with the equilibrium chemical
free energy density of the oxide phase in two-phase equi-
librium. The chemical Gibbs free energy densities can
then be written:

GO =
∑
i=e,v

[
µOi,eq

(
cOi − cOeq

)
+

1

2
BOi

(
cOi − cOeq

)2]
(10)

GM =
∑
i=e,v

[
µMi,eq

(
cMi − cMeq

)
+

1

2
BMi

(
cMi − cMeq

)2]
+ ∆G◦ (11)

where ∆G◦ ≡ G◦M −G◦O is the difference in two-phase
equilibrium Gibbs free energy densities, provided in Eq.
(A4). The quantity ∆G◦ contains the difference between
the chemical potentials of the defect-free metal and oxide
structures ∆µ◦, defined by:

∆µ◦ = µ◦Mm − µ◦Om − µ◦Oa (12)

B. Oxide/Metal equilibrium

The oxide and metal phases are at equilibrium when
there is zero driving force for phase transformation and
the electrochemical potential of each species is uniform
across the system. These conditions result in three equa-
tions for the two equilibrium defect densities and the
equilibrium potential difference between the bulk phases,
∆ψ◦ ≡ ψMeq − ψOeq. The potential difference ∆ψ◦ is the
Galvani potential between the oxide and metal, a ma-
terials property related to the difference in equilibrium
chemical potentials of charged species between the two
materials [37, 38]. The Galvani potential develops via
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the formation of the electrostatic double layer as charged
species migrate to the material where they have a lower
chemical potential. The Fermi level is typically lower in
the oxide than in the metal, in which case ψMeq will be

higher than ψOeq.
The driving force for phase transformation in the ox-

ide/metal system, denoted by Πo/m with units of J/mol,
can be derived from the chemical free energy densities
in Eqs. (10) and (11) and the electrostatic free energy
density:

cΠo/m = GM (cMv , c
M
e )−GO(cOv , c

O
e )

+
∑
i=v,e

[(
cOi − cMi

)
µOi
]

+ ρMψM − ρOψO (13)

At equilibrium, the driving force must be zero:

Πo/m

∣∣
cOv =cOe =cOeq,c

M
v =cMe =cMeq

= 0 (14)

The equilibrium electrostatic potentials of the bulk
phases ψOeq and ψMeq don’t appear in Eq. (14) because
the bulk phases are charge neutral at equilibrium. The
condition of electrochemical equilibrium of each species
is given by:

µ̄Mi
∣∣
cMeq ,ψ

M
eq

= µ̄Oi
∣∣
cOeq,ψ

O
eq

for i = e, v (15)

Equations (14) and (15) uniquely determine the equi-
librium densities and Galvani potential between the bulk
phases. Substituting Eq. (9) into Eq. (15) and solving
for ψM − ψO, the Galvani potential is given by:

∆ψ◦ =
µOi,eq − µMi,eq

qiF
for i = e, v (16)

C. Gas/oxide interface

The gas/oxide interface is treated as a sharp interface
throughout the paper since zero cation diffusion implies
that it is stationary. The oxygen flux from the gas phase
onto the oxide surface is assumed fast compared to the
flux of oxygen into the oxide, such that the oxygen sup-
ply from the gas is never rate limiting. Therefore there is
an adsorbed layer of oxygen present on the oxide surface
that is in chemical equilibrium with the gas phase, inde-
pendent of the oxygen flux into the oxide. It is important
to consider the charge state of oxygen species present on
the oxide surface. For example, at room temperature
oxygen primarily exists as a chemisorbed O− species on
nickel oxide [39] and as neutral O2 on alumina [40]. We
will consider cases with and without surface oxygen re-
duction. If reduced species do exist on the oxide surface
then a second double layer will develop at the oxide/gas
interface. We defer treating this second double layer un-
til we have analyzed the oxide/metal interface. Below we
describe the reaction rates and equilibrium conditions at
the gas/oxide interface for both cases.

1. No surface oxygen reduction

If no reduced oxygen species exist on the oxide surface
then the oxygen reduction and injection into the oxide
must occur in a single step:

O×ads + e′ + V •A ←→ A×A (17)

The species O×ads is a charge-neutral oxygen adatom. The
change in molar Gibbs free energy for the above reaction
is:

Πg/o = −µ̄Ov − µ̄Oe − µg (18)

remembering that the chemical potential of O×ads is equal
to the chemical potential of oxygen in the gas, µg. The

value of µg is given by µg = µ◦g(T ) + ln p
1/2
O2

, where pO2

is the partial pressure of O2 in the gas. The temperature
dependent standard state free energy of oxygen gas can
be found in a thermochemical database [41]. The flux
of vacancies and electrons at the gas/oxide interface due
to the reduction reaction is taken to follow first-order
reaction kinetics and is given by [42]:

Jv = Je = κΠg/o (19)

where κ is a temperature dependent rate constant. Equa-
tion (19) is valid for |Πg/o| � RT . Equation (18) must
be zero at equilibrium, which implies:

µ̄Ov + µ̄Oe = −µg at equilibrium (20)

Therefore the bulk gas, oxide, and metal phases are at
equilibrium when Eqs. (14, 15, and 20) are satisfied.

2. Surface oxygen reduction

If a reduced oxygen species does exist on the oxide sur-
face then we assume the oxygen reduction and injection
into the oxide occur in two steps, r1 and r2:

O×ads + e′
r1←→ O′ads

O′ads + V •A
r2←→ A×A

O′ads is the reduced oxygen adatom. Note that these re-
actions sum to the reaction in Eq. (17). The surface mo-
lar density of reduced oxygen is denoted cA (moles/m2)
and the associated surface charge density ρA is defined
as ρA = −FcA.

The change in molar Gibbs free energy of each reaction
step is:

Πr1 = µ̄g− − µ̄Oe − µg (21)

Πr2 = −µ̄Ov − µ̄g− (22)

where µ̄g− is the electrochemical potential of the reduced
oxygen adatoms and is treated as a constant here. We do
not use the subscript o for µ̄g− to avoid confusion with
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the notation for the electrochemical potential of oxygen
in the oxide.

The reaction fluxes are again taken to follow first-order
reaction kinetics are given by:

Je = κr1Πr1 (23)

Jv = κr2Πr2 (24)

∂ρA

∂t
= κr2Πr2 − κr1Πr1 (25)

where κr1 and κr2 are the temperature depended rate
constants for r1 and r2. For simplicity we assume κr1 =
κr2 . Equations (21) and (22) must be zero at equilib-
rium. If we substitute the gas/oxide equilibrium condi-
tion −µg − µ̄Oe = µ̄Ov from Eq. (20) into Eq. (21), then
Eqs. (21) and (22) become equivalent and yield a sin-
gle equation for the equilibrium condition of the reduced
surface oxygen species Πr1 = Πr2 = 0:

µ̄g− = −µ̄Ov at equilibrium (26)

Since µ̄g− is treated as a constant here for simplicity,
Eqs. (21) and (22) will reach equilibrium due to shifts
in the vacancy and electron electrochemical potentials
at the gas/oxide interface. The presence of the reduced
oxygen species does not change the equilibrium condi-
tions for the bulk gas, oxide, and metal phases, which
are still given by Eqs. (14, 15, and 20)

IV. OXIDE/METAL SHARP INTERFACE
DESCRIPTION

We first treat the structural oxide/metal interface with
a sharp interface approach in order to calculate the in-
terfacial energy of the electrostatic double layer. The
distribution of space charge at the interface in our model
follows Gouy-Chapman theory, where the charged species
follow a Boltzmann distribution and have a negligible size
effect [43]. The Debye length LD in the oxide and screen-
ing length LS in the metal for our free energy formulation
are derived in Appendix B and are given by:

LD =

[
F 2

εO

(
1

BOv
+

1

BOe

)]−1/2

(27)

LS =

[
F 2

εM

(
1

BMv
+

1

BMe

)]−1/2

(28)

where εj is the permittivity of phase j. As discussed
in Appendix B, in the dilute limit Eq. (27) agrees ex-
actly with the expression given in Eq. (1), and Eq. (28)
approaches the Thomas-Fermi screening length expected
for a free electron gas as the anion concentration in the
metal goes to zero.

In the sharp interface description there are discontinu-
ities in the charge density and electric field, or equiva-
lently the gradient of the electrostatic potential, at the
structural interface. It is straightforward to calculate the

magnitude of the space charge that accumulates at the
interface to equilibrate the electrochemical potentials in
the two materials, assuming the oxide is in the Wagner
limit. To calculate the interfacial properties, we consider
the oxide/metal interface to be at x = 0, with the oxide
and metal extending to x = −∞ and x =∞ respectively.
Since the absolute value of the electrostatic potential is
arbitrary, we choose the value in the bulk oxide to be
zero for convenience. The charge density profile, follow-
ing Gouy-Chapman theory, is given by:

ρ(x) =

{
ΛOex/LD for x < 0

ΛMe−x/LS for x > 0
(29)

which has a jump discontinuity at x = 0. The constants
ΛO and ΛM are the values of the charge density on ei-
ther side of the oxide/metal interface. The total charge
in the either phase, σO and σM , can be calculated by
integrating the charge density profiles:

σO = lim
x→0−

∫ x

−∞
ρ(x′)dx′ = ΛOLD (30)

σM = lim
x→0+

∫ ∞
x

ρ(x′)dx′ = ΛMLS (31)

Charge neutrality implies that the total charge in the
oxide/metal system, σO + σM , must be zero. We define
the magnitude of the charge in either phase, σO/M , as:

σO/M =
∣∣σO∣∣ =

∣∣σM ∣∣
The condition of charge neutrality allows us to solve for
ΛM in terms of ΛO, LD, and LS from Eqs (30) and (31):

ΛM = −LD
LS

ΛO

We can solve for the electrostatic potential ψ(x) in
the system by integrating Gauss’s Law, Eq. (6), for the
charge density profile in Eq. (29), with the boundary con-
ditions:

lim
x→−∞

∂ψ

∂x
= lim
x→∞

∂ψ

∂x
= 0

lim
x→−∞

ψ = 0

lim
x→0−

ψ = lim
x→0+

ψ

Where, again, the choice of ψ = 0 in the bulk oxide
is arbitrary and chosen for convenience. The resulting
expression for the electrostatic potential is:

ψ(x) =

{
−ΛOLD

2

εO
ex/LD for x < 0

−ΛOLD
2

εO
+ ΛMLS

2

εM

(
1− e−x/LS

)
for x ≥ 0

(32)
where ψ(x) is continuous but ∂ψ/∂x is discontinuous at
x = 0.

At equilibrium, the difference in the electrostatic po-
tential between the oxide and metal phase is, by defini-
tion, the Galvani potential ∆ψ◦. This allows us to solve
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for the magnitude of the interfacial charging σO and σM

in terms of ∆ψ◦ by considering the limits of Eq. (32):

∆ψ◦ =
[

lim
x→∞

ψ(x)
]
−
[

lim
x→−∞

ψ(x)

]
= −LDΛO

(
LD
εO

+
LS
εM

)
(33)

Note that the two definitions of the Galvani potential in
Eq. (16) and (33) are distinct but must be equal to the
same value. We utilize Eq. (33) to solve for ΛO and ΛM

in terms of ∆ψ◦ and substitute the result into Eqs. (30)
and (31) to find σO/M as a function of ∆ψ◦:

σO/M =

∣∣∣∣∣
(
LD
εO

+
LS
εM

)−1

∆ψ◦

∣∣∣∣∣ (34)

Our use of quadratic Gibbs free energy density functions
results in a linear dependence of the surface charge on the
Galvani potential, rather than σ ∝ sinh (∆ψ◦) as is the
case for an ideal solution model. In fact, Eq. (34) is the
first-order expansion of the ideal solution expression for
the interfacial charging of an electrostatic double layer
[43].

We can derive the equilibrium electron and anion
vacancy density profiles in the system by substituting
the electrostatic potential profile given in Eq. (32) into
the expression for the electrochemical potential given in
Eq. (9). Electrochemical equilibrium requires:

µ̄Oi (x) = µ̄Mi (x) = constant

for i = v, e. Applying the boundary conditions:

lim
x→−∞

cOi = cOeq and lim
x→∞

cMi = cMeq

for i = v, e and solving for the equilibrium electron and
anion vacancy density profiles yields:

ci(x) =

{
cOeq − qi FBO

i
ψ(x) for x < 0

cMeq − qi F
BM

i
[ψ(x)−∆ψ◦] for x > 0

(35)

for i = v, e

where we have simplified the expression in Eq. (35) using
the expression for the Galvani potential given in Eq. (33).
Like ρ(x) in Eq. (29), the electron and anion vacancy
density profiles have jump discontinuities at x = 0.

Finally, we can calculate the electrostatic portion of
the interfacial energy by integrating the free energy den-
sity over the oxide and metal using the charge densities
and corresponding electrostatic potentials derived above;
see Appendix C:

γψ =
1

2

[
(BMe −BMv )(µMe,eq + µMv,eq)

F (BMe +BMv )
−∆ψ◦

]
σO (36)

Examining Eq. (36), the formation of the double layer
will always decrease the total free energy of the system.

The second term on the RHS of Eq. (36) is expected from
electrocapillary theory, and alone would yield the well-
known Lippmann Equation σO = −(∂γψ/∂∆ψ◦)µi

[44].
The first term on the RHS of Eq. (36) is a result of the
free electron gas model and arises due to the difference
in parabolic constants in the metal phase.

V. PHASE-FIELD MODEL

We now represent the structural oxide/metal phase
boundary as a diffuse interface described by a phase-field
parameter φ. The phase-field parameter ranges from 0
to 1, where φ = 0 represents the oxide phase and φ = 1
represents the metal phase. Bulk properties are interpo-
lated smoothly across the diffuse interface by a common
interpolation function p(φ) = φ3

(
10− 15φ+ 6φ2

)
that

satisfies ∂p(φ)/∂φ = 0 in the bulk phases [45]. The value
of p(φ) may be interpreted as the local volume fraction of
the metal phase. The oxide/metal interface is considered
a two phase mixture, where the average molar density ci
in the mixture is the weighted average of the two phase
densities [17]:

ci = p(φ)cMi + (1− p(φ))cOi for i = e, v (37)

We assume that the phase compositions satisfy local elec-
trochemical equilibrium in the two-phase mixture, follow-
ing the standard approach for multi-component systems
[46, 47]. As both the phase-field interfacial thickness be-
comes small and the film thickness becomes large com-
pared to the Debye length in the system, the phase-field
model will approach the sharp interface description de-
scribed in Sec. IV.

A. Free energy functional

The total free energy of the oxide/metal system is given
by the free energy functional:

F (φ, cv, ce, ψ) =

∫ [
Gφ +Gtot +

1

2
ψρ

]
dV (38)

that includes an phase-field, chemical, and electrostatic
contribution.

The phase-field free energy density Gφ is the sum of
a symmetric double well potential and a gradient energy
penalty term, and is given by:

Gφ =
ε

2
|∇φ|2 +Aφ2 [1− φ]

2

where ε is the gradient energy coefficient and A sets the
height of the double well. The phase-field free energy
density goes to zero in the bulk phases and sets the free
energy penalty for components in the two-phase mixture
at the interface. When the Galvani potential in the sys-
tem is zero and there is no driving force for oxidation,
no space charge develops in the system and the model
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reduces to a phase-field model of a phase transformation
without charged species (see [17, 48] for example). In
this case, the two parameters ε and A completely deter-
mine the equilibrium thickness, ζ, and energy, γφ, of the
oxide/metal structural interface:

ζ =

√
2ε

A
and γφ =

√
εA

3
√

2
(39)

The second term in Eq. (38), Gtot, is an interpolation
of the chemical component of the Gibbs free energy den-
sities of the pure phases given in Eqs. (10) and (11):

Gtot = p(φ)GM + (1− p(φ))GO (40)

The chemical free energy densities of the two phases in
Eqs. (10) and (11) are expressed in terms of the indi-
vidual phase densities cOe , cMe , cOv , and cMv . In order to
express Eq. (40) in terms of the average molar densi-
ties cv and ce, defined in Eq. (37), we assume the local
two-phase mixture is at electrochemical equilibrium. We
do not include the equilibrium Galvani potential differ-
ence between the two phases in the two-phase mixture:
ψO(x) = ψM (x). Including this internal potential dif-
ference would imply a charged double layer at the inter-
faces within the two-phase mixture, and no double layer
would develop across the diffuse interface. If one were
interested in modeling an electrochemical interface using
a grid spacing much larger than the electronic screen-
ing lengths in the materials of interest, then assuming
an internal Galvani potential would be reasonable. Local
electrochemical equilibrium within the two phase mixture
with no internal electrostatic potential difference implies,
from Eq. (9):

µOi,eq+B
O
i

(
cOi − cOeq

)
= µMi,eq +BMi

(
cMi − cMeq

)
for i = e, v (41)

The defect densities in each phase can be expressed as a
function of φ and the average molar density ci by solving
the four equations given in Eqs. (37) and (41) for cOe , cMe ,
cOv , and cMv . Expressing Eq. (40) in terms of ce and cv,
the total Gibbs free energy density can be simplified to:

Gtot =
∑
i=v,e

[
µi,eq(ci − ceq) +

1

2

BOi B
M
i

Bi
(ci − ceq)2

+
F 2

2

p(φ)(1− p(φ))

Bi
(∆ψ◦)

2

]
+ p(φ)∆G◦

where

ceq = p(φ)cMeq + (1− p(φ))cOeq (42)

µi,eq =
(1− p(φ))BMi µ

O
i,eq + p(φ)BOi µ

M
i,eq

Bi

Bi = (1− p(φ))BMi + p(φ)BOi

The φ dependent density profile ceq can be interpreted as
the average equilibrium defect density of the two-phase

mixture, and would be the equilibrium defect density pro-
file for ∆ψ◦ = 0. The phase-field dependent terms µi,eq
and Bi are interpolated equilibrium chemical potentials
and parabolic constants.

The third term in Eq. (38) is the electrostatic energy
density in the system, where ψ is the electrostatic poten-
tial in the two-phase system and ρ is the charge density
defined in Eq. (5). The electrostatic potential must sat-
isfy Gauss’s Law everywhere:

−∇ · [ε(φ)E] = ∇ · [ε(φ)∇ψ] = −ρ(cv, ce)

where the permittivity ε(φ) = p(φ)εM + (1 − p(φ))εO

is now treated as an explicit function of the phase-field
variable φ and is an interpolation of the bulk values of
the two phases. In reality the permittivity is depressed
at the oxide/metal interface, but this is omitted in the
present model for simplicity [49].

B. Phase-field oxide/metal interfacial energy

The interfacial energy per unit area in the phase-field
model, denoted γ, is defined conventionally as:

F = V OG◦O + VMG◦M +Aγ (43)

where V O and VM are the volume of the oxide and metal
phases and A is the area of the interface. The first two
terms on the RHS of Eq. (43) are the free energies of
the bulk oxide and metal phases at equilibrium, and the
third term is the free energy of the interface. Remem-
bering that p(φ) is the local volume fraction of the metal
phase, ∆G◦ ≡ G◦M −G◦O, and the energy scale is set so
that G◦O is zero, the free energies of the bulk phases at
equilibrium can be written:

V OG◦O + VMG◦M

= A
∫ [

(1− p(φ))G◦O + p(φ)G◦M
]
dx

= A
∫
p(φ)∆G◦dx (44)

Rewriting Eq. (38) as F = A
∫ [
Gφ +Gtot + 1

2ψρ
]
dx

and substituting it into the LHS of Eq. (43), we can use
Eq. (43) along with Eq. (44) solve for γ:

γ =

∫ [
Gφ +Gtot +

1

2
ψρ− p(φ)∆G◦

]
dV

We show below that when the Debye length LD and the
screening length of the metal LS are significantly larger
than the structural interface thickness ζ, the interfacial
energy approaches the sum of the structural and electro-
static interfacial energies given in Eqs. (36) and (39):

γ → γψ + γφ for ζ/LD � 1 and ζ/LS � 1 (45)
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C. Free energy minimization

The equilibrium solution of the oxide/metal system
must minimize the free energy F (φ, cv, ce, ψ) with re-
spect the defect density, phase-field variable, and electro-
static potential fields. We cannot take functional deriva-
tives of Eq. (38) with respect to φ, cv, ce, and ψ inde-
pendently, however, because ψ is itself a functional of
cv and ce by Gauss’s Law. Following the approach of
Guyer et al. [22], we introduce a Lagrangian L to ensure
that the solution satisfies Gauss’s Law without explicitly
accounting for the dependence of ψ on cv and ce when
taking the functional derivatives:

L = F −
∫
λ (∇ · [ε∇ψ] + ρ) dV

where the Lagrange multiplier λ must be a field λ(x)
in order to satisfy Gauss’s law across the system. The
variations of L with respect to φ, cv, ce, and ψ are then:

δL
δφ

=
∂Gφ

∂φ
−∇ · ∂G

φ

∂∇φ
+
∂Gtot

∂φ
+
∂ε

∂φ
∇λ · ∇ψ (46)

δL
δci

=
∂Gtot

∂ci
+

1

2
ψFqi − λFqi for i = v, e (47)

δL
δψ

=
1

2
ρ−∇ · [ε∇λ] (48)

The variations with respect to the nonconserved fields
φ and ψ must be zero and the variations with respect
to the conserved density fields must be constant at equi-
librium. By substituting Gauss’s Law into Eq. (48), we
can see that Eq. (48) is zero only when λ = − 1

2ψ, which
reduces Eqs. (46) and (47) to

δL
δφ

=
∂Gφ

∂φ
−∇ · ∂G

φ

∂∇φ
+
∂Gtot

∂φ
− 1

2

∂ε

∂φ
|∇ψ|2 (49)

δL
δci

=
∂Gtot

∂ci
+ qiFψ = µ̄i for i = v, e (50)

Equation (50) can be interpreted as the electrochemi-
cal potential of each species in the two phase mixture.
Considering Eq. (20), the gas/oxide/metal system is at
equilibrium when µ̄v + µ̄e = −µg everywhere.

We formulate Allan-Cahn and Cahn-Hilliard type evo-
lution equations for the non-conserved phase-field and
conserved defect density fields:

∂φ

∂t
= −Mφ

δL
δφ

(51)

∂ci
∂t

= −∇ · Ji = ∇ · (Mi∇µ̄i) for i = v, e (52)

where Mv and Me are the defect mobilities and Mφ is the
phase-field mobility. We do not discuss the details of the
mobilities here since they do not affect the equilibrium
solutions. We make the simplifying assumption that the

TABLE I. Physical and phase-field parameters.

∆µ◦ 4× 105 J/mol

c 9× 104 mol/m3

cOeq 0.0001c

cMeq 0.999c

T 1000 K

εM ε0

εO 70 ε0

∆ψ◦ 0.05 V

ζ 0.1LD

γφ 2× 10−3 J/m2

defect mobilities are constants so that they can be pulled
outside of the divergence operator for computational ef-
ficiency.

Values for the physical parameters used in the model,
except when explicitly varied, are provided in Table I.
These values result in a reasonable value of the difference
in the two-phase equilibrium Gibbs free energy densities,
∆G◦, of ∼ 7× 105 J/mol for an oxide/metal system [7].
The permittivity of the oxide is chosen as an approxi-
mation for the high-temperature permittivity of alumina
[50, 51]. The permittivity of the metal is the real part of
the static permittivity of a free electron gas [52]. The de-
pendence of the model on the equilibrium defect densities
cOeq and cMeq , as well as the structural interface thickness
ζ are discussed below.

D. Nondimensionalization

For numerical purposes, the model is scaled by the
Debye length LD, chemical diffusion coefficient of anion
vacancies in the oxide Dv, molar density of the oxide
c, and temperature T . The nondimensionalized physical
parameters are indicated with a tilde and given by:

x̃ =
x

LD
c̃ =

c

c
t̃ =

tDv

L2
D

κ̃ =
κRTLD
cDv

G̃ =
GL3

D

kBT

B̃ =
Bc2L3

D

kBT
ε̃ =

ε LD
kBT

Ã =
AL3

D

kBT
ε̃ =

εRTLDNA
F 2

ρ̃ =
ρL3

DNA
F

µ̃ =
µcL3

D

kBT
ψ̃ =

ψF

RT
c̃ = cL3

DNA

M̃e =
MekBT

Dvc2L3
D

M̃v =
MvkBT

Dvc2L3
D

M̃φ =
MφkBT

DvLD

From this point forward we drop the tildes and take all
physical variables to be in their non-dimensional form.
The evolution equations Eqs. (51) and (52) and Pois-
son’s equation are cast in dimensionless form and solved
below. The nondimensionalized evolution equations are
provided in Appendix D.
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VI. NUMERICAL METHODS AND
CONVERGENCE

The nondimensionalized forms of the evolution
Eqs. (D1), (D2), and (D3) are solved with an explicit
Euler scheme using second-order finite differences on a
uniform grid. The sharp gas/oxide interface and the cen-
ter of mass of the metal are located at the left and right
boundary points, x = 0 and x = xr. The system is con-
sidered symmetric about x = xr, which implies the metal
is being oxidized from both sides and another oxide/gas
interface exists at x = 2xr. Symmetry then implies the
following boundary conditions at x = xr:

Jv|x=xr
= Je|x=xr

= 0

∇ψ|x=xr
= 0

A. Gas/oxide interfacial boundary conditions

The oxygen chemical potential in the gas, µg, is set
to satisfy Eq. (20) in all simulations. The value of the
electrochemical potential of the reduced adsorbed oxygen
species, µ̄g− , is discussed below. In the first two sections
of results, Secs. VII A and VII B, no adsorbed oxygen re-
duction is permitted. This allows the oxide/metal inter-
face to be studied without the presence of another double
layer at the gas/oxide interface. In this case, because µg
is set to satisfy Eq. (20), the boundary conditions for
the defect fluxes at the gas/oxide interface according to
Eq. (19) are given by:

Jv|x=0 = Je|x=o = 0

If oxygen reduction is permitted, as in Sec. VII C,
then the boundary conditions for the defect fluxes at
the gas/oxide interface are given by Eqs. (23) and (24).
In this case as the system evolves the oxide surface will
charge until Eq. (26) is satisfied, where the equilibrium
value of the surface charge density ρA is a function of
µ̄g− .

B. Electrostatics

1. No surface oxygen reduction

If no charge exists on the oxide surface then the bound-
ary conditions are such that charge is conserved over the
domain 0 ≤ x ≤ xr. The electrostatic potential and elec-
tric field are computed at each time step by integrating
Gauss’s Law using the trapezoidal rule with the bound-
ary conditions ψ(x = 0) = 0 and E(x = 0) · x̂ = 0:

E(x) · x̂ =
1

ε(x)

∫ x

0

ρ(x′) dx′ (53)

ψ(x) = −
∫ x

0

E(x′) · x̂ dx′ (54)

which ensures that the value of E(x) · x̂ will be zero at
x = xr if the evolution equations are accurate to at least
second order.

2. Surface oxygen reduction

If surface oxygen reduction is included in the model,
then the charged layer on the oxide surface invalidates
the boundary condition E(x = 0) · x̂ = 0. We assume
the thickness of the adsorbed surface layer, l, is short
compared to other physical lengthscales in the system.
In this case the boundary conditions for the electric field
and electrostatic potential at x = 0 can be found by
integrating Gauss’s law from x = −l to x = 0 in the
limit l→ 0, assuming constant charge density within the
layer:

E(x = 0) · x̂ =
ρA

εA

ψ(x = 0) = 0

where εA is the permittivity of the reduced oxygen layer.
So the charged surface layer does not introduce a jump
in the electrostatic potential at the gas/oxide interface
in the limit l → 0, but does introduce a jump in the
gradient of the electrostatic potential.

The electric field and electrostatic potential within the
oxide and metal phases are still calculated according to
Eqs. (53) and (54), except that x = −l is the lower bound
of the integral rather than x = 0.

C. Metal screening length relaxation

For protective oxide phases, the Debye length is at
least an order of magnitude larger than the structural
oxide/metal interface assuming a reasonable structural
interface thickness of around 0.5 nm. A typical Thomas-
Fermi screening length in a metal, however, tends to be
on the order of 0.5 Å. This requires the structural inter-
face be ∼ 0.05 Å in order to uncouple the electrostatic
and structural interfacial properties, which is currently
computationally unfeasible since we want to model oxide
scales on the order of a few Debye lengths in thickness.
For this reason we are motivated to relax the screening
length in the metal to make the problem more tractable.
We introduce a relaxation factor α that scales the per-
mittivity and the parabolic coefficients of the chemical
free energy density of the metal in such a way that the
screening length LS increases but the magnitutude of in-
terfacial charge σO/M and electrostatic interfacial energy
γψ, given in Eqs. (34) and (36), are unchanged:

BMv → αBMv BMe → αBMe εM → αεM (55)

The above scaling increases LS by a factor of α but leaves
the defect structure in the oxide phase unchanged. It is
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FIG. 2. Equilibrium charge distributions and electrostatic po-
tentials for four values of α that set LS/LD = 1, 0.5, 0.25, and
0.1. The ratio of ζ to LS is 0.1 in all cases. The charge distri-
bution and electrostatic potential in the oxide are unaffected
by the relaxation of the metal’s screening length.

unhelpful to relax LS larger than LD, as the maximum
structural interface thickness will then be limited by LD.
Relaxing LS has the disadvantage that the domain size
must be increased to insure that the metal thickness re-
mains much greater than LS , but this disadvantage is
far outweighed by the computational gains from increas-
ing the grid spacing. The equilibrium charge distribu-
tion and electrostatic potential profiles for several values
of α are shown in Fig. 2, demonstrating that the defect
structure profiles and electrostatics in the oxide are un-
affected by relaxing the metal’s screening length. In all
subsequent results, the screening length is relaxed to the
Debye length by setting α = LD/LS .

In Fig. 2, the ratio of the phase-field interface thick-
ness to the metal’s screening length, ζ/LS , was set to
0.1. This choice was made by testing the convergence of
the phase-field model to the sharp interface description
as a function of ζ/LD. Charge distributions near the
oxide/metal interface for five values of ζ/LD are shown
in Fig. 3. The correspondence between the charge dis-
tribution in the phase-field model and the sharp inter-
face double layer described by Eq. (29) becomes better as
ζ/LD decreases. In order to measure how well the phase-
field model captures the sharp interface description, we
calculate the error in Eq. (45), which is a measure of
how decoupled the structural interfacial free energy and
the electrostatic interfacial free energy are. The error
in Eq. (45) is plotted as a function of ζ/LD in Fig. 4.
Eq. (45) is satisfied within 0.5% for ζ/LD = 0.1, which
we choose as an acceptable value for accurately repro-
ducing the the sharp interface description.

FIG. 3. Charge distribution near the oxide/metal interface
for ζ/LD = 0.4, 0.2, 0.1, 0.05, and 0.025. The dashed black
lines are the sharp interface solutions given in Eq. (29). The
screening length in the metal is relaxed to LD. The white and
light grey regions indicate the oxide and metal, respectively.

FIG. 4. Error in Eq. (45) as a function of ζ/LD. The error
converges with (ζ/LD)2 until ζ/LD ≈ 0.25, at which point
the error due to the grid spacing becomes significant. For
ζ/LD = 0.1, Eq. (45) is satisfied within 0.5%.

VII. RESULTS AND DISCUSSION

A. Wagner limit

The Debye length in the oxide is ∼ 5.5 nm for the pa-
rameters listed in Table I. The equilibrium defect den-
sity profiles, along with the average two-phase equilib-
rium density ceq defined in Eq. (42), for an oxide film of
thickness L = 10LD are plotted in Fig. 5. The oxygen va-
cancy and electron densities go from 0.0001 in the oxide
to 0.999 to the metal. This makes it difficult to see the
shifts in the defect profiles at the interface because they
are small relative to the overall density change across
the interface. Since ceq is the equilibrium density profile
across the interface for ∆ψ◦ = 0, we are really interested
in the deviations of ca and ce relative to ceq for ∆ψ◦ 6= 0,
which will show the changes in ca and ce from ceq at the
interface due to the formation of the double layer.

The deviations of the anion vacancy and electron den-
sity relative to ceq for L = 10LD, as well as the corre-
sponding charge density and electrostatic potential, for
the same simulation shown in Fig. 5 are shown in Fig. 6.
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As seen in Fig. 5, both defect densities approach ceq in
the bulk phases, which are at equilibrium once the Gal-
vani potential difference has established across the inter-
face. Near the interface, the defect densities approach
the interfacial values of the sharp interface density pro-
files given in Eq. (35), which are indicated in Fig. 6 by
the dashed horizontal lines in the defect density plots.

The defect density and electrostatic potential profiles
will always be exponential in the thick film limit. How-
ever, the interfacial values of the defect densities rela-
tive to the two-phase equilibrium defect densities will be
a function of the two-phase equilibrium defect densities
according to Eq. (35). To visualize how the interfacial
values of the defect densities change as a function of the
two-phase equilibrium defect densities, the shift in the
equilibrium oxygen vacancy density from Eq. (35) rela-
tive to cOeq at x = L as a function of the equilibrium defect

density in the oxide,
(
cv(x = L)− cOeq

)
/cOeq, is plotted in

Fig. 7. As cOeq → 0, the value of
(
cv(x = L)− cOeq

)
/cOeq

approaches a constant value for a given ∆ψ◦ = 0. This
is because as cOeq → 0, BOv = BOe → ∞, which decreases

the equilibrium deviations from cOeq as cOeq becomes small.

The value of
(
cv(x = L)− cOeq

)
/cOeq is weakly dependent

on cMeq and the dependance weakens as 1−cMeq → 0, being

nearly independent of cMeq for 1 − cMeq < 10−3 as evident
in Fig. 7. This is advantageous for the model because it
demonstrates that the equilibrium defect density in the
metal doesn’t strongly affect the defect structure in the
oxide.

The two defect structures contribute equally to the
electronic screening in the oxide phase as seen in the
symmetric deviations of cv and ce from ceq in Figs. 5
and 6. This is because the density of the anion and
cation sublattices are equal in our model, which leads
to both defects having the same parabolic constants in
the oxide according to Eq. (A1). In the metal, however,
the free electron gas is nearly exclusively responsible for
electronic screening as expected from Eq. (B2), unlike
in previous phase-field models of oxide/metal interfaces
[24, 25].

The charge distribution and electrostatic potential
shown in Fig. 6 from the phase-field simulation show
excellent agreement with the sharp interface description
given in Eqs. (29) and (32). This demonstrates that for a
typical oxide/metal system, where the Debye length is an
order of magnitude larger than the structural interface,
the electrostatic and structural interfaces can be treated
effectively as independent when the screening length in
the metal is relaxed. This is advantageous because, al-
though we cannot derive a closed-form solution for γ in
the phase field model, we can accurately predict it given
the large difference in interfacial length scales.

FIG. 5. Equilibrium defect density profiles across the ox-
ide/metal interface for L = 10LD, as well as the average
two-phase equilibrium density ceq given in Eq. (42). The
horizontal dashed lines indicate the interfacial values of the
defect concentrations in the sharp interface treatment, given
in Eq. (35). The defect densities are at equilibrium at ceq
in the bulk phases once the Galvani potential difference has
developed across the interface, but deviate from ceq near the
interface for ∆ψ◦ 6= 0 due to the double layer formation. The
deviations of cv and ce from ceq for this simulation are plotted
in Fig. 6.

B. Below the Wagner limit

The deviations in the equilibrium defect density pro-
files from ceq, charge density, and electrostatic potential
for a thin oxide film are shown in Fig. 6. Note that the
interfacial region in the thin film limit looks larger than
that in in the Wagner limit due to the smaller domain
size shown. Unlike in the Wagner limit, all of the oxide
is charged at equilibrium when the film is thin, which
invalidates the oxide/metal equilibrium equations given
in Sec. III B because the oxide can no longer be assumed
charge neutral. Therefore the equilibrium potential dif-
ference between the two phases will not equilibrate to the
Galvani potential defined in Eq. (16), as seen in Fig. 6.
The thin oxide layer is unable to accommodate enough
charge to lower the electrochemical potential of charged
defects in the metal by the difference in two-phase equi-
librium chemical potential levels. To see this, we plot the
equilibrium electrostatic potential difference between the
two phases, ∆ψeq = ψ|x=xr

− ψ|x=0, and the interfacial
charge σ as a function of L/LD in Fig. 8. Following Guyer
et al. we define the interfacial charge in the phase-field
simulation as:

σ =

∫
p(φ)ρ dV (56)

where we have chosen to integrate over the metal so that
σ is positive. Charge conservation ensures that integrat-
ing over the oxide, σ =

∫
(1 − p(φ))ρ dV , will yield the

same magnitude result as Eq. (56) but with opposite sign,
therefore the choice is arbitrary. As expected from the
sharp interface treatment, as L/LD becomes large ∆ψeq
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FIG. 6. The deviations of the anion vacancy and electron density relative to ceq (see Fig. 5), charge density, and electrostatic
potential profiles for an equilibrium oxide/metal interface with L = 10LD (left) and L = LD (right). The left figure is the same
simulation as Fig. 5. The horizontal dashed lines in the defect density plots indicate the oxide/metal interfacial values of the
defect concentrations in the sharp interface treatment, given in Eq. (35). Sharp interface (SI) profiles for the charge density
and electrostatic potential from Eqs. (29) and (32) are also plotted with the phase-field (PF) results. The interfacial region
defined by L− ζ < x < L+ ζ is shaded in light green.

FIG. 7. The thick-film limit of the deviation of the equilib-
rium oxygen vacancy density in the oxide at the oxide/metal
interface (x = L) from Eq. (35) relative to cOeq as a function
of the equilibrium defect density in the oxide. Three values
of the equilibrium defect density in the metal are plotted.

and σ approach ∆ψ◦ and σO/M , respectively. Below ap-
proximately L/LD = 1, ∆ψeq and σ begin to decrease to-
wards zero with decreasing oxide thickness proportional
to exp(L/LD). Since ∆ψeq is a measure of the system’s
ability to lower the Fermi level in the two-phase system
to the equilibrium electron chemical potential in the ox-
ide, this indicates that the Fermi level at the gas/oxide
interface will be higher for thin oxide films. This is con-
firmed in Fig. 9, where the equilibrium value of µ̄e at
x = 0 is plotted as a function of L/LD. For large L/LD,
µ̄e|x=0 approaches µOe,eq as expected for a thick oxide film.

As L/LD becomes small, µ̄e|x=0 approaches µMe,eq. So
as a thin oxide film transitions into the Wagner regime,
the Fermi level at the gas/oxide interface decays approx-
imately exponentially from µMe,eq to µOe,eq as the thickness
of the film is increased, with a characteristic length scale
of LD. This change in Fermi level at the gas/oxide in-
terface does not affect the equilibrium oxygen chemical
potential in the gas, given in Eq. (20), because the equi-
librium electrochemical potential of oxygen vacancies at
the gas/oxide interface is lowered by an equal amount.
However it does increase the driving force for surface oxy-
gen reduction, Πr1 defined in Eq. (21), which we discuss
in Sec. VII C.

The equilibrium oxygen chemical potential required in
the gas is not affected by the shift in Fermi level for
thin films, however it does decrease slightly in the thin
film regime. This is due to the increase in interfacial en-
ergy γ of the oxide/metal interface as the film becomes
thin, which is plotted in Fig. 10. As seen in the fig-
ure, γ is proportional to exp(−2L/LD) and decays from
the structural interface value γφ to the thick-film limit
γφ + γψ as the film thickness becomes large compared to
LD. The exp(−2L/LD) decay is the result of both the
electrostatic potential difference and interfacial charge in-
creasing as exp(L/LD) to their thick-film limits, as seen
in Fig. 8, which determine the electrostatic free energy of
the charge distribution. The magnitude of the transition
is determined by the relative sizes of the two interfacial
energies given in Eqs. (36) and (39). This decrease in
interfacial energy with increasing L implies that the thin
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FIG. 8. Log-log plot of the equilibrium electrostatic potential
(black) and interfacial charge (green) across the oxide/metal
interface as a function of L/LD. As the film becomes thick
compared to the Debye length, ∆ψeq approaches ∆ψ◦ and σ
approaches σO/M defined in Eq. (34). As L becomes small
compared to the Debye length, both ∆ψeq and σ decay to
zero as exp(L/LD).

FIG. 9. Equilibrium electrochemical potential of electrons at
the gas/oxide metal interface as a function of L/LD. When
the oxide film is thin compared to the Debye length, the elec-
trochemical potential of electrons at the gas/oxide interface is
equal to µMe,eq. As the film thickens, µ̄e|x=0 approaches µOe,eq,
indicating that the bulk oxide is nearly charge free and the
conditions of bulk phase equilibrium given in section III B are
satisfied.

oxide film has a lower equilibrium value of µg than the
thick film limit µg = −µOv,eq−µOe,eq. The additional driv-
ing force for oxidation due to this effect will in general
be small compared to the bulk driving force of oxidation
at realistic oxygen partial pressures, which is large. This
implies that the double layer will mainly affect the oxide
growth law through its influence on the defect densities
and electric field in the oxide.

C. Surface oxygen reduction

To investigate the effect of adsorbed surface oxygen
reduction in the system we include the surface reduc-
tion reaction as described in Sec. III C 2. Phase-field
results for the equilibrium surface charge density ρA as

FIG. 10. Equilibrium interfacial energy γ as a function of
L/LD. When the film is thin, the electrostatic interface is
unable to fully develop and γ approaches the structural in-
terfacial energy γφ. As the film thickens, the electrostatic
interface develops and γ approaches the sum of the structural
and electrostatic interfacial energies γφ + γψ. The interfacial
energy decays as γ ∝ exp(−2L/LD).

a function of both the electrochemical potential of the
O− adatoms µ̄g− and the oxide thickness are plotted in

Fig. 11. The value of µ̄g− is plotted relative to µOv,eq be-

cause in the Wagner limit when µ̄g− = −µOv,eq no surface
oxygen reduction will occur at three-phase equilibrium.
This is evident from Eq. (26) because the equilibrium
value of µ̄Ov will approach µOv,eq in the Wagner limit, and

is confirmed in Fig. 11 by the fact that ρA goes to zero
as µ̄g− + µOv,eq goes to zero and L/LD becomes large.

In Fig. 11 the magnitude of ρA increases linearly as µ̄g−
decreases, whereas it increases exponentially as L/LD de-
creases. The linear relationship between ρA and µ̄g− is
a result of the quadratic free energy densities, having
the same origin as the linear dependence of the surface
charge σO/M on the Galvani potential in Eq. (34). The
exponential dependence of ρA on L/LD is related to the
exponential dependence of the vacancy and electron elec-
trochemical potential at x = 0 on L/LD, as demonstrated
in Fig. 9.

To visualize the defect density and electrostatic pro-
files in the oxide with reduced oxygen adatoms present,
we plot the equilibrium defect density profiles, charge
density, and electrostatic potential for L = 10LD and
L = LD in Figs. 12 and 12, respectively. These simu-
lations are equivalent to those in Figs. 6 and 6 except
for the presence of the charged surface layer of infinitesi-
mal thickness l, which is shown schematically in the fig-
ures. The electrochemical potential of the reduced oxy-
gen adatoms, µ̄g− , is set to µOv,eq − 0.02 eV/mole. This
value is chosen in light of Fig. 11 so that both the value of
µ̄g− and the film thickness have the same order of magni-
tude effect on the equilibrium value of the surface charge
ρA. These simulations are initialized with ρA = 0, which
then decreases according the Eq. (25) until equilibrium
is reached. This leads to the formation of an additional
double layer and associated electrostatic potential gradi-
ent at the gas/oxide interface. As discussed above, in the
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FIG. 11. The phase-field value of the equilibrium surface
charge density ρA as a function of both the electrochemical
potential of the O− adatoms, µ̄g− , and the oxide thickness.

The value of µ̄g− is plotted relative to µOv,eq because in the

Wagner limit when µ̄g− = −µOv,eq no surface oxygen reduction
will occur at three-phase equilibrium, which is demonstrated
by the fact that ρA goes to zero as µ̄g− + µOv,eq goes to zero
and L/LD becomes large.

limit of l→ 0, the drop in the ψ across the surface layer
goes to zero, but the gradient of ψ at x = 0 is nonzero,
unlike in the case of no surface oxygen reduction.

In the thick-film limit, shown in Fig. 12, the double
layers at the gas/oxide and oxide/metal interfaces are
nearly independent. In this case, the charge distribu-
tion and electrostatic potential difference across the ox-
ide/metal interface still agree with the sharp interface
treatment. The double layer at the gas/oxide interface
raises the electrostatic potential in both the oxide and
metal relative to the gas and the magnitude of this shift
is proportional to chemical potential of the O− adatoms.
However, because the gas/oxide double layer shifts ψ in
both the oxide and metal phases, the oxide/metal equi-
librium conditions given in Eqs. (14) and (15) still hold.

For a film of thickness L = LD, shown in Fig. 12, the
double layers at the gas/oxide and oxide/metal interfaces
cannot be considered independently. In this case, elec-
trons from the metal will also contribute to oxygen re-
duction at the gas/oxide interface which leads to a larger
surface charge density ρA than that in the thick film limit
shown in Fig. 12. From the charge density profile for the
thin film in Fig. 12, we see that the metal is more nega-
tively charged than we would expect from the sharp in-
terface model of the single oxide/metal interface. Again,
this is because electrons from the metal are being trans-
ferred to both the oxide and surface layer. This is the
opposite result of what happens when no surface charg-
ing is permitted as in Fig. 6, which is discussed above.

In the thin-film limit with surface charging, the defect
density, charge density, and electrostatic potential pro-
files all become approximately linear. This is because
the film thickness is on the order of the screening length

and the exponential decay e−x/LD appears roughly lin-
ear for x/LD � 1. The constant electrostatic potential
profile in the oxide is familiar from the potential pro-
files assumed in other theories of thin-film oxide growth
like the Point Defect Model [53] and Cabrera-Mott the-
ory [13]. This is not the case when no surface charging
is permitted. The reason for this is that the boundary
condition E(x = 0) · x̂ = 0 constrains the equilibrium
gradients of the defect and charge densities at x = 0 to
all be zero, which is evident in Fig. 6.

VIII. CONCLUSIONS

We have developed a phase-field model of an oxide
metal interface in a gas/oxide/metal system and stud-
ied its equilibrium behavior. The model includes a hybrid
ideal solution and free electron gas description of the bulk
thermodynamics, and Poisson’s equation to describe the
electrostatics. The phase-field method achieves an ac-
curate representation of a Gouy-Chapman double layer,
derived herein using a sharp interface description, when
the electronic screening lengths in both phases are sig-
nificantly larger than the length scale of the structural
interface. While the screening length in protective oxide
phases satisfies this condition, the screening length in a
metal is generally on the same order of magnitude or
smaller than an oxide/metal structural interface width,
which makes it difficult to model the double layer with-
out using a computationally intractable structural inter-
face width. However, we have shown that the screening
length in the metal can be relaxed without modifying
the defect profiles, interfacial energy, or Debye length in
the oxide. This allows for the maximum structural inter-
face width to be set by the Debye length rather than the
metal’s screening length. We have not derived an analyti-
cal expression for the interfacial energy in the phase-field
model, but show that it is accurately described by the
sum of independent structural and electrostatic interfa-
cial energies for ζ/LD <∼ 0.1, the ratio of the structural
interface width to the Debye length.

The phase-field simulations show that an oxide film of
thickness on the order of the Debye length or smaller is
unable to establish the equilibrium Galvani potential ex-
pected between the bulk oxide and metal phases in the
thick film limit, which results in the oxide being charged
throughout. For the defect structure considered above
this leads to a decrease in the ionic defect concentra-
tion; however, a number of possible charge distributions
across the oxide are possible depending on the relative
kinetics and energies of transfer of the charged defects
at the oxide/metal and gas/oxide interfaces [10]. This
space charge can either inhibit or enhance the oxidation
rate depending on whether it has the same or opposite
sign as the rate limiting species, respectively [21]. As the
oxide film becomes thin relative to the Debye length, an
increase in the oxide’s Fermi level increases the driving
force for surface oxygen reduction, which can modify the
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FIG. 12. The deviations of the anion vacancy and electron density relative to ceq (see Fig. 5), and electrostatic potential profiles
for an equilibrium gas/oxide/metal system L = 10LD (left) and L = LD (right), with a layer of reduced oxygen on the surface.
The horizontal dashed lines in the defect density plots indicate the interfacial values of the defect concentrations in the sharp
interface treatment, given in Eq. (35). The sharp interface (SI) profile for the charge density at the oxide/metal interface from
Eq. (29) is also plotted with the phase-field (PF) results. The sharp interface model gives a poor description of the state of
the oxide in the thin film limit (right), as expected. The interfacial region defined by L − ζ < x < L + ζ is shaded in light
green. The layer or reduced oxygen on the oxide surface is shown schematically as the light blue region, where the thickness
l is exaggerated to make it visible. The electrostatic potential drop between the bulk oxide and metal in the thick film limit
(left), or Galvani potential, is highlighted and equal to ∆ψ◦.

shape of the electric field in the oxide by changing the
magnitude of the surface charge on the gas/oxide inter-
face.

The present study is motivated by the desire to model
oxide films during growth. Thermodynamic assessments
show that oxide/metal systems of interest can only be
at true thermodynamic equilibrium with oxygen gas for
extremely low oxygen partial pressures [8]. Therefore,
as discussed above, protective oxide phases inhibit cor-
rosion kinetically rather than thermodynamically. Solv-
ing for the equilibrium solution to the oxide/metal sys-
tem is useful in that it allows us to quantitatively study
how the phase-field formulation couples to the electro-
static double layer, which would not be possible in a non-
equilibrium simulation and which has not been done in
the previous phase-field models of oxides.
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Appendix A: Gibbs free energy coefficients

The Gibbs free energy coefficients in Eq. (8) written as
functions of the standard state chemical potentials and
two-phase equilibrium concentrations are:

µOi,eq = µ◦O{i} +RT ln
cOeq
c
−RT ln

c− cOeq
c

for i = v, e

µMv,eq = −µ◦M{a} +RT ln
cMeq
c
−RT ln

c− cMeq
c

µMe,eq =
N

5/3
A h̄2

(
3π2
)2/3

2me

(
cMeq
)2/3

BOv = BOe =
RTc

cOeq
(
c− cOeq

) (A1)

BMv =
RTc

cMeq
(
c− cMeq

) (A2)

BMe =
2

3

µMe,eq
cMeq

(A3)
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The difference in equilibrium chemical Gibbs free energy
densities ∆G◦ ≡ G◦M −G◦O is given by:

∆G◦ = c
(
µ◦Mm − µ◦Om − µ◦Oa

)
+

3

5
cMeqµ

M
e,eq

+
(
c− cMeq

) [
µ◦M{a} +RT

(
cMeq

c− cMeq
ln
cMeq
c

+ ln
c− cMeq

c

)]

−
∑
i=v,e

cOeq

[
µ◦O{i} +RT

(
ln
cOeq
c

+
c− cOeq
cOeq

ln
c− cOeq

c

)]
(A4)

Appendix B: Debye length and Screening Length

The Debye length in the oxide is derived by assuming
constant defect electrochemical potentials in the oxide in
the presence of a spatially varying electrostatic potential
[27]. This allows us to solve for the functional form of
the electrostatic potential in the oxide by solving the ho-
mogeneous solution to Gauss’s Law. We use a constant
C to absorb terms independent of ψ. The electrostatic
potentials in the system as defined in Eq. (9), assuming
constant electrochemical potentials at equilibrium, are
given by:

µ̄Oi =
δGO

δci
+ ψqiF

= µOi,eq +BOi (ci − cOeq) + ψqiF = C

which we can use to solve for the functional form of the
equilibrium density profiles:

=⇒ ci = −qiF
BOi

ψ + C (B1)

The charge density in the system defined by Eq. (5) is
ρ = (cv − ce)F . Substituting Eq. (B1) into ρ yields:

ρ = −F 2

(
1

BOv
+

1

BOe

)
ψ + C

We can now find the homogeneous solution to Gauss’s
Law:

εO∇2ψ = −ρ

∇2ψ = −F
2

εO

(
1

BOv
+

1

BOe

)
ψ + C

=⇒ ψ ∝ exp

(
− x

LD

)
where LD =

[
F 2

εO

(
1

BOv
+

1

BOe

)]−1/2

The Debye length LD characterizes the decay length of
space charge, electrostatic potential, and electric field in
the oxide, and reflects the coupling of the electrostatics
to the chemical free energy of the charged defects. If

we substitute BOv and BOe from Eq. (A1) into the Debye
length we have:

LD =

√
RTcεO

2cOeq
(
c− cOeq

)
F 2

which agrees exactly with the classical Debye length
given in Eq. (1) in the dilute limit.

The screening length in the metal, LS can be derived
in an analogous fashion, resulting in:

ψ ∝ exp

(
− x

LS

)
where LS =

[
F 2

εM

(
1

BMv
+

1

BMe

)]−1/2

Substituting Eqs. (A2) and (A3) into the screening length
yields:

LS =

[
F 2

εM

(
cMeq
(
c− cMeq

)
RTc

+
3me(c

M
eq )

1
3

N
5
3

A h̄
2 (3π2)

2
3

)]− 1
2

(B2)

Examining the metal’s screening length LS , as the den-
sity of anions in the metal becomes very small (cMeq/c ≈
1), their contribution to the screening in the metal goes
to zero. In this case, the screening length approaches the
Thomas-Fermi screening length [35].

Appendix C: Electrostatic interfacial energy

The electrostatic interfacial energy in the sharp inter-
face description can be derived by calculating the total
energy of the equilibrium defect density profiles, charge
density, and electrostatic potential given by Eqs. (29),
(32), and (35). As in Sec. IV, we consider the ox-
ide/metal sharp interface to be at x = 0, with the oxide
and metal extending to x = −∞ and x =∞ respectively,
and the electrostatic potential in the bulk oxide to be 0.
This treatment is therefore valid in the Wagner regime,
where the charge density decays to zero on a length scale
much smaller than the oxide thickness.

γψ =

∫ 0

− inf

[
GO(cOv , c

O
e ) +

1

2
ρOψO

]
dx

+

∫ inf

0

[
GM (cMv , c

M
e )−∆G◦ +

1

2
ρMψM

]
dx

=
1

2

(
LD
εO

+
LS
εM

)−1
[

(BMe −BMv )(µMe,eq + µMv,eq)

F (BMe +BMv )

−∆ψ◦] ∆ψ◦ (C1)

Substituting Eq. (34) into (C1) yields:

γψ =
1

2

[
(BMe −BMv )(µMe,eq + µMv,eq)

F (BMe +BMv )
−∆ψ◦

]
σO (C2)
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Appendix D: Free energy partial derivatives

The nondimensionalized versions of the evolution equa-
tions Eqs. (51) and (52) are given by:

∂φ

∂t
= Mφ

2Aφ
(
−2φ2 + 3φ− 1

)
+ ε∇2φ− ∂p(φ)

∂φ

∆G◦ +
∑
i=v,e

[
− µi,eq(cMeq − cOeq)

+
BOi B

M
i

Bi

[(
BMi −BOi

)
2Bi

(ci − ceq)−
1

Bi
qic∆ψ◦ − (cMeq − cOeq)

]
(ci − ceq)

+
c2

2
(∆ψ◦)

2 (1− p(φ))2BMi − p(φ)2BOi

(Bi)
2

])
− 1

2

∂ε

∂φ
|∇ψ|2

]
(D1)

∂cv
∂t

= Mv∇2

[
µv,eq +

BOv B
M
v

Bv
(cv − ceq) + cψ

]
(D2)

∂ce
∂t

= Me∇2

[
µe,eq +

BOe B
M
e

Be
(ce − ceq)− cψ

]
(D3)
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