
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dynamic phases of active matter systems with quenched
disorder

Cs. Sándor, A. Libál, C. Reichhardt, and C. J. Olson Reichhardt
Phys. Rev. E 95, 032606 — Published 16 March 2017

DOI: 10.1103/PhysRevE.95.032606

http://dx.doi.org/10.1103/PhysRevE.95.032606


Dynamic Phases of Active Matter Systems with Quenched Disorder

Cs. Sándor1,2, A. Libál1,2, C. Reichhardt2 and C. J. Olson Reichhardt2
1Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj 400084 Romania and
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Depinning and nonequilibrium transitions within sliding states in systems driven over quenched
disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale,
flux motion in type-II superconductors at the mesoscale, colloidal motion in disordered media at
the microscale, and plate tectonics at geological length scales. Here we show that active matter
or self-propelled particles interacting with quenched disorder under an external drive represents
a new class of system that can also exhibit pinning-depinning phenomena, plastic flow phases,
and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-
force curve signatures. When interactions with the substrate are strong, a homogeneous pinned
liquid phase forms that depins plastically into a uniform disordered phase and then dynamically
transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase
separated state at higher drives. We numerically map the resulting dynamical phase diagrams as
a function of external drive, substrate interaction strength, and self-propulsion correlation length.
These phases can be observed for active matter moving through random disorder. Our results
indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions
when subjected to an external drive.

I. INTRODUCTION

Depinning phenomena and dynamic phases of collec-
tive transport through quenched disorder [1, 2] arise
in a wide range of condensed matter systems including
flux lines in superconductors [3–9], sliding charge density
waves [10], moving electron crystals [11, 12], magnetic
skyrmions [13, 14], and driven pattern forming systems
such as electronic states with competing interactions [15].
In materials science systems such dynamics are relevant
to sliding friction [16], dislocation motion [17], yielding
transitions [18, 19], and models of fault lines and earth-
quakes [20, 21]. In soft matter, similar dynamics occur
in the depinning of contact lines [22, 23], driven colloidal
motion on disordered substrates [24–26], or sliding of in-
commensurate colloidal structures on ordered substrates
[27, 28]. Typically, these systems are in the pinned state
at small external drives, and as the drive increases, a
transition to a moving state occurs at a specific criti-
cal value of the external force [1, 2]. At higher drives,
distinct types of sliding motions can appear along with
transitions between different dynamic states that can be
deduced from features in the velocity-force curves. The
flow can be plastic or disordered [1–5, 8], with the parti-
cles moving through riverlike channels[24–26], or elastic,
where the particles maintain the same neighbors while
moving [1, 3, 24]. Transitions from disordered to more
ordered or coherent flow can occur [3–6, 8, 9], such as
from plastic flow to a moving smectic state [6–9]. Such
transitions are associated with changes in the moving
structure morphologies, the density of topological defects
[4, 8, 9, 14, 24], and the noise fluctuations [5, 8].

In all of the systems mentioned above, an external driv-
ing force produces a nonequilibrium condition. Other
types of nonequilibrium systems that involve no exter-

nal driving force include self-propelled or active mat-
ter systems. These may be biological systems, such as
swimming bacteria, or artificial swimmers, such as self-
propelled colloidal systems, each of which can exhibit dis-
tinct nonequilibrium phases as a function of the activity
or particle density [29, 30]. Many types of active matter
systems can be effectively modeled as a collection of steri-
cally interacting disks undergoing driven Brownian diffu-
sion [31–35] or run-and-tumble dynamics [35–38]. These
disks can form uniform liquid states as well as phase sep-
arated states in which dense disk clusters are separated
by a low density disk gas. An open question is whether
such systems would exhibit depinning transitions and dif-
ferent types of sliding states if an external drive were ap-
plied when the disks are coupled to a random substrate,
as the driven dynamics of particles interacting with ob-
stacles generally are distinct from those of particles on
random pinning substrates. Previous studies of active
matter systems driven through obstacle arrays showed
that the average drift mobility varies non-monotonically
with increasing activity, dropping when the system forms
a phase-separated clump state [38]. Other studies of ac-
tive matter involving swarming or Vicsek flocking models
moving over disordered substrates in the absence of an
external drive showed that there can be an optimal noise
at which flocking occurs [39] as well as transitions from
flocking to non-flocking behavior [40].

Here we use large scale GPU-based computer simu-
lations to characterize the different states of run-and-
tumble disks driven over a random pinning substrate, and
show that a rich variety of distinct dynamical phases are
possible that can be identified by the morphologies of the
moving structures as well as by features in bulk transport
properties. Despite the additional complexity introduced
by the self-propulsion, we find several generic features in
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the dynamic phase diagrams that are similar to those
observed for non-active driven systems such as supercon-
ducting vortex lattices, including a disorder-order tran-
sition at higher drives. In the limit of no quenched dis-
order, we find a cluster or phase-separated state, while
in the presence of strong quenched disorder, the sys-
tem forms a uniform pinned liquid state which under-
goes plastic depinning as the drive is increased, followed
at higher drives by a transition to a stripe state coexist-
ing with the pinned liquid state. At even higher drives,
there is a transition to a more fully phase separated state.
We also find strong differences in the dynamic phases for
pinning arrays compared to those observed in obstacle
arrays, where only a limited number of dynamic phases
occur.

The organization of this paper is as follows. In Sec-
tion III we describe the dynamic phases that arise for
active run-and-tumble disks driven over pinning arrays.
The five generic phases that emerge for high activity,
shown in Section III A, are the pinned phase I, the dis-
ordered plastic flow phase II, the moving cluster-stripe
phase III coexisting with pinned disks, and two phases
in which all of the disks are moving: the moving cluster
or phase separated phase IV and the moving disordered
or liquid phase V. We demonstrate the evolution of these
phases as the pinning strength is varied, and find that
the extent of the pinned phase, the plastic disordered
flow phase, and the stripe phase increase with increasing
pinning strength. In the limit of zero drive we observe a
transition from a phase separated state to a disordered
pinned state as the pinning force increases. The different
states can be identified by analyzing changes in the size
of the clusters, the fraction of disks with six neighbors,
and the velocity-force curves. We compare the evolution
of the dynamic phases with pinning strength to that ob-
served for vortices in type-II superconductors and other
driven particle systems. In Section III B we explore the
effects on the dynamic phases of changing the activity
from the non-active or Brownian limit to the highly ac-
tive limit, and find that there is a critical activity level
or run length below which phases III and IV do not oc-
cur. In Section IV we show how the driven phases change
when the pinning sites are replaced by obstacles. There
is still a transition from a phase separated to a disordered
phase as a function of obstacle density in the zero drive
limit; however, we find no dynamical phase transitions
within the moving phase, and the cluster size and trans-
port curves show only smooth changes with increasing
obstacle density. We provide a summary of our results in
Section V.

II. SIMULATION

We perform a simulation of N = 5000 to N = 24000
run-and-tumble disks in a system with periodic boundary
conditions of size L× L with L = 300. The disks have a
short range repulsive interaction modeled as a harmonic

spring force Finter = Θ(d − 2R)k(d − 2R)d̂, where d is

the distance between the centers of the disks, d̂ is the
displacement vector between the disk centers, k = 20.0 is
the spring constant, and Θ(x) is the Heaviside function.
We use a disk radius of R = 1.0. The system density φ
is defined by the area coverage of disks, φ = NπR2/L2,
giving us a range of φ = 0.1745 to φ = 0.8375. We
randomly place Np non-overlapping pinning sites which
are modeled as parabolic traps that exert a force on the
disks of the form Fp = Fp(r/Rp)Θ(r − Rp)r̂, where r̂ is
the displacement vector from the pinning site center to
the disk center, r = |r|, Fp is the maximum pinning force,
and Rp is the pinning site radius. We set Rp = 0.5 to
ensure that at most one disk can be pinned by a given
pinning site. We apply a uniform external drive FD =
FDx̂ on each disk in the x-direction and measure the
resulting average drift velocity per disk in the direction

of the drive 〈V 〉 = N−1
∑N

i=0〈vi · x̂〉 to produce velocity-
force curves.

The disk dynamics is obtained by integrating the
following overdamped equation of motion: ηdr/dt =
Finter+Fm+Fp+FD, where η = 1 is the drag coefficient.
The disk self-propulsion is produced by the motor force
Fm which acts on a given disk in a fixed randomly chosen
direction for a run time τ that is chosen from a uniform
random distribution over the range [tr, 2tr]. After τ simu-
lation time steps have elapsed, the motor force instantly
reorients to a new randomly chosen direction, which it
maintains for the next τ simulation time steps before re-
orienting again. In the absence of other disks, pinning
sites, or obstacles, a disk would move a distance D dur-
ing one running time, where D is uniformly randomly
distributed over the range [rl, 2rl] with rl = trFmδt. We
use Fm = 1.0 and run times ranging from tr = 1000 to
tr = 2.4 × 106 simulation steps, with a simulation time
step of δt = 0.001. To initialize the system, we place
the disks in random configurations and increase FD by
increments of δFD = 0.25, spending 1 × 106 simulation
time steps at each increment. This protocol allows us to
ensure that the system has reached a steady state before
we perform our measurements. An alternative protocol
is to increase the driving force continuously. If the rate of
increase is slow, both protocols produce the same results
and the behavior of the system is not hysteretic. Rapid
rates of change of the driving force can induce hystere-
sis and other rate-dependent phenomena similar to that
observed in other systems driven over random disorder
that exhibit depinning transitions [2]; however, an explo-
ration of such effects is beyond the scope of this work.
Rate-dependent effects may be particularly enhanced in
active matter systems as there is a time scale associated
with the run time. We allow our system to remain at
each driving force increment value much longer than any
of the run times we consider in order to ensure that we
have reached a steady state.
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FIG. 1: Images of disk locations (dots) in a system with φ =
0.55, rl = 300, N/Np = 2.0, and Fp = 5.0. Disks are colored
according to the cluster to which they belong, with the largest
cluster shown in blue, the second largest in red, the third
largest in green, the fourth largest in purple, and the fifth
largest in orange. All remaining clusters, including isolated
disks, are colored black. White areas contain no disks. The
disks are driven in the positive x direction with a driving
force of FD. (a) At FD = 0.0, the system forms a uniform
disordered state. (b) Disk trajectories (lines) in a portion
of the sample at FD = 0.5, where the system is in a plastic
flow state. (c) At FD = 3.25, a dense stripe coexists with a
pinned liquid. The stripe structure is moving in the positive
x direction. (d) At FD = 6.0, a fully phase separated state
appears with a large cluster that translates in the positive x
direction.

III. DYNAMIC PHASES AND TRANSPORT ON
PINNING SITES

A. Changing Disk Density and Pinning Strength

In Fig. 1 we illustrate the disk locations for a system
with φ = 0.55, rl = 300, N/Np = 2.0, and Fp = 5.0. For
these values of φ and rl, in the absence of pinning the
system forms a phase separated state in which the disks
condense into a single large dense cluster. When pinning
is present, Fig. 1(a) shows that at FD = 0, the system
forms a homogeneous disordered phase. We identify disks
that are in contact with one another using the Luding
and Herrmann cluster algorithm [41], and plot the largest
cluster in blue, the second largest cluster in red, and the
next largest clusters in green, purple, and orange. In
Fig. 1(a) for FD = 0, the largest cluster percolates across
the entire sample. At FD = 0.5 in Fig. 1(b), we observe a

FIG. 2: (a) The velocity 〈V 〉 vs FD for the system in Fig. 1(a)
with Fp = 5.0, rl = 300, Np = 8000, and varied φ ranging
from φ = 0.1745 to φ = 0.8375, corresponding to N = 5000
to N = 24000 in the figure legend. The letters a to d indicate
the values of FD at which the images in Fig. 1 were obtained
for the φ = 0.55 which corresponds to the 16k curve. (b) The
corresponding d〈V 〉/dFD vs FD curves. (c) The size of the

largest cluster C̃L vs FD. The dashed line indicates the tran-
sition into the moving stripe state, and the solid line denotes
the transition to the moving phase separated state. (d) The

number of six-fold coordinated disks P̃6 vs FD. The error bars
in this and all remaining figures are smaller than the size of
the symbols.

plastic flow state, as indicated by the riverlike disk trajec-
tories, in which the overall disk density remains uniform.
As FD increases, a transition occurs into a moving stripe
state as shown in Fig. 1(c) for FD = 3.25. The dense
stripe is oriented parallel to the driving force and moves
in the positive x direction. The disks that are not in the
dense phase are directly trapped by the pinning sites. As
FD approaches Fp, more of the pinned disks become mo-
bile and the system enters the fully phase separated state
illustrated in Fig. 1(d) for FD = 6.0, where a single large
clump appears that translates in the direction of drive
but has has no particular orientation with respect to the
driving direction.

In Fig. 2(a) we plot the velocity-force curves for the
system in Fig. 1 at disk densities ranging from φ = 0.1745
to φ = 0.8375 in increments of δφ = 0.035, while in
Fig. 2(b) we show the corresponding d〈V 〉/dFD curves.
The letters a to d indicate the values of FD at which
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the images in Fig. 1 were obtained for the φ = 0.55 sam-
ple (which corresponds to 16,000 disks), demonstrating
that the different phases correlate with distinct features
in the transport curves. Previous studies of supercon-
ducting vortex systems showed that a peak in d〈V 〉/dFD,
the derivative of the velocity-force curve, is associated
with a dynamical phase transition from plastic flow to a
moving lattice state [2, 3, 8]. In more complex systems,
such as driven pattern forming systems, multiple peaks
in the d〈V 〉/dFD curves coincide with multiple transi-
tions in the structure of the moving state [42, 43]. In
Fig. 2(a), a depinning transition occurs at a critical driv-
ing force Fc which shifts to lower values as φ increases.
The d〈V 〉/dFD curves in Fig. 2(b) have a double peak
feature, with the largest peak near near FD = 4.0 and a
smaller peak at lower values of FD. Both peak features
become less distinct as φ increases. The transition from
a pinned state to plastic flow occurs at the point at which
d〈V 〉/dFD first rises above zero, while the moving stripe
phase appears just above the first peak in d〈V 〉/dFD.
The second peak in d〈V 〉/dFD is associated with a tran-
sition to a moving fully phase separated state or to a
uniformly dense state in which all the disks are in mo-
tion.

In Fig. 2(c,d) we plot the size of the largest cluster C̃L

and the number of six-fold coordinated disks P̃6, obtained
from a Voronoi tessellation, versus FD for the system in
Fig. 2(a,b). For clarity, both C̃L and P̃6 are plotted in
terms of the total number of disks and are not normalized
to range between 0 and 1. For φ < 0.314, the system is
in the moving disordered state for all values of FD. For
FD = 0, there is a pinned labyrinth phase similar to that
shown in Fig. 1(a) for φ > 0.525, while for φ < 0.525
there is a pinned liquid state similar to that illustrated
in Fig. 3(c) at φ = 0.35. At low drives, a drop in C̃L oc-
curs when the labyrinth phase breaks apart into a moving
disordered phase, as illustrated in Fig. 1(b). The dashed

line highlights an increase in C̃L that occurs when the
system enters a moving stripe phase. In Fig. 2(c) the

thick solid line highlights an increase in C̃L that occurs
near FD = 4.0, which is also the location of the largest
peak in d〈V 〉/dFD. In Fig. 2(d), there is an upward jump

in P̃6 near FD = 4.0, marked with a solid line, at the
transition into the moving fully phase separated state.
At lower FD there is a smaller jump in P̃6 marked with a
dashed line connected with the transition into a moving
stripe state. There is an increase in P̃6 whenever dense
regions of disks form since the densely packed regions
have triangular ordering with disks that are mostly six-
fold coordinated. We note that in the labyrinth phase,
C̃L can be large since a cluster can percolate across the
entire system as illustrated in Fig. 1(a), but P̃6 remains
low since the disks within the labyrinth are disordered.

In Fig. 3(a) we illustrate the pinned cluster state at
FD = 0 and φ = 0.8375, while Fig. 3(b) shows the moving
stripe state at the same disk density for FD = 1.5. The
stripe structure moves in the positive x direction, parallel
to the drive. Figure 3(c) shows the pinned liquid phase at

FIG. 3: Image of disk locations (dots) in a sample with
rl = 300, Np = 8000, and Fp = 5.0. Disks are colored ac-
cording to the cluster to which they belong, with the largest
cluster shown in blue. White regions contain no disks. (a)
The uniform disordered state for φ = 0.8375 and FD = 0. (b)
The moving stripe state for φ = 0.8375 and FD = 1.5. The
stripe structure moves in the positive x direction. (c) The
pinned liquid state for φ = 0.35 and FD = 0. (d) The moving
phase separated state for φ = 0.35 and FD = 5.0, where all
disks move in the positive x direction.

FD = 0 and φ = 0.35, where the clusters are absent, and
Fig. 3(d) illustrates the moving phase separated state at
φ = 0.35 and FD = 5.0.

From the features in C̃L, P̃6, and the transport curves
in Fig. 2, we identify distinct dynamic phases as plot-
ted in Fig. 4. As a function of FD versus φ, shown in
Fig. 4(a), we find five dynamic phases, marked I through
V. There is a transition out of phase I, the pinned phase,
at the depinning threshold Fc, which drops to lower FD

with increasing φ. A dashed line marks the transition
between φ < 0.525, where the pinned clusters do not per-
colate and a pinned liquid of the type shown in Fig. 3(c)
forms, and φ > 0.525, where a pinned percolating cluster
appears as illustrated in Fig. 1(a) and Fig. 3(a). In phase
II, plastic flow of the type illustrated in Fig. 1(b) oc-
curs, and the disk density is mostly homogeneous. Phase
III, the moving stripe phase, is shown in Fig. 1(c) and
Fig. 3(b). Figures 1(d) and 3(d) illustrate phase IV, the
moving fully phase separated state, while in phase V, the
moving liquid state, no clustering occurs but all the disks
are moving.

We have also examined the dynamic phases as a func-
tion of the pinning strength Fp. In Fig. 5(a) we plot
d〈V 〉/dFD versus FD for a system with φ = 0.55 and
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FIG. 4: (a) The dynamic phase diagram as a function of FD

vs φ constructed from the features in Fig. 2 for a sample with
Fp = 5.0, Np = 8000, and rl = 300. I: pinned phase; II: plastic
flow phase; III: moving stripe phase; IV: moving fully phase
separated state; V: moving liquid phase. The dashed line in
phase I indicates the separation between a pinned liquid and a
pinned labyrinth state. (b) The dynamic phase diagram as a
function of FD vs Fp for a sample with φ = 0.55, N/Np = 2.0,
and rl = 300. The phases I through V are marked as above.
Phase VI is the moving phase separated state in which some
disks can be temporarily pinned.

N/Np = 2.0 over the range Fp = 0 to Fp = 9.0. A
double peak in d〈V 〉/dFD occurs only when Fp > 1.5,
and both peaks shift to higher values of FD with increas-
ing Fp. Figure 5(b) shows the corresponding normalized

fraction of sixfold coordinated disks P6 = P̃6/N versus
FD. For Fp > 3.5, the disks are disordered and P6 ≈ 0.5.
When the system enters phase III, a feature appears near
P6 = 0.75, and there is a jump up in P6 at the onset
of phase IV. For low pinning strengths of Fp < 2.75, a
moving phase separated state called phase VI appears in
which some disks can be temporarily pinned, while for
large enough FD all the disks are moving and the system
enters phase IV, the flowing state. The dynamic phase
diagram as a function of FD versus Fp in Figure 4(b)
indicates that phase III flow only occurs for Fp > 2.0,
while phases I and III grow in extent with increasing Fp.
In Fig. 4(b) at FD = 0.0 there is a transition from phase
VI, the pinned phase separated state, to the disordered
pinned phase I for Fp > 2.0. It may be possible to ana-

FIG. 5: (a) d〈V 〉/dFD vs FD in samples with φ = 0.55,
N/Np = 2.0, and rl = 300 from the system in Fig. 4(b) for
different values of Fp ranging from Fp = 0 to Fp = 9.0. As
Fp increases, a second peak appears and shifts to higher FD.
(b) The corresponding P6 vs FD.

lyze several of these phases in terms of driven diffusion or
driven Ising lattice models by mapping the activity into
the model.

The general features of the FD versus Fp dynamic
phase diagram in Fig. 4 exhibit several similarities to the
FD versus Fp dynamic phase diagram found for vortices
in type-II superconductors [1, 2]. In the vortex system,
there is an analogous transition from a pinned phase to
a plastic flow phase which shifts to higher FD with in-
creasing Fp. There is also a transition from the plastic
flow phase to a moving ordered phase in which all of the
vortices are moving, which is analogous to the II-IV tran-
sition we observe. There is no equivalent to our phase III
in the vortex system since a moving vortex crystal cannot
coexist with pinned vortices.

B. Changing Run Length and Pinning Density

In Fig. 6(b) we plot the velocity-force curves and in
Fig. 6(a) we show the corresponding d〈V 〉/dFD curves
for a system with Fp = 5.0, φ = 0.55, and N/Np = 2 for
varied run lengths from rl = 1.0 to rl = 1200. The curves
follow each other closely except for the second peak in
d〈V 〉/dFD, which increases in magnitude with increasing
rl. The second peak is absent at lower rl when a tran-
sition from phase II to phase V occurs, but materializes
at larger rl once a transition from phase III to phase IV
begins to occur. In Fig. 6(c) we plot the corresponding
P6 versus FD curves which show the onset of the transi-
tion into region IV in the form of an increase in P6. In
Fig. 7(a), we show the dynamic phase diagram as a func-
tion of FD versus rl for the system in Fig. 6, where phases
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FIG. 6: (a) d〈V 〉/dFD vs FD for samples with φ = 0.55,
Fp = 5.0, and N/Np = 2.0 for varied rl ranging from rl = 1
to rl = 1200. The magnitude of the second peak in d〈V 〉/dFD

decreases with decreasing rl. (b) The corresponding 〈V 〉 vs
FD curves. (c) The corresponding P6 vs FD curves, indicating
that phase IV disappears for rl < 60.

IV and III only occur for rl > 60. For rl < 60, phase IV,
the moving phase separated state, disappears, and the
system passes directly from phase II plastic flow to the
phase V moving liquid. Here, the line marking the phase
II to phase V transition remains flat at FD = Fp = 5.0.
These results indicate that the generic phases we observe
are robust for rl values both larger and smaller than the
system size L. We have performed simulations on sam-
ples of smaller size and find the same features in the phase
diagram, since a key parameter is the strength of the pin-
ning relative to the driving force, which is independent
of sample size.

We have also examined the case of fixed φ = 0.55 and
rl = 300 to obtain the dynamic phase diagram as a func-
tion of FD versus Np, shown in Fig. 7(b). Phase III
diminishes in width until Np/N = 1.0. For larger Np,
there is a direct transition from phase II to phase IV,
and phase III flow disappears. Our results indicate that
the dynamic phases we observe persist over a wide range
of parameters and represent generic features of this class
of system.

IV. DYNAMICS IN OBSTACLE ARRAYS

Active disks moving through obstacle arrays have a
very different behavior than that described in Section III
for active disks in pinning arrays. To explore this, we
prepare an obstacle landscape in which the obstacles are
modeled as immobile disks with a radius of 1.0. We con-
sider a system with rl = 300, a mobile disk density of
φ = 0.55, and No obstacles. An obstacle-free system at
this disk density and running length rl forms a phase sep-

FIG. 7: (a) The dynamic phase diagram as a function of FD

vs rl constructed from the features in Fig. 6 for a sample
with φ = 0.55, Np = 8000, and Fp = 5.0. I: pinned phase;
II: plastic flow phase; III: moving stripe phase; IV: moving
fully phase separated state; V: moving liquid phase. (b) The
dynamic phase diagram as a function of FD vs the number
of pinning sites Np in samples with φ = 0.55, Fp = 5.0, and
rl = 300.

arated state for FD = 0. As we increase the number of
obstacles No, we find a transition from a phase separated
state to a uniform liquid state, as indicated in the plot
of the normalized value of CL versus No in the inset of
Fig. 8(a). We show snapshots of the disk and obstacle
positions in Fig. 9. At FD = 0, Fig. 9(a) indicates that
a sample containing No = 8000 obstacles is disordered,
while Fig. 9(c) shows that when No = 2000 obstacles are
present, the system is density phase separated. In Fig. 8
we plot the velocity 〈V 〉, d〈V 〉/dFD, and P6 versus FD

for varied numbers of obstacles No. As No increases,
the average value of 〈V 〉 monotonically deceases, and the
d〈V 〉/dFD curve contains no peaks, unlike the behavior
for a pinning substrate. There is a gradual decrease in P6

with increasing FD, and there are no peaks or dips in P6

of the type that appear for the pinning substrate. In gen-
eral, we find that the obstacles produce no clear changes
in the structure of the moving phase. When the num-
ber of obstacles No > 7000, the system undergoes plastic
depinning into river-like channel flow, and remains in a
uniform density, disordered flow state up to the high-
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FIG. 8: (a) 〈V 〉 vs FD for systems with φ = 0.55 and rl = 300
for varied numbers of obstacles No = 2000 to No = 12000.
The inset shows the normalized cluster size CL vs the number
of obstacles No for φ = 0.55 and rl = 300 at FD = 0.0,
where there is a transition from a phase separated state at
low FD to a uniform state at high FD. (b) d〈V 〉/dFD vs
FD, corresponding to the system in panel (a), lacks any peak
features. (c) The corresponding normalized P6 vs FD has a
smooth monotonic behavior.

est drives FD that we considered, as shown in Fig. 9(b)
for a sample with No = 8000 at FD = 6.0. Conversely,
for No < 7000, the system remains in a phase separated
state, and forms a moving stripe structure resembling
that illustrated in Fig. 9(d) for No = 2000 at FD = 2.0.
This result indicates that there are no dynamical transi-
tions in the moving state for self-propelled disks moving
through obstacle arrays; however, there is a transition in
the drive-free limit of FD = 0 as a function of obstacle
density.

In a recent experimental paper, Morin et al. [44] ex-
amine a colloidal flocking active matter system drifting
through an obstacle array and find that when there are
a large number of obstacles, the flocking behavior is lost
and the flow develops riverlike properties similar to that
observed in other depinning systems and resembling what
we find in Fig. 1(b). In addition, Morin et al. report
that there is a critical obstacle density above which the
flocking behavior disappears, not unlike the cluster dis-
appearance at high obstacle densities that we observe in
Fig. 9(a). Beyond obstacle arrays, it is also possible to
have active matter move over landscapes of pinning sites

FIG. 9: Images of disk locations (dots) in samples with φ =
0.55 and rl = 300 containing obstacles consisting of fixed
disks (not shown). (a) At FD = 0 and No = 8000 obstacles,
a disordered state appears. (b) At FD = 6.0 and No = 8000,
the system is still disordered. (c) FD = 0 and No = 2000. (d)
At FD = 2.0 and No = 2000, a moving stripe state forms.

created via optical means, as has been demonstrated in
other recent experiments [45, 46].

V. SUMMARY

We have shown that active matter assemblies driven
over random pinning arrays represent a new class of sys-
tem that exhibit pinning, depinning, and nonequilibrium
phase transitions similar to those found for driven vor-
tices and colloids moving over random disorder. In a
regime where the system forms a phase separated state
in the absence of pinning, we find that the addition of pin-
ning causes the formation of a disordered uniform state
that depins plastically into a flowing uniform state with
riverlike features. At higher drives, this is followed by
a transition to a moving dense stripe phase coexisting
with a pinned liquid, until at the highest drives, the sys-
tem transitions into a moving fully phase separated state.
The different transitions are associated with features in
the velocity-force and d〈V 〉/dFD curves that are simi-
lar to the features observed in driven non-active systems
with quenched disorder. In contrast, for substrates com-
posed of obstacle arrays, there are no dynamical transi-
tions in the moving state and correspondingly there is a
lack of features in the transport curves. At zero drive,
there is a transition from a phase separated state to a
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disordered state as the obstacle density increases.
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Phototaxis of synthetic microswimmers in optical land-
scapes, Nature Commun. 7, 12828 (2016).


