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In this study, we investigate the properties of aggregation transitions in the context of generic
coarse-grained homopolymer systems. By means of parallel replica-exchange Monte Carlo methods,
we perform extensive simulations of systems consisting of up to 20 individual oligomer chains with
5 monomers each. Using the tools of the versatile microcanonical inflection-point analysis, we show
that the aggregation transition is a first-order process consisting of a sequence of subtransitions
between intermediate structural phases. We unravel the properties of these intermediate phases by
collecting and analyzing their individual contributions towards the density of states of the system.
The central theme of this systematic study revolves around translational entropy and its role in
the striking phenomena of missing intermediate phases. We conclude with a brief discussion of the
scaling properties of the transition temperature and the latent heat.

PACS numbers: 05.70.Fh, 64.60.De, 64.70.-p, 82.35.Lr, 83.10.Tv

I. INTRODUCTION

Deeper understanding of aggregation processes in the
context of microscopic molecular systems is relevant for
a number of technological and biomedical applications.
For example, protein aggregation is believed to play a
critical role during the onset of many prominent patho-
logical conditions, such as cystic fibrosis, Alzheimer’s and
Parkinson’s diseases [1, 2]. The staggering complexity of
even the simplest molecular systems precludes the pos-
sibility of obtaining the relevant thermodynamic quanti-
ties through direct analytical calculations [3]. Over the
past two decades, the enormous increase in the avail-
ability of computational resources, together with signifi-
cant progress in algorithmic developments, resulted in a
vast number of computational studies on the thermody-
namic and structural properties of complex microscopic
systems. Among the most efficient simulation methods
are the generalized-ensemble Monte Carlo algorithms,
such as simulated tempering [4, 5], replica-exchange par-
allel tempering [6–9], multiple Gaussian modified ensem-
ble (MGME) [10], together with multicanonical [11–16]
and Wang-Landau sampling [17–19]. These have been
applied successfully in numerous studies of structural
phases and transition properties [20–31], surface adsorp-
tion [32–41], and aggregation [42–47] of generic off-lattice
homopolymers and heteropolymers. The folding proper-
ties of coarse-grained protein models have also been ex-
amined extensively [48–54].
Importantly, despite the many advances in simu-

lational methodologies, systematic studies of detailed
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atomistic models are well beyond current capabilities.
However, it is a significant physical reality that many es-
sential thermodynamic properties of complex systems are
retained on larger than atomistic scales and can be well
represented by coarse-grained models. In fact, coarse-
graining is not just a concept to simplify modeling. It
reflects inherent collective and cooperative behavior of
constituents of systems on mesoscopic and macroscopic
scales. This is intuitive since it is known that certain
characteristic properties, such as the propensity towards
aggregation, are often shared among diverse systems and
hence cannot depend sensitively on microscopic details.

In mesoscopic systems, structure formation and phase-
separation processes are fundamentally influenced by
finite-size effects. Systematic statistical analysis ap-
proaches beyond the standard canonical methodology are
needed to unravel the intricate details of the interplay be-
tween energy and entropy in finite systems. Due to the
averaging process involved in the calculation of canoni-
cal quantities such as the ensemble energy or the heat
capacity, specific features of structural transitions and
phase properties are often lost [3]. This is remedied in
more general approaches such as the Fisher partition ze-
ros [55–58], or the microcanonical inflection-point analy-
sis [59, 60].

This paper is organized as follows: In Sect. II, we in-
troduce a coarse-grained model for interacting flexible
elastic homopolymers, describe the employed computa-
tional methods, and briefly outline the methodologies of
the microcanonical inflection-point analysis. In Sect. III,
we present the simulational results for systems of up to
M = 20 short polymer chains (oligomers). Based on
the outcome of inflection-point analysis, we argue that
the aggregation transition is a first-order process con-
sisting of a sequence of subtransitions between interme-
diate structural phases. Next, we discuss why certain
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subphases are entropically more suppressed than others,
and conclude with a brief excursion into the scaling prop-
erties of the aggregation transition temperature and the
latent heat. Summary is provided in Sect. IV.

II. MODEL AND METHODS

In the following, we introduce a generic coarse-grained
model for a system of interacting, flexible homopolymers.
Coarse-grained models, with a suitably chosen set of pa-
rameters, drastically reduce computational complexity
while preserving the essential structural and thermody-
namic properties that are typically found in more com-
plex models [61].

A. Standard model of interacting elastic chains

In this study, we investigate the aggregation of M in-
teracting flexible oligomers, each composed of N = 5
monomers. During the simulations, the system is con-
strained inside of a steric sphere at a constant density of
10−3 monomers per unit volume. At this density the ra-
dius of the constraining sphere is larger than the length
of the fully extended chains under investigation. The to-
tal energy of the system can be separated into intra-chain
and inter-chain pairwise interactions

Etotal = Eintra + Einter. (1)

The intra-chain contribution

Eintra =

M
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(2)
consists of both bonded and non-bonded interactions,

where r
(k)
ij is the distance between the pair of monomers

(i,j) of the k-th chain. The first term contains the anhar-
monic finitely extensible nonlinear elastic (FENE) poten-
tial [62–64]
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K
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, (3)

with parameter values K = 40 and R = 0.3 as used
in [65]. The second term represents the truncated and
shifted Lennard-Jones (LJ) potential

U trunc
LJ (rij) =

{

ULJ(rij)− ULJ(rc), if rij ≤ rc,
0, if rij > rc,

(4)
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We set the energy scale ǫ to unity and the length scale
to σ = r0/2

1/6, where r0 = 0.7 is the location of the LJ

potential minimum. The cutoff radius is set to rc = 2.5 σ.
The inter-chain contribution

Einter =

M
∑

k<l

N
∑
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U trunc
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(k)
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(l)
j |), (6)

consists solely of non-bonded LJ interactions. For the
purpose of this study, all LJ interactions (intra- and inter-
chain) have their parameters set to identical values.

B. Simulation methods

Relatively small polymer systems, consisting of NM <
100 monomers, can be conveniently simulated using par-
allel tempering, which is a generalized-ensemble replica-
exchange Monte Carlo method [6–9] that can be eas-
ily implemented on parallel computer architectures. In
larger systems, the density of states typically spans sev-
eral thousand orders of magnitude, in which case the ap-
plication of more sophisticated methods such as multi-
canonical sampling [11–16] or Wang-Landau [17–19] is
more efficient. In this study we restrict our attention to
systems consisting of up to 20 individual chains with 5
monomers each. The number of monomers per chain
has been intentionally kept very low in order to en-
hance translational entropic effects which become more
obscured by the impact of inherent conformational en-
tropies as chain length is increased.

In a typical simulation, R ≈ 80 replicas of the sys-
tem were simulated in parallel at different temperatures
in the range T ∈ [0.1, 2.0]. Single-monomer random dis-
placement moves, restricted to a box of size l, were used
to perform conformational updates for individual repli-
cas. The proposed update was then accepted with the
Metropolis probability

AM (Xold → Xnew) = min
(

1, e−β[E(Xnew)−E(Xold)]
)

,

(7)
where β = 1/kBT and kB ≡ 1 in the simulation. The
maximum magnitude of the displacement update l was
adjusted individually for each temperature thread to
achieve an average acceptance rate of 40 − 60%. Ap-
proximately every 100 Monte Carlo sweeps, an exchange
of conformations between adjacent replicas i and j was
proposed with the acceptance probability

APT (Xi ↔ Xj ;βi, βj) = min
(

1, e[βj−βi][E(Xj)−E(Xi)]
)

.

(8)
The temperature spacing between adjacent replicas was
chosen to achieve an exchange probability exceeding 20%.
This results in a higher density of replicas in the low-
temperature region as well as near the locations of phase
transitions. On average, 107 replica exchanges were per-
formed, allowing for a total of 109 Monte Carlo sweeps
per simulation.
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C. Density of states and microcanonical analysis

As a result of parallel tempering simulations, each
replica generates a canonical energy histogram h(E, βi),
which is then used to calculate an estimate for the mi-
crocanonical density of states gi(E) ≈ h(E, βi) exp (βiE).
Individual estimates gi(E) are only reliable for energies
in the neighborhood of the peak of the canonical dis-
tribution obtained at the temperature βi. Therefore a
sufficient overlap between the histograms of neighboring
replicas is necessary to ensure that an accurate estimate
of the density of states can be obtained for the entire en-
ergetic range. To combine the histograms obtained from
the individual temperature threads, we have used the
weighted multiple-histogram method [66, 67], where the
system of equations

ĝ(E) =

∑R
i=1 h(E, βi)

∑R
i=1 MiẐ

−1
i e−βiE

, (9)

Ẑi =
∑

E

ĝ(E)e−βiE , (10)

must be solved iteratively until ĝ(E) has converged.
The standard approach towards obtaining the thermo-

dynamic properties of a polymer system is to perform
a conventional analysis of energetic and structural fluc-
tuating quantities in the canonical ensemble. Generally,
peaks in the temperature derivative of a canonical expec-
tation value

d

dT
〈O(X)〉(T ) =

1

kBT 2
[〈O(X)E(X)〉(T )

−〈O(X)〉〈E(X)〉(T )], (11)

indicate extremal thermal activity in the system. How-
ever, the precise location of the transition points for finite
systems depends on the choice of the thermodynamic ob-
servables and cannot be determined uniquely. If finite-
size effects are significant, the identification of a struc-
tural transition can be difficult and underlying coopera-
tive effects may entirely be smeared out in the averaging
process.
It is therefore imperative to employ a more systematic

approach towards the analysis of thermodynamic proper-
ties of finite systems, which is capable of uniquely identi-
fying and classifying structural transitions of all orders.
This is accomplished utilizing the inflection-point analy-
sis in the microcanonical ensemble [3, 59]. The central
quantity, containing virtually all information about the
intricate interplay between entropy and energy, is the mi-
crocanonical inverse temperature defined as

β(E) =
dS(E)

dE
, (12)

where

S(E) = kB ln g(E) (13)
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FIG. 1. Schematic illustration of microcanonical inflection-
point analysis for the inverse microcanonical temperature
β(E). The prominent back-bending region in β(E), together
with the positive-valued peak in its energy derivative γ(E)
at E ≈ −15, indicates a first-order transition. The negative-
valued peak at E ≈ −24 corresponds to a second-order tran-
sition.

is the microcanonical entropy and g(E) is the density
of states. In analogy to the principle of minimal sensi-
tivity [68], structural transitions occur if β(E), or one
of its energy derivatives, responds least sensitively to
variations in energy. In particular, first-order transi-
tions are associated with inflection points in β(E) that
have a positive slope. Therefore, it can easily be iden-
tified by a positive-valued peak in the energy derivative
γ(E) = dβ(E)/dE. Similarly, a second-order transition
occurs if γ(E) attains a negative-valued peak. Examples
of microcanonical first- and second-order transition sig-
nals are shown in Fig. 1. The extension of this method
towards the identification of higher-order transitions is
possible and will be described elsewhere [60].

It should be noted that different definitions of the
microcanonical entropy S(E) exist, but the differences
have virtually no impact on the quantitative analysis
of the cooperative behavior in transition regions be-
cause of the abrupt change of the density of states in
the corresponding energetic ranges (for reviews see, e.g.,
Refs. [3, 43, 69, 70]).

III. RESULTS

Single flexible elastic homopolymers generally exhibit
three distinct structural phases. In the high-temperature
gas-like regime, typical conformations resemble extended,
random coils. With decreasing temperature, the system
first undergoes the Θ collapse transition into the liquid-
like compact globular phase, and finally freezes into the
solid “crystalline” phase. From our simulations of the
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FIG. 2. Microcanonical temperature β(E) and its energy derivative γ(E) for systems with M = 2, 3, 5, 11 oligomers with N = 5
monomers each. The dashed vertical lines eagg and efrag outline the aggregation transition region. The upper horizontal dashed
line provides an estimate for the inverse aggregation temperature βagg . The oscillations in β(E) reveal the sequential nature
of the transition and correspond to individual subtransitions. The unimodal canonical energy histograms of the subphases
hi(E;βagg) are also shown. The envelope of the subphase histograms represents the thermodynamically relevant canonical
distribution of energetic states at the transition temperature, h(E;βagg). The absolute scale of these distributions is arbitrary.

multi-chain model employed in this study, we find that
the prominent aggregation transition is accompanied by
the collapse of the individual chains, and the two tran-
sitions are not separate processes. This has also been
observed in the case of semi-flexible homopolymers [44].
However, in contrast to heteropolymer systems [45], the
freezing transition occurs at temperatures well below the
aggregation transition. In fact, at low temperatures, the
thermodynamic properties of a multi-chain system are
very similar to those of a single polymer chain with iden-
tical (total) number of monomers MN .

A. Microcanonical analysis of aggregation

transitions

In this section, we discuss the properties of aggregation
transitions from the perspective of microcanonical analy-
sis. We systematically examine systems consisting of up
to M = 20 individual chains with fixed length of N = 5

monomers. Brief inspection of the microcanonical quan-
tities for four system sizes in Fig. 2 suggests that for finite
systems the aggregation transition is a first-order pro-
cess, as expected. The microcanonical inverse tempera-
ture curves β(E) show a prominent back-bending region
accompanied by positive-valued peaks in γ(E). The low-
energy aggregate phase is energetically separated from
the disordered fragmented phase by an amount corre-
sponding to the latent heat ∆q = efrag−eagg, represented
in Fig. 2 by the separation between the two dashed ver-
tical lines. Finally, the combined canonical histograms
h(E;βagg), also shown in Fig. 2, exhibit bimodality which
is characteristic of first-order transitions in finite systems.

Closer inspection of the back-bending region of β(E)
reveals additional oscillations. It is evident that their
number is proportional to the number of individual
chains in the system. This observation motivates the de-
scription of the aggregation transition as a series of sub-
transitions between intermediate structural phases. Here
we define the term “subphase” to represent a distinct
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FIG. 3. Sample configurations of intermediate subphases
found at the aggregation temperature in a system consist-
ing of four chains with five monomers each. Due to entropic
suppression, the {2, 2} subphase has an unexpectedly small
canonical probability p{2,2}(βagg) < 0.007, and is the first ex-
ample of a missing (or entropically strongly suppressed) sub-
phase in the aggregation process of the multi-chain system.

grouping of partially formed aggregates. As shown in
Fig. 3, a system of M = 4 chains can form three interme-
diate subphases {{3, 1}, {2, 2}, {2, 1, 1}}, where the num-
ber of elements in each set corresponds to the number of
non-interacting partial clusters, and the numerical values
represent the number of chains in each cluster. Previous
studies suggest that subtransitions occur between these
partially fragmented subphases [42–45]. However, this
analysis was performed mostly on the level of visual in-
spection of individual system configurations. For a more
quantitative approach, we have implemented a structure-
detection algorithm capable of classifying configurations
based on the number and size of partially formed ag-
gregates. This allows us to collect separate statistical
data for each subphase and to determine their relative
frequency. The total density of states of a system in the
transition region can be expressed as the sum of contri-
butions from individual subphases

g(E) =
∑

i

gi(E). (14)

The probability of finding a system in the i-th subphase

FIG. 4. Microcanonical entropy per monomer S(E) (solid)
and the individual subphase entropies (dotted) for systems
with M = 2, 3 chains. The double-tangent Γ(E) represents
the Gibbs hull, the slope of which provides an estimate for
the inverse transition temperature βagg.

at a fixed energy E can then be written as

pi(E) =
gi(E)

g(E)
. (15)

The logarithm of the density of states, the microcanonical
entropy S(E), cannot be expressed as a sum of individual
subphase entropies. Instead

S(E) = kBln
∑

i

eSi(E)/kB , (16)

where Si(E) = kBln gi(E). In Fig. 4, the microcanon-
ical entropy S(E) (solid) and the individual subphase
entropy curves (dashed) are shown for systems of M = 2
and M = 3 chains. For M = 2, aggregation is a single-
step transition between the fragmented and the aggre-
gate phase. When the aggregate is dissociated into two
weakly interacting chains, the system gains an amount
of entropy approximately equal to the translational en-
tropy of a single chain Strans ∼ lnV , where V is the
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volume of the simulation sphere. This increase in en-
tropy is apparent from the vertical separation between
Sagg and Sfrag. The changes in conformational entropy
are negligible in comparison to the translational entropy
and will not be discussed here. When M = 3, in ad-
dition to the aggregate and fragmented phases, a single
subphase {2, 1} can be formed. As a result, aggregation
becomes a two-step process, each decreasing the entropy
by an amount ∼ Strans. We note that the entropy curves
of the individual subphases are strictly concave. It is the
vertical displacement between the curves, due to changes
in translational entropy, that is ultimately responsible
for the origin of the convex intruder in the microcanoni-
cal entropy S(E) and consequently for the back-bending
feature in β(E), signaling the first-order character of the
aggregation transition.
Differentiating Eq. (16) with respect to energy gives a

simple expression for the microcanonical inverse temper-
ature β(E) in terms of the inverse temperatures of the
individual subphases:

β(E) =

∑

i βie
Si(E)/kB

∑

i e
Si(E)/kB

=
∑

i

pi(E)βi(E). (17)

Hence in the transition region, β(E) can be interpreted
as the weighted sum of the inverse subphase temper-
atures with respect to the multicanonical probabilities
from Eq. (15). At a fixed energy E, the system can be
found in one of the distinct subphases with a respective
inverse temperature βi(E). In general, βi(E) 6= β(E).
However setting the energy derivative of Eq. (15) to zero,
we find that βi(E) = β(E) precisely when the probabil-
ity of a given subphase pi(E) attains its maximum value.
The oscillations in β(E) arise from the changes in the
relative weights pi(E) in the back-bending region.
In Fig. 4, we also show the double-tangent (Gibbs hull)

Γ(E). Its slope is the appropriate quantity for the esti-
mation of the aggregation transition temperature βagg.
In Table I, βagg is listed for system sizes of up to M = 20
chains. In single-step first-order transitions, the slope of
Γ(E) coincides with the inverse temperature obtained by
Maxwell construction. However, in composite multi-step
transitions, the location of the Maxwell construction be-
comes ambiguous due to multiple oscillations of β(E).

B. Entropically suppressed subphases

In the following, we discuss the results of the analysis of
canonical energy histograms h(E;βagg), shown alongside
the microcanonical quantities in Fig. 2. The histogram
h(E;βagg), collected at the inverse aggregation temper-
ature βagg, can be expressed as a sum of contributions
from individual subphases

h(E;βagg) =
∑

i

hi(E;βagg), (18)

TABLE I. Inverse aggregation temperature (βagg), energy per
monomer in the aggregate phase (eagg), energy per monomer
in the fragmented phase (efrag), and the latent heat per
monomer (∆q). The uncertainty for all listed quantities is
±0.5 in the last decimal.

System (M ×N) βagg eagg efrag ∆q

2× 5 1.99 -1.77 -1.11 0.67

3× 5 1.81 -2.04 -1.04 1.00

4× 5 1.70 -2.22 -1.01 1.22

5× 5 1.62 -2.35 -0.98 1.37

8× 5 1.51 -2.56 -0.93 1.63

11× 5 1.43 -2.62 -0.89 1.73

20× 5 1.35 -2.80 -0.85 1.95

TABLE II. Theoretical number of subphases (Nsub); not in-
cluding the fully aggregated and fragmented phases, number
of significantly represented subphases (N̂sub), and the total
contribution of the “missing” subphases towards the canonical
distribution h(E;βagg) at the inverse transition temperature
βagg.

System (M ×N) Nsub N̂sub

∑
pmiss

3× 5 1 1 N/A

4× 5 3 2 < 0.007

5× 5 5 3 < 0.014

11× 5 54 9 < 0.026

20× 5 625 18 < 0.028

where the canonical histograms of the subphases are re-
lated to their contributions towards the density of states
via

hi(E;βagg) ∝ gi(E)e−βaggE . (19)

At all system sizes, the aggregate and fragmented phases
have the largest canonical probability and are energeti-
cally well separated. The intermediate subphases have
overlapping energy distributions and occur with smaller
probabilities. The energetic separation of the aggregate
and fragment phases in combination with the loss of
translational and conformational entropy, as well as the
suppression of certain classes of intermediate-size clusters
for larger systems, lead to the formation of an entropic
depletion zone characteristic for first-order-like transi-
tions in finite systems.
A striking feature emerges for systems with M > 3

chains. Already forM = 4 (see Fig. 5), we notice that the
subphase consisting of two clusters {2, 2} appears with
unexpectedly small canonical probability p{2,2}(βagg) <
0.007. That only certain subphases contribute signif-
icantly towards the canonical energy histograms, be-
comes even more apparent for larger systems. In Ta-
ble II, we list the theoretical values for the number of
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FIG. 5. Subphase entropy curves (patterned) in the aggrega-
tion transition region for a system of M = 4 oligomers. The
entropically suppressed missing subphase {2, 2} is highlighted
in red (solid).

possible subphases (Nsub) alongside the number of sub-
phases that were detected with non-negligible probability
(N̂sub). The total contribution of the missing subphases
towards the canonical energy histograms h(E;βagg) is less
then ≈ 3% despite the fact that the number of the sub-
phases grows rapidly with system size. The observed
results suggest that a system of M chains is most often
found in a small subset of (M − 2) subphases, each con-
sisting of K individual chains and a cluster of (M −K)
chains. In fact, for M < 8 we observe (M−1) oscillations
in the inverse microcanonical temperature β(E), showing
that the aggregation transition consists of a sequence of
(M − 1) distinct subtransitions, each corresponding to a
single chain breaking off the main aggregate. However in
larger systems, some of the subtransitions overlap in en-
ergy and cannot be associated with individual oscillations
of β(E). In order to better understand the reason behind
the missing subphases, we first consider the effects of en-
ergy and translational entropy on the relative positions
of subphase entropy curves Si(E). A reduction in the
number of intra-chain interactions leads to the increase
in energy, and as a result, subphases with a higher de-
gree of fragmentation have their entropy curves shifted to
higher energies. The number of independent fragments
in a subphase determines its translational entropy and
largely the vertical position of its entropy curve.

Closer look at Eq. (16) reveals that only those sub-
phases whose entropy curves are closest to the total en-
tropy S(E), contribute significantly. Therefore an in-
crease in energy of a subphase must be compensated by
a sufficient increase in its translational entropy. Not sur-
prisingly, the (M − 2) most frequent subphases consist
of K individual chains and a single cluster of (M − K)
chains, maximizing translational entropy while maintain-
ing a relatively high number of inter-chain interactions.
In Fig. 5, we provide an example of the first missing sub-

FIG. 6. Scaling behavior of the aggregation transition tem-
perature Tagg and the latent heat per monomer ∆qagg , with
respect to M−1/3 where M is the number of polymer chains.
The latent heat increases with system size, providing further
evidence that the transition remains of first order even for
large M .

phase in a system ofM = 4 chains. It is clear that except
for a very narrow energy interval, the {2, 2} subphase
is depleted by the lower-energy {3, 1} and the higher-
entropy {2, 1, 1} subphases (see Fig. 3). As the system
size increases, the number of missing subphases increases
rapidly, while the number of subphases with substan-
tial canonical probabilities remains linearly proportional
to M .

C. Scaling properties

It is also interesting to discuss the dependence of the
aggregation temperature Tagg = β−1

agg, and the associated
latent heat per monomer ∆q = efrag − eagg, on the sys-
tem size M . Previous studies have addressed in detail
the effects of system size and the particle density ρ on
the transition temperature [46, 47]. Here we keep the
monomer density constant at ρ = 10−3 and consider the
scaling properties of Tagg and ∆q only to obtain further
evidence that the aggregation transition remains first-
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order-like with increasing system size. In Table I, we
have listed the values of βagg and ∆q for system sizes of
up to M = 20 chains.
It has been argued (see, e.g., Refs. [71, 72]) that for

transitions with entropic barrier, finite-size corrections
scale like f(ξ−1), where ξ is a characteristic thermody-
namic length scale or structural order parameter. In our
case, it is appropriate to choose the dimensionless vari-
able ξ = Rgyr/r0, where Rgyr is the radius of gyration
of the entire system and r0 = const the intrinsic system
length scale in our model. Near the transition point, most
monomers assemble in a spherical shape and it is reason-
able to assume that Rgyr ∝ M1/3 [actually (NM)1/3,
but N is constant throughout this study]. Therefore,
at constant density, we assume that the transition tem-
perature for a finite number of chains M behaves like
Tagg(M) = TM→∞

agg f(M−1/3), where TM→∞
agg is the ag-

gregation temperature in the limit of M → ∞ chains
at constant density. Assuming that the finite-size cor-
rections to the aggregation transition temperature are
mainly due to volume effects, we use the ansatz

Tagg(M) ∝ α0 + α1M
−1/3 +O(M−2/3). (20)

This behavior has been confirmed in a previous study on
polymer aggregation in spherical confinement [46].
Due to the difference in the number of nearest-neighbor

interactions between surface and bulk monomers, we ex-
pect the latent heat ∆q to depend not only on the bulk
volume occupied by the system, but also on its surface.
Hence,

∆q(M) ∝ δ0 + δ1M
−1/3 + δ2M

−2/3 +O(M−1). (21)

Data fits of the values from Table I are shown in Fig. 6.
We observe that the transition temperature is reduced
for small system sizes as finite-size effects become more
prominent. For very large system sizes, it converges to
a fixed value (TM→∞

agg ≈ 0.95). The latent heat per

monomer approaches the estimated value ∆qM→∞ ≈
2.56 in the thermodynamic limit, providing further ev-
idence that the aggregation transition is a first-order
phase-separation process.

IV. SUMMARY

In this study, we have investigated the properties of
the aggregation transition for systems consisting of up to

M = 20 short flexible elastic homopolymer chains. Uti-
lizing microcanonical inflection-point analysis, we have
confirmed that the aggregation transition is a sequential
process consisting of M −1 subtransitions between inter-
mediate, partially fragmented structural phases. Each
oscillation in the microcanonical inverse temperature
curve indicates a single transition between two adjacent
subphases. We have established the relationship between
the microcanonical density of states g(E) and the densi-
ties of states gi(E) corresponding to the individual sub-
phases. From this, we have further derived similar ex-
pressions for the microcanonical entropy S(E) and its
energy derivative, the microcanonical inverse tempera-
ture β(E). We have used those relationships to moti-
vate the origins of the convex intruder in S(E) and the
prominent back-bending region in β(E), both of which
are indicators of a first-order process.

Canonical energy histograms hi(β;E), collected at the
transition temperature βagg for each individual subphase,
confirm that certain subphases contribute only negligibly
to the total canonical distribution. The origin of these
missing subphases can be explained on the basis of the
effects of translational entropy on the relative positions of
the subphase entropy curves Si(E). The results of this
study show that with increasing system size, the num-
ber of possible subphases increases rapidly, whereas their
relevant subset increases only linearly.

Finally, we have discussed the scaling properties of βagg

and the latent heat per monomer ∆q. The increasing
values of ∆q with system size provide further evidence
that the aggregation transition seems to remain a first-
order process even as M tends towards the thermody-
namic limit.
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