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The origin of homochirality, the observed single-handedness of biological amino acids and sug-
ars, has long been attributed to autocatalysis, a frequently assumed precursor for early life self-
replication. However, the stability of homochiral states in deterministic autocatalytic systems relies
on cross inhibition of the two chiral states, an unlikely scenario for early life self-replicators. Here,
we present a theory for a stochastic individual-level model of autocatalytic prebiotic self-replicators
that are maintained out of thermal equilibrium. Without chiral inhibition, the racemic state is
the global attractor of the deterministic dynamics, but intrinsic multiplicative noise stabilizes the
homochiral states. Moreover, we show that this noise-induced bistability is robust with respect to
diffusion of molecules of opposite chirality, and systems of diffusively coupled autocatalytic chemical
reactions synchronize their final homochiral states when the self-replication is the dominant produc-
tion mechanism for the chiral molecules. We conclude that non-equilibrium autocatalysis is a viable
mechanism for homochirality, without imposing additional nonlinearities such as chiral inhibition.

PACS numbers: 87.23.Kg, 87.18.Tt, 05.40.-a

Homochirality — the single-handedness of all biologi-
cal amino acids and sugars — is one of two major uni-
versal features of life on Earth. The other is the canon-
ical genetic code. Their universality transcends all cat-
egories of life, up to and including the three Domains,
and thus requires an explanation that transcends the id-
iosyncrasies of individual organisms and particular envi-
ronments. The only universal process common to all life
is, of course, evolution, and so it is natural to seek an
explanation for biological homochirality in these terms,
just as has been done to account for the universality and
error-minimization aspects of the genetic code [1]. This
paper is just such an attempt, using the simplest and
most general commonly accepted attributes of living sys-
tems.

The origin of biological homochirality has been one of
the mostly debated topics since its discovery by Louis
Pasteur in 1848 [2]. There are those who argue that ho-
mochirality must have preceded the first chemical sys-
tems undergoing Darwinian evolution, and there are
those who believe homochirality is a consequence of life,
but not a prerequisite [3]. There are even those who ar-
gue that homochirality is a consequence of underlying
asymmetries from the laws of physics, invoking compli-
cated astrophysical scenarios for the origin of chiral or-
ganic molecules [4] or even the violation of parity from
the weak interactions [5, 6]! In fact, explanations that

are based on physical asymmetries can only predict an
enantiomeric excess of one handedness over another, and
not the 100% effect observed in nature [7].

The most influential class of theories for biological ho-
mochirality rest on an idea of F.C. Frank, in which there
is a kinetic instability of a racemic (fifty percent right
handed and fifty percent left handed) mixture of chiral
molecules produced by certain autocatalytic reactions [8].
The theory additionally invokes a mutually antagonis-
tic relationship between the two enantiomers of the chi-
ral molecule, known as “chiral inhibition”, and has led
to a large literature of specific realizations for Frank’s
spontaneous symmetry breaking mechanism [8–15]. Al-
though autocatalysis is an expected prerequisite for early
life self-replicators, the mutually antagonistic relation-
ship between the two chiral molecules does not seem to
be biologically necessary [16], and might in principle de-
pend on when we place the origin of homochirality with
respect to the origin of life [17].

When this mutual antagonistic relationship is replaced
by linear growth and decay reactions, the racemic state
becomes the global attractor of the deterministic dynam-
ics, rather than a repellor. In this case, the deterministic
analysis of the model indicates that even if the system
is initialized in a homochiral state, it ends up with a fi-
nal racemic state. However, when the effect of chemical
number fluctuations from self-replication is taken into ac-
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count, the system can transition to homochirality when
the autocatalysis is the dominant mechanism for the pro-
duction of the chiral molecules [17].

The purpose of this paper is to present a detailed
analysis of this noise-induced symmetry breaking in a
nonequilibrium autocatalytic model of self-replicating
chiral molecules without chiral inhibition along with its
spatial extension. This paper is an expansion and elab-
oration of our paper [17] which originally reported the
emergence of homochirality in an autocatalytic model
without chiral inhibition by incorporating the effect of
chemical number fluctuation (i.e. multiplicative noise).

This paper is organized as follows. We start with
an introduction to the basic concepts of chirality of
molecules and biological homochirality followed by an ac-
count of Frank’s spontaneous symmetry-breaking model
of homochirality [8] in Section I. This sets the stage for
Section II, where we replace the reaction modeling the
mutual antagonistic relationship in Frank’s model by
linear decay and growth reactions and show that even
though the racemic solution is the global attractor of the
deterministic dynamics, when the intrinsic stochasticity
of the self-replication process is taken into the account,
the system transitions to homochirality. This transition
takes place when the efficiency of self-replication exceeds
a threshold. The relationship between the transition
to homochirality in this model and the emergence of
early life is discussed in Section II C. In Section II D,
we discuss the nonequilibrium aspects of our model
and the principle of detailed balance. In particular, we
point out that life fundamentally breaks microscopic
reversibility, so that living processes must violate the
principle of detailed balance, reflecting the requirement
for an external energy source to power the system, such
as the Sun or radioactive heating. The stochastic theory
for the emergence of biological homochirality then relies
on three key attributes of life: autocatalysis, the driving
far from equilibrium, and the increasing efficiency of
autocatalytic production as life becomes more efficient
and (presumably) complex. This stochastic mechanism
for homochirality depends on intrinsic noise, and thus it
is important to determine how robust it is with respect
to spatial inhomogeneities. In Section III, first, we
show that when a well-mixed system described by this
model is perturbed by diffusion of chiral molecules of
perhaps opposite chirality from neighboring well-mixed
systems, the system maintains its homochirality. Then,
we show that in a continuous one-dimensional model, the
reactions at different points in space synchronize their
final homochiral state, showing that this noise-induced
mechanism for the origin of homochirality is robust with
respect to the spatial extension. Potential implications
of this model and future directions are discussed in
Section IV.

FIG. 1. Ball and stick model of a generic α-amino acid and
its mirror image. α-amino acids are organic compounds with
a chiral carbon connected to an amino group (−NH2), a car-
boxylic acid group (−COOH), a hydrogen atom (−H), and
a side chain (−R) that varies depending on the particular
amino acid. The l/d chirality of amino acids is determined
by the CORN rule: an amino acid is l−chiral (d−chiral) if by
wrapping your left hand (right hand) fingers around the di-
rection of CORN (−CO, −R, and −N groups in order) your
thumb points toward the direction of the hydrogen atom.

I. INTRODUCTION TO HOMOCHIRALITY

In this section, we will give an introduction to the
basic concepts related to chirality of organic molecules
and biological homochirality. A review of spontaneous
and explicit symmetry breaking theories of homochiral-
ity is given in Section I B. The main focus of this work
is on spontaneous symmetry breaking mechanisms. All
of the previous spontaneous symmetry breaking models
of homochirality have the same basic mechanism [15] as
Frank’s model [8], which is reviewed in Section I C. Frank
has shown that in a population of self-replicating (auto-
catalytic) chiral molecules that are mutually antagonis-
tic, the racemic solution is unstable. While autocatalysis
is expected in a model of prebiotic chemistry, the mutual
antagonistic relationship may not have an obvious biolog-
ical justification, nor may it be a generic feature of early
life. Thus it is important to understand whether chiral
inhibition is a necessary or merely a sufficient condition
for chiral symmetry breaking.

A. Molecular Chirality

In 1848, Louis Pasteur discovered that the sodium am-
monium salt of synthetic tartaric acid (known at the time
as racemic1 acid) produces two distinct types of crystals

1 The word “racemic” derives from the Latin for ‘bunch of grapes,’
and at the time, it was used to refer to crystals of synthetic tar-
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known as “+” and “−” forms, which are mirror images of
one another. Pasteur showed that if we shine linearly po-
larized light through solutions made by each one of these
two types of crystals, they rotate the angle of polariza-
tion of light in opposite directions. He concluded that the
racemic acid was made of two kinds of molecules with op-
posite optical activity, and the asymmetry of the crystals
was related to an asymmetry at the molecular level [2].
A clear explanation did not emerge until 1874, when J.
H. van’t Hoff and J. A. Le Bel independently discovered
that organic molecules with a carbon atom connecting to
four different groups are not mirror symmetric, and as a
result, the groups can be placed around the carbon atom
in two distinct ways: left-handed and right-handed or-
der, two configurations that are mirror images of one an-
other [18, 19]. Molecules that are not superimposable on
their mirror image are called chiral (Greek for hand), and
the atom surrounded by four different groups is known
as the chiral center of the molecule.

There are at least three different, but arbitrary, con-
ventions to determine which one of the two optical iso-
mers (also known as enantiomers) should be called left-
handed, and which one should be called right-handed:

1. The (+)/(−) classification based on the optical ac-
tivity explained above is important for historical
reasons, but is not very useful for our purpose, as
there is no way to determine the optical activity
just by looking at the structure of the molecule.
Moreover, the optical activity of the chiral solu-
tions could also depend on the properties of the
solvent.

2. More commonly used in chemistry is the R/S
(referring to Rectus and Sinister Latin for right-
handed and left-handed) nomenclature, where the
ordering of the groups on the chiral centers is cho-
sen based on the atomic numbers, and can be eas-
ily determined by looking at the three dimensional
structure of the molecule. However, atomic num-
ber is not always the most biologically relevant cri-
terion, and as it turns out, the R/S classification
does not consistently maintain the ordering of the
functional groups across, e.g. all amino acids.

3. The d/l (named after Dexter and Laevus Latin for
right and left) convention (also known as Fisher-
Rosanoff convention) is chosen for a molecule
if it can be theoretically derived from R/S-
glyceraldehyde without changing the configuration
of the chiral center [20]. This seemingly arbi-
trary convention happens to be the one that keeps

taric acid, because tartaric acid is naturally found in grapes.
However, the tartaric acid found in grapes does not produce the
two distinct crystals, since it is produced biologically and is ho-
mochiral. The word racemic is nowadays used to mean a fifty-
fifty mixture of two chiral molecules, which could be misleading
knowing the etymology of the word.

the order of similar functional groups in biological
molecules consistent and makes it possible to com-
pare the chirality of different molecules with similar
groups such as different amino acids (see Fig. (1)).

It is important to note that there is no fixed relation
between the three arbitrary conventions, since a right-
handed molecule in one convention can be left-handed in
the other.

Parity is a symmetry of the laws of physics (weakly
broken at small length and time scales by the weak
interaction). In particular, two enantiomers of a chiral
molecule have identical physical, chemical, and ther-
modynamical properties. Therefore, chemical reactions
producing chiral molecules from achiral molecules, by
symmetry, are expected to produce solutions of fifty
percent right-handed, and fifty percent left-handed
molecules. Such solutions are called racemic. In con-
trast, a solution of all left-handed or all right-handed
molecules is called homochiral or enantiopure.

B. Biological Homochirality: A Symmetry
Breaking Problem

Amino acids are building blocks of proteins and their
chirality plays an important role in the structure and the
function of proteins in living cells. Sugars are often used
as a storage for chemical energy in biological systems,
but perhaps more importantly, sugars play a key role in
the structure of RNA and DNA molecules. The famous
double helix structure of DNA is a result of the chirality
of the sugar molecules in its backbone. Despite the di-
versity of proteins and their functions virtually all chiral
biological amino acids2 are l-chiral3, while all sugars are
d-chiral.

Homochirality is particularly surprising, in light of the
fact that all the physical, chemical, and thermodynami-
cal properties of the two enantiomers of a chiral molecule
are identical. This is due to the symmetry of laws of elec-
tromagnetism under reflection. When life was emerging
on the planet, chiral molecules were formed from simpler
achiral molecules that existed in the early atmosphere
and the ocean. Since, the initial state was symmetric

2 Of the 23 proteinogenic amino-acids found in life, Glycine is the
only achiral amino acid.

3 Some d-amino acids do appear in biological system (e.g. d-
aspartate is a regulator of adult neurogenesis[21]) and are gen-
erated by enzymes that are specialized in the inversion of the
stereochemistry (of the corresponding l-amino acids) known as
racemases and epimerases. These amino acids cannot partici-
pate in protein structures through ribosomal synthesis but can
take part in structure of peptides (e.g. d-phenylalanine in the
antibiotic Tyrocidine[22]) through either posttranslational con-
version of l- to d-amino acids or the activity of nonribosomal
peptide synthetases. For a review of the role of d-amino acids,
see for example Ref. [23]
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(solution of achiral molecules), and the laws of physics
are symmetric, one would expect a symmetric final state,
that is a biosphere made of a racemic solution of chiral
molecules. A phenomenon in which the initial state and
the corresponding laws of physics are symmetric with re-
spect to a particular transformation, but the final state of
the system violates that symmetry, is called a symmetry-
breaking. There are two resolutions to symmetry break-
ing problems: (1) Explicit symmetry breaking, when the
laws of physics are only approximately symmetric, or
there is an asymmetric perturbation to the system. (2) In
contrast, spontaneous symmetry breaking happens when
the governing laws are perfectly symmetric, and as a re-
sult, the symmetric state is a final solution, but it may
be an unstable solution. In this case, even the slightest
perturbation to the system moves the system away from
the symmetric state.

There have been some attempts to explain homochiral-
ity through explicit symmetry breaking mechanisms. For
example, if life was formed from chiral organic molecules
that were produced under a steady radiation of circu-
larly polarized light, the asymmetric interaction of dif-
ferent enantiomers of chiral molecules with the light over
hundreds of millions of years could lead to a significant
enantiomeric excess [4]. These theories are partly moti-
vated by reports of observation of slight l-enantiomeric
excess of some of amino acids found in the Murchison me-
teorite [7, 24, 25]. Another example relates to the parity
violation of the weak interaction. Unlike electromagnetic
interactions, the weak interaction violates mirror sym-
metry [26, 27]. Even though weak interactions have a
negligible effect at molecular scales, it has been argued
that it can cause an asymmetry affecting the rate of pro-
duction of two enantiomers in a manner that over billions
of years could lead to an observable level of enantiomeric
imbalance [5, 6].

A common weakness of explicit symmetry breaking
mechanisms is that the homochirality achieved is only
partial: These mechanisms lead to an imbalance between
the concentrations of the two enantimeres, but do not
result in complete homochirality. As a result, there is
a common misunderstanding in the homochirality litera-
ture that the origin of homochirality requires two steps:
(1) an explicit symmetry breaking mechanism to break
the symmetry in the initial condition, followed by (2) a
mechanism to amplify the initial asymmetry. We believe
it is important to clarify this point for the non-physicist
audience: If there is a mechanism amplifying the ini-
tial asymmetry for arbitrary small asymmetries, then the
symmetric solution is unstable, and over time the system
decays to one of the two homochiral states, even with a
symmetric initial condition; this is spontaneous symme-
try breaking.

The first model of spontaneous symmetry breaking
for homochirality was proposed by Frank in 1953 [8].
There have been many other models of homochirality
since Franks model, but the underlying mechanism for
spontaneous symmetry breaking in all of these models

is the same as the mechanism by Frank [15]. Frank’s
model is reviewed in detail in Section I C.

C. Frank’s Model of Homochirality

Frank introduced a model in which the d and l enan-
tiomers of a chiral molecule are autocatalytically pro-
duced from an achiral molecule A in reactions

A+ d
ka−−→ 2d, A+ l

ka−−→ 2l, (1)

and are consumed in a chiral inhibition reaction4,

d + l
ki−−→ 2A. (2)

The state of this system can be described by the chiral
order parameter ω defined as

ω =
[d]− [l]

[d] + [l]
, (3)

where [d] and [l] are the concentrations of d and l. The
order parameter ω is zero at the racemic state, and ±1
at the homochiral states. In order to determine the time
evolution of the order parameter ω, we can use the law
of mass action to set the rates of reactions (1) and (2)
proportional to the products of the concentrations of the
corresponding reactants. The result is the following set
of mean field equations for the rate of change of concen-
trations of A, d, and l:

d[A]

dt
= 2ki [d] [l]− ka [A] ([d] + [l])

d[d]

dt
= ka [A] [d]− ki [l] [d]

d[l]

dt
= ka [A] [l]− ki [d] [l].

(4)

The rate of change of ω can be derived from the chain
rule, resulting in the mean field equation of motion:

dω

dt
=

1

2
ki ([d] + [l])ω

(
1− ω2

)
. (5)

Equation (5) has three deterministic fixed points; the
racemic state, ω = 0, is an unstable fixed point, and the

4 In the original model by Frank, the concentration of the
molecules A was kept constant to reduce the degrees of freedom
by one, and the chiral inhibition was introduced by the reaction
d + l → ∅. This model leads to indefinite growth of d or l
molecules and does not have a well-defined steady state. To re-
solve this problem, we let the concentration of A molecules be
variable and replaced this reaction by d+l → 2A which conserves
the total number of molecules. This conservation law reduces the
number of degrees of freedom by one again. The mechanism to
homochirality in the modified model is the same as the original
model by Frank, since the order parameter in both models obeys
Eq. (6).
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two homochiral states, ω = ±1 are stable fixed points.
Starting from almost everywhere in the d-l plane, the
system converges to one of the homochiral fixed points
(Fig. (2)(a)).

In the context of biological homochirality, extensions of
Frank’s idea have essentially taken two directions. On the
one hand, the discovery of a synthetic chemical system of
amino alcohols that amplifies an initial excess of one of
the chiral states [9] has motivated several autocatalysis-
based models (see [15] and references therein). On the
other hand, ribozyme-driven catalyst experiments [28]
have inspired theories based on polymerization and chi-
ral inhibition that minimize [10, 14, 29] or do not include
at all [12, 30] autocatalysis. Further extensions account-
ing for both intrinsic noise [15, 31] and diffusion [32–35]
build further upon Frank’s work.

From our perspective, the experimental finding that
is most interesting is that chiral inhibition is not a nec-
essary part of autocatalytic reaction schemes. A recent
important experimental realization of RNA replication
using a novel ribozyme shows such efficient autocatalytic
behavior that chiral inhibition does not arise [16]. Thus
it becomes critical to ask whether homochirality can arise
in the absence of chiral inhibition. As we will see, the an-
swer is yes: chiral inhibition is not a necessary condition
for symmetry breaking, although the mechanism is quite
different from that envisioned by Frank.

Regardless of the specific model details, all these
models share the three-fixed-points paradigm of Frank’s
model, namely that the time evolution of the chiral order
parameter ω is given by a deterministic equation of the
form [15]

dω

dt
= f(t)ω

(
1− ω2

)
, (6)

where the function f(t) is model-dependent. The sole
exception to this three-fixed-points model in a varia-
tion of Frank’s model is the work of Lente [36], where
purely stochastic chiral symmetry breaking occurs, al-
though chiral symmetry breaking is only partial, with
ω 6= 0 but |ω| < 1. In all models obeying Eq. (6), the
homochiral states arise from a nonlinearity which is not
a property of simple autocatalysis, but, for instance in
the original Frank’s model, is due to chiral inhibition.
To clarify this, one can repeat the analysis of the rate
equations for a variation of Frank’s model in which the
chiral inhibition reaction (2) is broken down into two in-
dependent linear decay reactions

d
kd−−→ A, l

kd−−→ A. (7)

Figure (2)(b) shows that in this modified model, the ho-
mochiraity is lost, and the ratio of d and l molecules stay
constant over time. The situation is even worse: if the
reactions (7) are even slightly reversible,

d
kd−−⇀↽−−
kn

A, l
kd−−⇀↽−−
kn

A, (8)

the racemic solution becomes the global attractor of the
deterministic dynamics (see Fig. (2)(c)). Even starting
from a homochiral state, such a system eventually con-
verges to a racemic solution. This structural instability
of the chiral inhibition terms in the equation is unphys-
ical, because these small changes to the reaction scheme
should not have a qualitatively large impact on the out-
come.

In Section II, we will show that despite the fact that
the stability analysis of rate equations indicates that
the modified Frank’s model without chiral inhibition
approaches a racemic steady state, when the intrinsic
noise from the autocatalytic reactions is taken into
account, the system can nevertheless transition to
homochirality under certain conditions.

II. NOISE-INDUCED ORIGIN OF
HOMOCHIRALITY IN PREBIOTIC

SELF-REPLICATORS

In this section, we will show that efficient early-life
self-replicators can drive the emergence of universal ho-
mochirality, through a stochastic treatment of Frank’s
model without requiring nonlinearities such as chiral in-
hibition. In our stochastic treatment, the homochiral
states arise not as fixed points of deterministic dynam-
ics, but instead are states where the effects of chemical
number fluctuations (i.e. the multiplicative noise [37])
are minimized. The mathematical mechanism proposed
here [38–41] is intrinsically different from that of the class
of models summarized by Eq. (6). We conclude that au-
tocatalysis alone can in principle account for universal
homochirality in biological systems far from equilibrium,
when autocatalysis is the strongly dominant mechanism
for the production of chiral molecules.

To be self-contained, we now clarify in what sense
chemical reactions are stochastic, and when the stochas-
ticity matters. In reaction kinetics, the rate of reactions
is usually calculated using the law of mass action. The
law of mass action states that the rate of a reaction is
proportional to the product of the concentrations of its
reactants, and the proportionality constant is defined as
the reaction rate. An intuitive explanation of this law
is as follows: A chemical reaction takes place when its
reactants collide with enough energy to overcome the ac-
tivation energy of the reaction. The probability of the
collision of these reactants is proportional to the prod-
uct of their concentration, and therefore, the expected
value of the number of such collisions per unit time is
also proportional to the product of the concentrations of
the reactants. This is the law of mass action, and it is
an intrinsically mean field approximation.

Near equilibrium, a system of a large number of inter-
acting chemicals follows Boltzmann statistics and can be
approximated by its expected value. This approximation
is possible because the distribution of various quantities
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FIG. 2. (Color online) (a) Phase portrait of Frank’s model: the racemic state is an unstable fixed point (red dot), while the
homochiral states are stable fixed points (green dots). (b) If chiral inhibition is replaced by linear decay reaction, the ratio of
d and l molecules stays constant. (c) Adding even the slightest amount of non-autocatalytic production of d and l molecules
makes the racemic state (green dot) the global attractor of the dynamics.

converge to narrow Gaussian distributions around their
mean. This is the reason that, in calculating rates of
reactions, the expected value of number of collisions is
used instead of the actual probability distribution of the
number of collisions per unit time.

However, this property is not generalizable to systems
that are maintained far from equilibrium. For such sys-
tems, instead of using the law of mass action as the ex-
pected value of the number of reactions per unit time,
it is more appropriate to interpret the law of mass ac-
tion as the probability per unit time of occurrence of a
chemical reaction. Also, instead of the rate equations for
the rate of change of the expected value of the concentra-
tions of the reactants and the products, we can write the
master equation for the rate of change of the probability
of the system having given concentrations of reactants
and products. A step by step treatment of the master
equation is given in Section II B. An intuitive explana-
tion of the mechanism for the symmetry breaking and its
relationship with the origin of life follows in Section II C.

Our proposed reactions (reactions (9)) are chosen as
an effective minimal model in which the transition to
homochirality via a noise-induced symmetry breaking in
the absence of chiral inhibition can be observed. Of
course, the actual set of reactions that took place during
the emergence of life leading to the symmetry breaking
may involve more chemical species and more intermedi-
ate steps. In particular, the steady state of our reaction
set will be a nonequilibrium steady state implying that
self-replication process has to be driven by an external
source of energy. This could mean that self-replication
may be coupled to other set of reactions, in the same way
that some energy-consuming reactions in biological cells
are driven by ATP hydrolysis. A more detailed analysis
of the thermodynamical aspects of our model and other

variations are discussed in Section II D.

A. Description of the Stochastic Model

Motivated in part by the experimental demonstration
of autocatalysis without chiral inhibition [16], we pro-
pose the reaction scheme below, which is equivalent to a
modification of a model by Lente [36] with the additional
process representing the recycling of enantiomers:

A+ d
ka−−→ 2d, A+ l

ka−−→ 2l,

A
kn−−⇀↽−−
kd

d, A
kn−−⇀↽−−
kd

l (9)

Compared to Frank’s model, the chiral inhibition is re-
placed by reversible linear decay reactions which model
both recycling and non-autocatalytic production. The
rate constants are denoted by k, with the subscript serv-
ing to identify the particular reaction (subscript a for au-
tocatalysis, d for decay, and n for nonautocatalytic pro-
duction). The only deterministic fixed point of this model
is the racemic state (see Fig. (2)(c)). This model can
be interpreted as a model for the evolution of early life
where primitive chiral self-replicators can be produced
randomly through non-autocatalytic processes at very
low rates; the self-replication is modeled by autocatal-
ysis while the decay reaction is a model for the death
process.

It is important to note that for the nonautocatalytic
reaction to occur at a very small rate compared to the
decay rate, the self-replication process should be an en-
ergy consuming reaction (as is the case in biological sys-
tems). Hence, in order to maintain an irreversible self-
replication, the system has to be driven by an external
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source of energy. This constant inflow of energy keeps
the steady state of the system far from equilibrium. The
source of this driving energy is not included in our model,
as is usually the case in non-equilibrium problems. For
more details on the thermodynamics of this model see
Section II D.

Section II B derives an exactly solvable stochastic
differential equation for the time evolution of the chiral
order parameter ω from reactions (9), which shows
that in the regime where autocatalysis is the dominant
reaction, the functional form of the multiplicative
intrinsic noise from autocatalytic reactions stabilizes the
homochiral states.

B. Master Equation, Fokker-Planck Equation, and
Langevin Equation

Chemical reactions are inherently stochastic, as they
rely on the stochastic collision of molecules with sufficient
energy to overcome the activation energy. The goal of
this section is to derive a master equation for the rate
of change of probability of the system being at a state
defined by the concentration of A, d, and l molecules and
a stochastic differential equation for the rate of change
of the chiral order parameter ω.

Consider reactions (9) taking place in a well-mixed sys-
tem of volume V with total number of molecules N . The
state of the system is defined by the concentration vec-
tor (a, d, l) ≡ (x1, x2, x3) ≡ ~x of the molecules A, d, and
l respectively. We define the transition rate T (~y|~x) as
the probability per unit time per unit volume of the sys-
tem transitioning to the state ~y, given the initial state
~x. From reaction (9), there are four types of transitions
characterized by the four rows of the stoichiometry ma-
trix S

S =

 −1 1 0
−1 0 1
1 −1 0
1 0 −1

 , (10)

corresponding to the reactions that consume A, and pro-
duce d or l respectively and the ones that consume d
or l and produce A respectively. The columns of S cor-
respond to the species A, d, and l respectively, and the
negative or positive signs refer to consumption or produc-
tion. From the law of mass action, the transition rates
corresponding to different types of transitions are given
by

T (~x+ ε~s1|~x) = (kn + kad)a,

T (~x+ ε~s2|~x) = (kn + kal)a,

T (~x+ ε~s3|~x) = kdd,

T (~x+ ε~s4|~x) = kdl,

(11)

where the vector ~si (with i = 1, . . . , 4) is the i-th row
of the stoichiometry matrix S, ε = 1/V is one over the

volume V of the system, ε~si’s are the changes in the
concentration vector ~x due to a reaction of type i.

Now, the rate of change of the probability of the system
being at a state ~x at time t, P (~x, t), is given by

∂P (~x, t)

∂t
= V

∑
~y

(T (~x|~y)P (~y, t)− T (~y|~x)P (~x, t)) . (12)

Equation (12) is called the master equation [42], and it
describes the time evolution of probability of the system
at a state defined by discrete concentration values. The
master equation is the most accurate description of the
individual level model and can be simulated exactly using
the Gillespie algorithm [43]. In the master equation for
reaction (9), most of the transition rates are zero, except
the allowed transitions specified by Eq. (11). Substitut-
ing the allowed transitions from Eq. (11) in Eq. (12), we
obtain

∂P (~x, t)

∂t
= V

4∑
i=1

(T (~x|~x− ε~si)P (~x− ε~si, t)

−T (~x+ ε~si|~x)P (~x, t)) .

(13)

The next step is to take the continuous limit of Eq. (12)
when the total number of molecules N � 1, to derive a
partial differential equation for the time evolution of the
probability density of finding the system in a state de-
fined by continuous concentration variables. This equa-
tion in known as the Fokker-Planck equation. We begin
by defining the functions Fi’s as

Fi(~x, t) = T (~x|~x+ ε~si)P (~x, t), (14)

so that the master equation can be written as:

∂P (~x, t)

∂t
=

4∑
i=1

Fi(~x− ε~si, t)− Fi(~x, t)
ε

. (15)

The right-hand side of the master equation can be ex-
panded in ε,

∂P (~x, t)

∂t
=−

∑
i,j

Si,j
∂Fi
∂xj

+
ε

2

∑
i,j,k

Si,jSi,k
∂2Fi
∂xj∂xk

− ε

6

∑
i,j,k,l

Si,jSi,kSi,l
∂3Fi

∂xj∂xk∂xl
+ . . . .

(16)

If P (~x, t) is analytic in ε, before truncation, Eq. (16) is
exact and does not require ε to be small. For N � 1, by
the central limit theorem, the fluctuations are Gaussian,
and therefore, the probability density function P (~x, t) has
to obey a second order Fokker-Planck equation. At this
limit, even if ε is not small, we can truncate the series
to second order, and after evaluating the corresponding
partial derivatives, we obtain the following Fokker-Planck
equation for the time evolution of P (~x, t):

∂P

∂t
≈ −

3∑
j=1

∂(HjP )

∂xj
+

1

2

3∑
j,k=1

∂2 (BjkP )

∂xj∂xk
, (17)
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where the drift vector ~H with component Hj is given by

~H =
∑
i

T (~x+ ε~si)|~x)~si

=

 kd(d+ l)− a(2kn + ka(d+ l))
−kdd+ a(kn + kad)
−kdl + a(kn + kal)

 .

(18)

The symmetric diffusion matrix B is given by

B = ε
∑
i

T (~x+ ε~si)|~x)~si ⊗ ~si

= ε

 kd(d+ l) + a(2kn + ka(d+ l))
−kdd− a(kn + kad)
−kdl − a(kn + kal)

−kdd− a(kn + kad) −kdl − a(kn + kal)
kdd+ a(kn + kad) 0

0 kdl + a(kn + kal)

 ,

(19)

where the symbol ⊗ indicates the Kronecker product.
Equation (17) describes the time evolution of the prob-

ability density of the concentration vector ~x in the contin-
uous model, and all further approximations and simplifi-
cations can be done directly on this equation. However,
it is more insightful to keep track of the stochastic dy-
namics of the concentration variables. The following is
the set of stochastic differential equations (defined in the
Itō sense, see Ref. [37]) corresponding to a probability
density function obeying Eq. (17).

d~x

dt
= ~H(~x) + ~ξ(t), (20)

where ξi’s, the components of ~ξ(t), are zero mean Gaus-
sian noise functions with correlation

〈ξi(t)ξj(t′)〉 = Bi,jδ(t− t′). (21)

To rewrite Eq. (20) in terms of uncorrelated Gaussian
noise functions, we seek to decompose the matrix B to
B = GGT. This decomposition is not unique and multi-
ple choices for G exist [44]. It is easy to check that the
following 3× 2 matrix satisfies the decomposition:

G =
√
ε
√
a (kad+ kn) + kdd

√
a(kal + kn) + kdl

−
√
a (kad+ kn) + kdd 0

0 −
√
a(kal + kn) + kdl

 .

(22)

For more details on how such decompositions are found,
see Appendix A. Now, for a two dimensional zero mean
Gaussian white noise ~η(t) with correlation

〈ηj(t)ηk(t′)〉 = δj,kδ(t− t′), (23)

the correlated noise ~ξ(t) can be rewritten as ~ξ(t) = G~η(t)
(see Appendix A). Now, Eq. (20) can be written in terms

of ~η as

d~x

dt
= ~H(~x) + G(~x)~η(t). (24)

Note that since the Fokker-Planck equation (17) only de-
pends on B and not the particular choice of its decom-
position G, the probability density function of ~x and its
time evolution do not depend on G either [44].

To obtain a stochastic differential equation for the time
evolution of the chirality order parameter ω, we perform
the following change of variables in Eq. (24): a

d
l

→
 n
r
ω

 =

 a+ d+ l
d+ l

(d− l)/(d+ l)

 (25)

Using Itō’s lemma [37] we can obtain an equation for the
time evolution of the new state vector ~y = (n, r, ω).

In general, it is not easy to solve for the joint proba-
bility density of coupled stochastic differential equations
(SDE), but for a single variable first order SDE the steady
state distribution is always exactly solvable. Therefore,
we seek to reduce the number of degrees of freedom in
the problem using the following two facts:

1. The reaction scheme reaction (9) conserves the to-
tal number of molecules, meaning that the total
concentration n = a+ d+ l is constant.

2. Simulations show that the concentration r = d + l
settles to a Gaussian distribution around its fixed
point value r∗, allowing us to substitute r(t)→ r∗.
Therefore, the dynamics at long time occurs only
in the chiral order parameter ω.

In the new variables, we find that ṅ = 0 and, by taking
the positive solution of ṙ = 0, that is

r∗ =

√
(kan− kd − 2kn)2 + 8kaknn+ kan− kd − 2kn

2ka
,

(26)
we substitute r → r∗ in the equation for ω, and use the
rule for summing Gaussian variables (i.e. aη1 + bη2 =√
a2 + b2η; where a and b are generic functions [37]) to

express the stochastic part of the equation using a single
noise variable. Expressing the result in terms of the total
number of molecules N = V n, for N � 1, we arrive at
the following stochastic differential equation for the chiral
order parameter ω:

dω

dt
= −2knkdV

Nka
ω +

√
2kd
N

(1− ω2)η(t), (27)

where η(t) is Gaussian white noise with zero mean and
unit variance. The time evolution of the probability
density function of ω is described by the corresponding
Fokker-Planck equation of Eq. (27) given by

∂P (ω, t)

∂t
=
∂

∂ω

(
2knkdV

Nka
ωP (ω, t)

)
+

1

2

∂2

∂ω2

(
2kd
N

(1− ω2)P (ω, t)

)
.

(28)
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FIG. 3. (Color online) Comparison between the stationary
distribution, Eq. (29), (dashed lines) and Gillespie simulations
of reactions reaction (9) (markers), for different values of α.
Simulation parameters: N = 103, ka = kn = kd = 1.

This is an exactly solvable partial differential equation
with time dependent solution given in [45]. The steady
state solution of Eq. (28) is given by

Ps(ω) = N
(
1− ω2

)α−1
, with α =

knV

ka
, (29)

with the normalization constant

N =

(∫ +1

−1

(
1− ω2

)α−1
dω

)−1
=

Γ
(
α+ 1

2

)
√
π Γ(α)

. (30)

Equation (29) is compared in Fig. (3) against exact
Gillespie simulations [43] of reactions (9). For α = αc =
1, ω is uniformly distributed. For α � αc, where the
non-autocatalytic production is the dominant produc-
tion reaction, Ps(ω) is peaked around the racemic state,
ω = 0. For α � αc, where autocatalysis is dominant,
Ps(ω) is sharply peaked around the homochiral states,
ω = ±1. The simulations were performed for N = 1000,
where the analytic theory is expected to be accurate; for
much smaller values of N , the theory is qualitatively cor-
rect, but very small quantitative deviations are observ-
able compared to the simulations.

For finite N and nonzero α smaller than one, the sys-
tem can switch from one homochiral state to the other
over long time. The expected value of this switching
time approaches infinity for large N and small α. See
Appendix B for the calculation of the mean switching
time and analytical expressions.

The importance of this treatment is not only in the
analytical results for the probability density function of
ω, but also the intuitive picture that Eq. (27) provides to
understand the mechanism through which autocatalysis
leads to homochirality. We will discuss an intuitive
interpretation of Eq. (27) and the behavior of its solution
Eq. (29) in the Section II C along with the relationship

of this model with the origin of life.

C. Transition to Homochirality and Origin of Life

In Section II B, we saw that for the reactions (9), in
a well-mixed system of volume V and total number of
molecules N , the time evolution of the chiral order pa-
rameter ω obeys the stochastic differential equation

dω

dt
= −2knkdV

Nka
ω +

√
2kd
N

(1− ω2)η(t), (27 revisited)

where η(t) is a normalized Gaussian white noise with zero
mean defined in the Itō sense [37]. The deterministic part
of Eq. (27)

dω

dt
= −2knkdV

Nka
ω, (31)

which could alternatively be derived by reaction kinetic
analysis (see Section I C), has one stable fixed point at
the racemic state, consistent with the phase portrait in
Fig. (2)(c). The multiplicative noise in Eq. (27) van-
ishes at homochiral states, and admits its maximum at
the racemic state. In order to determine which one of
the two terms is dominant, one can define the dimen-
sionless parameter α as the ratio of the two constants
2knkdV/Nka and 2kd/N , that is

α =
knV

ka
. (32)

It can also be seen in Eq. (28) that α is the ratio that de-
termines which term is dominant. Note that the steady
state solution of Eq. (27), given in Eq. (29), only de-
pends on α. When α � 1, the deterministic part of the
Eq. (27) is dominant, and therefore, we expect a racemic
solution. That is indeed the case, and the steady state
probability density of ω is peaked around zero for large α
(see Fig. (3)). However, for α � 1, where autocatalysis
is the dominant production mechanism, the amplitude of
the noise term in Eq. (27) is much larger than the am-
plitude of the corresponding deterministic term. Since
the noise is maximum at the racemic state, the variable
ω stochastically walks away from the racemic state over
time and ends up at homochiral states where the noise
term vanishes.

To understand this result physically, note that the
source of the multiplicative noise is the intrinsic stochas-
ticity of the autocatalytic reactions. While, on average,
the two autocatalytic reactions do not change the vari-
able ω (see Fig. (2)(b)), each time one of the reactions
takes place, the value of ω changes by a very small dis-
crete amount. As a result, over time the value of ω drifts
away from its initial value. Since the amplitude of the
noise term is maximum at racemic state and zero at ho-
mochiral states, this drift stops at one of the homochiral
states.
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The absence of the noise from autocatalysis at ho-
mochiral states can be understood by recognizing that
at homochiral states, the molecules with only one of two
chiral states d and l are present, hence only the auto-
catalytic reaction associated with that chiral state has a
non-zero rate. This reaction produces molecules of the
same chirality, keeping the system at the same homochi-
ral state without affecting the value of ω, and therefore,
the variable ω does not experience a drift away from the
homochiral states due the autocatalytic reactions.

Note that the stationary distribution of ω in Eq. (29) is
only dependent on α and is independent of the decay re-
action rate, kd. The only role of this reaction is to prevent
the A molecules from being completely consumed, thus
providing a well-defined non-equilibrium steady state in-
dependent of the initial conditions.

The parameter α is proportional to the ratio of
the non-autocatalytic production rate, kn, to the self-
replication rate, ka. In the evolution of early life, when
self-replication was a primitive function, ka would be
small and the value of α would therefore be large. As life
evolved, the self-replicators would evolve to become more
efficient at self-replication, and would be less likely to
be produced spontaneously through non-self-replicating
mechanisms. As a result the value of ka would increase,
while kn decrease, and α would become very small.
Therefore, in our model, we expect that life started in
a racemic state, and it transitioned to homochirality af-
ter self-replication became efficient (i.e. when α � 1).
It is a necessary weakness of the present state of under-
standing that we do not have a dynamical description of
α(t), so in this sense, our theory is incomplete.

It is important to note that all of the previous
mechanisms suggested for homochirality rely on assump-
tions that cannot be easily confirmed to hold during
the emergence of life. However, even if all of such
mechanisms fail during the origin of life, our mechanism
guarantees the emergence of homochirality, since it only
relies on self-replication and death, two processes that
are inseparable from any living system.

D. Pigs Can Fly (With Jetpacks): Violation of
Detailed Balance is a Necessary Condition for

Homochirality

By construction, our model violates the principle of
microscopic reversibility, and in this section, we wish to
comment on this fact and explore its physical origin. The
violation of microscopic reversibility follows because our
model explicitly violates the principle of detailed balance,
as is required for an externally driven system far from
equilibrium. Here, we review some thermodynamical as-
pects of our model, which we believe have important im-
plications for understanding the origin of life. Before,
starting to analyze the model, we would like to review
the history of criticisms to minimal models for homochi-

rality that violate microscopic reversibility.
In 2009, Blackmond published an essay titled: “If

pigs could fly” chemistry: a tutorial on the principle of
microscopic reversibility [46]. The essay criticizes sev-
eral kinetic models of homochirality similar to Frank’s
model, with the type of recycling that exists in our model.
Blackmond argues that these kinetic models are writ-
ten with arbitrary reactions constants without a regard
for whether reactions with these constants are thermo-
dynamically feasible or not. The crux of the argument
boils down to the following: the principle of microscopic
reversibility states that at equilibrium, the rate of the for-
ward reaction and the reverse reaction are equal for all
reactions. For systems involving recycling, or more gen-
erally cyclic reactions, this principle puts a constraint on
the relationship of the rate constants of the set of reac-
tions that share their pool of reactants and products. For
example, consider the cyclic reaction set

A
k1

k∗1
B

k ∗3k
3

C

k
∗ 2

k 2

(33)

At equilibrium, the rate of forward and backward reac-
tions are the same for each reaction, giving rise to the
following relationships:

k1[A] = k∗1 [B], k2[B] = k∗2 [C], k3[C] = k∗3 [A].
(34)

Eliminating the concentrations [A], [B], and [C], we have

k1
k∗1

k2
k∗2

k3
k∗3

= 1. (35)

This relationship was discovered by Wegscheider in
1901 [47]. It implies that, at equilibrium, the six reaction
rates cannot be chosen independently. In particular, one
cannot have a set of cyclic irreversible reactions, that is
for nonzero k1, k2, and k3, we cannot set k∗1 , k∗2 , and
k∗3 simultaneously to zero, at equilibrium. Of course,
once a static equilibrium solution exists, these constants
should obey Wegscheider’s conditions, even away from
the steady state, such as during the approach to equilib-
rium. This is because reaction constants are constants,
i.e. independent of the extent of reactions. In other
words, Wegscheider’s condition is the condition for the
existence of a static equilibrium solution. The principle
of microscopic reversibility entails that the steady state
solution satisfies detailed balance, i.e. it is an equilibrium
state. If a model has an equilibrium solution, one can de-
rive the rate constants from the free energy differences.
However, in a cyclic reaction set, not all the free energy
differences are independent. As a result, for a model to
have an equilibrium solution, its rate constants have to
obey a constraint, and that is Wegscheider’s condition.

What does it all have to do with homochirality? There
is a similar situation in the model defined by reactions (9)
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because of the recycling and irreversibility of the auto-
catalytic reactions. Note that the linear and the autocat-
alytic reactions have the same reactants and products,
therefore, doing the same analysis on reactions

A+ d
ka−−−⇀↽−−−
k∗a

2d, A
kn−−−⇀↽−−−
kd

d, (36)

results in the following condition at equilibrium

ka[A][d] = k∗a[d]2, kn[A] = kd[d], (37)

which implies

ka
k∗a

=
kn
kd
. (38)

This suggests that for this model to have an equilibrium
solution, it cannot have an irreversible autocatalysis and
recycling simultaneously (i.e. k∗a cannot be zero for a
nonzero kd).

Is this a potential source of criticism against our
model? After all, it might seem that every set of chemical
reactions should have a static equilibrium. In fact this
is not the case: every closed set of chemical reactions
should have a static equilibrium. We have made it clear
that the stationary solution of our model is a nonequi-
librium steady state, and therefore, it has to be a driven
system with an external source of energy or disequilib-
rium. In fact, as we will show in this section, any system
modeling prebiotic chemistry, and more importantly any
model attempting to achieve complete homochirality has
to be a driven model. Like Frank and most other workers
in this field, we chose not to include the external source of
energy in our model for several reasons: (1) it is unneces-
sary and not the main point of the exercise; (2) it forces
us to make specific and detailed choices about chemical
processes that have no experimental support in an early
life context; (3) it obscures the basic mechanisms leading
to homochirality.

Before we show why it is necessary for there to be an
external source of energy, in order to give rise to a ho-
mochiral steady state, let us mention a couple of different
ways one can implement such energy sources, keeping the
autocatalysis irreversible.

The reaction set (9) was set up with the idea in mind
that self-replication (modeled by the autocatalytic reac-
tions) has exclusive access to an external source of en-
ergy, as is the case in all biological systems, and there-
fore the effective “reaction constants” (which are depen-
dent on the amount of energy to which the replicator
has access) can be tuned independently of the other non-
autocatalytic reactions. This can be shown by adding
extra molecular species representing the source of en-
ergy5. For example, modern organisms couple the hy-
drolysis reaction of adenosine triphosphate (ATP) that

5 The presence of additional molecules species is not strictly nec-
essary, as the source of energy could be non-molecular in nature.
Photo-active chemical reactions are examples of energy driven
systems, whose energy source is not molecular.

produces adenosine diphosphate (ADP) and a phosphate
(P) to their autocatalytic cycles in their cells, using the
free energy difference to drive the cycles [48]. Consider
the following set of reactions

A+ d +ATP
ks−−−→ 2d +ADP + P

A+ l +ATP
ks−−−→ 2l +ADP + P

A
kn−−−⇀↽−−−
kd

d

A
kn−−−⇀↽−−−
kd

l

(39)

These reaction rates are independent of each other. Now
keeping the concentration of ATP constant (by providing
a constant supply of ATP), the self-replication reactions
can be written in the compact form

A+ d
ks[ATP ]−−−−−−−→ 2d, A+ l

ks[ATP ]−−−−−−−→ 2l (40)

ignoring the inactive compounds, ADP and P. Now
we can simply define an effective reaction rate ka =
ks[ATP ], recovering reactions (9). This reaction rate, as
promised, is tunable independently of the other reaction
constants; it depends on the availability of the energy
source.

Another potential solution to this problem is to change
the set of proposed reactions to

A+ d
ka−−−→ 2d, d

kd−−−⇀↽−−−
kn

B

A+ l
ka−−−→ 2l, l

kd−−−⇀↽−−−
kn

B.
(41)

In this model, d and l enantiomers are autocatalytically
produced from a less stable achiral molecule A, and de-
cay to a more stable achiral molecule B. Now, all we
need to do to drive the reactions to a nonequilibrium
steady state is to provide a constant supply of A and
continuously remove B from the system. The free en-
ergy difference between A and B will provide the driv-
ing force. Of course, this solution only moves the non-
equilibrium driving from the original reactions to the pre-
cise mechanism that supplies A and removes B from the
system. Unlike the previous solution, this is a different
model with slightly different kinetics. However, it does
result in a homochiral steady state through the same ex-
act noise-induced mechanism described in this section.
That attests to the fact that our mechanism only de-
pends on self-replication and decay, and the details of
the chemical reactions implementing these processes are
irrelevant. There are other ways to model the source of
driving energy in the system; see, for example Ref. [49]
for a resolution of a similar problem in another model of
homochirality.

A steady process of self-replication requires a constant
supply of energy, and therefore, an open-system. This is
true of all biological systems today, and so has to have
been true during the emergence of life. In general the
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source of energy for self-replication could be a constant
supply of high free energy molecules, steady flow of pho-
tons from sunlight, voltage difference across an alkaline
hydrothermal vent in the bottom of the ocean, or any
perhaps unknown kind of interesting chemistry that led
to the emergence of life. These cases may all look like
“exceptional cases” compared to typical test tube exper-
iments done in the lab, but it would be hard to imagine
a scenario for the origin of life that does not involve an
external driving force.

The fact that biological systems are driven is not the
only reasoning behind open driven models for homochi-
rality. In fact there are thermodynamical constraints on
the type of model that could lead to complete homochi-
rality. Perhaps the most straightforward argument for
open driven models of homochirality with recycling is
the following: it is a well known fact that amino acids
spontaneously racemize over the time scale of years to
millennia depending on temperature and PH [3, 50, 51].
Note that this is a very short time scale compared to geo-
logical time scales associated with the origin of life. Any
mechanism for homochirality that does not continuously
recycle the product will end up with a racemic equilib-
rium mixture of amino acids. Of course a continuous
recycling and production through a separate mechanism
requires a steady supply of external driving force leading
to a nonequilibrium steady state.

This argument goes deeper than amino acids: there is
no closed dilute6 system with a completely homochiral
equilibrium. Suppose, that the equilibrium state of a
system is homochiral for at least one type of the chiral
molecules in the system. Let us make a replica of the
system and replace half of those chiral molecules with
their mirror images. This transformation does not
change the internal energy, U , of the system, since both
of the chiral molecules have the same internal energy. It
does not change the pressure or the volume of the system
either, since all the physical properties of the two chiral
molecules are identical by symmetry. However, the
entropy of the racemic replica is larger than that of the
homochiral system. Therefore, the Gibbs free energy,
G = U + pV − TS, of the racemic mixture is lower than
that of homochiral mixture, and the homochiral solution
cannot be the equilibrium solution of the system; over
long time, such homochiral solution will racemize. Only

6 The diluteness assumption is implicit in many of these types
of arguments. For example the idea that one can deduce the
rate constant from the free energy difference to use in the law
of mass action depends on the assumption that there is a free
energy per molecule independent of the concentrations of other
molecules (otherwise, this rate constant will not be constant and
will depend on the extends of all reactions in the system. The
Wegscheider condition does not hold in such case, even when
there exist a well-defined equilibrium). This assumption is valid
only when we ignore the interactions in the system which can
be done for dilute systems. The argument of this paragraph
without the diluteness condition will completely fail for example
in homochiral crystals that can be stable as a closed systems.

a continuously driven mechanism can keep such system
in a homochiral state over long time, and that state will
be a nonequilibrium steady state.

III. NOISE-INDUCED HOMOCHIRALITY IN
SPATIALLY EXTENDED SYSTEMS

Let us suppose for the moment that life started
through autocatalytic reactions in alkaline hydrothermal
vents in the bottom of the ocean [52] (this is just an ex-
ample, and what follows does not depend on the details
of the origin of life scenario). Now, whatever symmetry-
breaking mechanism we propose for the origin of ho-
mochirality in this prebiotic world should be robust in the
following sense: First, consider two nearby hydrothermal
vents. In the absence of diffusion, over time, each one
becomes homochiral through some symmetry-breaking
mechanism. This homochirality should be robust with
respect to the perturbation caused by (e.g. ) molecules of
opposite chirality diffusing from the other vent. Second,
over time the particular choice of homochirality should
be synchronized over all of the sources of production of
these chiral molecules.

In this section, we will show that the noise-induced
homochirality mechanism suggested in Section II is ro-
bust with respect to these two criteria. In Section III A,
we define the spatial extension of our model as a set
of well-mixed reaction patches diffusively coupled to
their neighbors. The Fokker-Planck equation for two
diffusively coupled patches is derived in Section III B, fol-
lowed by a perturbation theory analysis in Section III C,
showing the first robustness criterion for our model
holds when autocatalysis is the dominant production
mechanism. In Section III D, we study the one dimen-
sional spatial extension of the model in the continuum
limit, where we see that the correlation length for the
chiral order parameter diverges as the nonautocatalytic
reaction rates approaches zero. Moreover, we show simu-
lation results for a one-dimensional system of diffusively
coupled patches at pure autocatalytic limit, where the
patches synchronize their final homochiral state. This
indicates that the pure autocatalytic limit of our model
is robust with respect to the second robustness criterion.

A. Description of the spatially extended model

Consider the following spatial extension [53] of the
model described in Section II: let reactions (9) take place
in a set of M well-mixed patches of volume V, while
molecules can diffuse between neighboring patches with
diffusion rate δ. The set of neighbors of each patch i,
i = 1, . . . ,M , is denoted by 〈i〉 (e.g., for a linear chain,
〈i〉 = {i − 1, i + 1}) and molecules of species A, d, and
l in patch i by Ai, di, and li respectively. In summary,
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the following set of reactions defines the spatial model:

Ai
kn−−−⇀↽−−−
kd

di, Ai
kn−−−⇀↽−−−
kd

li, i = 1, . . . ,M

Ai + di
ka−−−→ 2di, Ai + li

ka−−−→ 2li

di
δ−−⇀↽−− dj , li

δ−−⇀↽−− lj , j ∈ 〈i〉.

(42)

A similar analytical treatment to that of Section II B
results in the following set of coupled stochastic differen-
tial equations for the time evolution of the chiral order
parameter ωi, of each patch i (we will see a step by step
derivation of the special case M = 2 in Section III B):

dωi
dt

= −2knkdV

Nka
ωi + δ

∑
j∈〈i〉

(ωj − ωi)

+

√
2kd
N

(1− ω2
i )ηi(t) +

√
δ

N
ξi(~ω, t),

(43)

where now N represents the average number of molecules
per patch, ηi’s are independent normalized Gaussian
white noises, ξi’s are zero mean Gaussian noise with cor-
relation

〈ξi(t)ξj(t′)〉 =

(
2
∑
k∈〈i〉

(1− ωiωk) δi,j

+
(
ω2
i + ω2

j − 2
)
χ〈i〉(j)

)
δ(t− t′),

(44)

and χ〈i〉(j) is equal to one if j ∈ 〈i〉 and zero otherwise.

B. Two-Patch Model: Fokker-Planck Equation

Let us analyze the homochirality in each patch of the
spatial extension of our model described by reactions (42)
with M = 2. We can follow the procedure explained in
Section II B to obtain a Fokker-Planck equation for the
time evolution of the probability density of the system
being at a state with concentrations a1, d1, l1, a2, d2, and
l2. Again we can reduce the number of variables using the
following facts (i) the total concentration nt = n1 +n2 =
a1+d1+l1+a2+d2+l2 is conserved; (ii) simulation shows
that in long time, the variables r1 = d1 + l1, r2 = d2 + l2,
and ∆ = n1−n2 settle to Gaussian distributions around
their fixed point values r1 = r2 = r∗ and ∆ = 0. We
make the following change of variables

a1
d1
l1
a2
d2
l2

→

nt
∆
r1
r2
ω1

ω2

 =


a1 + d1 + l1 + a2 + d2 + l2
a1 + d1 + l1 − a2 − d2 − l2

d1 + l1
d2 + l2

(d1 − l1)/(d1 + l1)
(d2 − l2)/(d2 + l2)


(45)

using Itō’s formula. Now the dynamics occurs only in
~ω = (ω1, ω2). For large average number of molecules
per patch N � 1, the resulting Fokker-Planck equation
for the time evolution of the joint probability density
function of ω1 and ω2, Q(~ω, t), reads

∂Q

∂t
= −

2∑
i=1

∂((L~ω)iQ)

∂ωi
+

1

2

2∑
i,j=1

∂2 (UijQ)

∂ωi∂ωj
. (46)

Note that the above sums are now over the patches, and
not over species as in Eq. (17). The Jacobian matrix L
is given by

L = −2kdknV

Nka

(
1 0
0 1

)
+ δ

(
−1 1
1 −1

)
, (47)

and the diffusion matrix U by

U =
2kd
N

(
1− ω2

1 0
0 1− ω2

2

)
+

δ

N

(
2(1− ω1ω2) ω2

1 + ω2
2 − 2

ω2
1 + ω2

2 − 2 2(1− ω1ω2).

)
.

(48)

This Fokker-Planck equation describes the time evolu-
tion of the probability density of stochastic variables
obeying the spacial case, M = 2, of Eq. (43).

C. Two-Patch Model: Homochirality

Does a system described by reactions (9) stay homochi-
ral when diffusively coupled to similar systems? To an-
swer this question, we need to analyze the homochirality
in each patch of the spatial extension of our model de-
scribed by reactions (42) with M = 2. In Section III B,
we showed that the joint probability density of chiral or-
der parameters of two diffusively coupled patches obeys
Eq. (46). The probability density function of the chiral
order parameter of a single patch, Qs(ω) is defined by

Qs(ω) =

∫ +1

−1
Qs(ω, ω2)dω2 =

∫ +1

−1
Qs(ω1, ω)dω1, (49)

where Qs(ω1, ω2) is the stationary solution of Eq. (46).
We first analyze the condition for each patch reaching
homochirality using perturbation theory, in the case of
slow diffusion. For δ ∼ kd/N or smaller, we can treat
the diffusion deterministically by ignoring the last term
in Eq. (48). To solve for Qs(ω), we begin by rewriting
Eq. (46) as a continuity equation,

∂tQ+∇ · ~J = 0, (50)

which defines the probability current ~J as [37]

~J = L~ω Q− 1

2
∇ · (UQ) . (51)
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By the conservation of probability, at steady state, the

total probability flux ~Js through each vertical section of
ω1-ω2 plane must be zero. That is∫ +1

−1
Js,1dω2 =

∫ +1

−1

(
(L~ω)1Qs −

1

2
∂ω1

(U11Qs)

)
dω2

= Qs(ω1)ω1

(
2kd
N

(1− α)− δ
)

− kd
N

(1− ω2
1)

dQs
dω1

+ δ

∫ +1

−1
ω2Qs(ω1, ω2)dω2 = 0.

(52)

The last integral can be evaluated using Bayes’ theorem

δ

∫ +1

−1
ω2Qs(ω1, ω2)dω2 = δ

∫ +1

−1
ω2Qs(ω2|ω1)Qs(ω1)dω2

= δ Qs(ω1)〈ω2〉ω1 = O(δ2),

(53)

which is of order δ2 for small δ, since, 〈ω2〉ω1
(the ex-

pected value of ω2 given ω1) vanishes at zero δ, and there-
fore, is of order δ for small δ. In this regime, Eq. (52)
provides us with a differential equation for Qs(ω) with
the solution

Qs(ω) = Z(1− ω2)
α+ δN

2kd
−1
, (54)

where the normalization constant Z is given by

Z =
Γ
(
α+ δN

2kd
+ 1

2

)
√
π Γ(α+ δN

2kd
)
. (55)

This result shows that the critical α below which the
distribution of chirality in each patch becomes bimodal,
up to the first order correction in δ, is given by

αc ≈ 1− δ N
2kd

, for δ ≈ 0. (56)

We can now turn to the case of high diffusion. Recall
that the patches are defined as the maximum volume
around a point in space in which the system can be con-
sidered well-mixed. This can be interpreted as the maxi-
mum volume in which diffusion dominates over the other
terms acting on the variable of interest (in this case ω).
From Eq. (43), this condition is fulfilled for δ ∼ 2kdα/N .
In the vicinity of the transition α is of order unity, there-
fore the condition becomes δ ∼ kd/N . For δ � kd/N ,
the whole system can be considered well-mixed and has
the critical value of α, αsystem

c = 1, from the well-mixed
results (see Section II B). Note that α scales with the
volume, and the volume of the whole system is two times
the volume of each patch, i.e. 2V . This indicates that in
a single patch

αc ≈
1

2
, for δ � 0. (57)

δ

10-6 10-4 10-2 100

α
c

0.6

0.8

1 Simulation
1− δN/2kd
(δ + 2δ∗)/(2δ + 2δ∗)

FIG. 4. (Color online) Parameter αpatch
c in the two-patch

system as a function of the diffusion rate δ. Gillespie simu-
lations (markers) are compared against Eq. (56) (solid blue
line) and Eq. (58) (dashed red line). Simulation parameters
as in Fig. (3).

Now we can interpolate between these extreme limits,
asymptotic to 1/2 for large δ and to Eq. (56) for small δ:

αc =
δ + 2δ∗

2δ + 2δ∗
, δ∗ =

kd
N
. (58)

Figure (4) shows agreement between αc measured
from Gillespie simulations of the two-patch system, and
the Eq. (58). At the parameter regime below the αc
curve in Fig. (4), individual patches are homochiral.
Also, we find that the correlation between the homochi-
ral states of the two patches increases with diffusion
rate δ, and they become completely correlated when
δ ∼ kd/N or more. In this regime the system reaches
global homochirality.

D. One-Dimensional Model of Homochirality and
the Correlation Function

In Section III C we saw that chiral molecules produced
through autocatalytic processes in a spatial model stay at
least locally homochiral even in the presence of diffusion,
when autocatalysis is the dominant production mecha-
nism. In other words, the noise-induced mechanism for
homochirality is robust with respect to diffusion. But
does the system stay globally homochiral? To answer this
question, let us examine the continuous limit of Eq. (43).
In the continuum limit, the noise term ξi (a side effect of
diffusion on a discrete lattice) can be neglected. What is
left of Eq. (43) in the continuous form can be written as

∂ω

∂t
= −2kn kd

nka
ω(t, ~x) +D∇2ω +

√
2kd
n

(1− ω2) η(t, ~x),

(59)
where the Gaussian noise η(t, ~x) is defined by its moments

〈η(t, ~x)η(t′, ~x′)〉 = δ(t− t′) δ(~x− ~x′), (60)

and

〈η(t, ~x)〉 = 0, (61)
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and the diffusion coefficient D = δ V 2/D. After a
change of variable (not shown here) Eq. (59) can be
converted to a special case of what Korolev et al. [54]
call “stochastic Fisher-Kolmogorov-Petrovsky-Piscounov
equation [55, 56] with additional terms describing muta-
tion.” We follow Ref. [54] to derive an equation for the
time evolution of the two-point correlation function de-
fined as

φ(t, ~x1, ~x2) = 〈ω(t, ~x1)ω(t, ~x2)〉 . (62)

The correlation function φ(t, ~x1, ~x2) is a function of
two stochastic variables ω(t, ~x1) and ω(t, ~x2), and its
time derivative can be calculated using Itō’s lemma from
Eq. (59). The result has a beautiful closure property,
where the right hand side can be written in terms of φ:

∂

∂t
φ(t, ~x1, ~x2) =− 4knkd

nka
φ(t, ~x1, ~x2)

+
2kd
n

(1− φ(t, ~x1, ~x1)) δ(~x1 − ~x2)

+D
(
∇2
~x1

+∇2
~x2

)
φ(t, ~x1, ~x2).

(63)

The two point correlation function, φ(t, ~x1, ~x2), in
Eq. (63) only depends on t and ~x = ~x1 − ~x2 for spatially
homogeneous initial conditions. With this simplification
we have

∂

∂t
φ(t, ~x) = 2D∇2φ(t, ~x)− 2kd

n
(φ(t, ~x)− 1) δ(~x)

− 4knkd
nka

φ(t, ~x)
(64)

In one dimension, the steady state solution of Eq. (64)
can be obtained by setting the right hand side equal to
zero, and for φ(x) = φ(∞, x), we have

2D ∂2

∂x2
φ(x)− 2kd

n
(φ(x)− 1) δ(x)− 4knkd

nka
φ(x) = 0,

(65)
with the solution:

φ(x) =
e−

√
2knkd
nDka |x|

1 +
√

8nDkn
kakd

. (66)

The expected value of ω2 is given by φ(0), and φ(x)
exponentially decays from this value with the length scale

ζ =

√
nDka
2knkd

. (67)

Therefore this length scale ζ defines a correlation length.
This correlation length diverges as kn approaches zero,
indicating that in the pure autocatalytic limit of this
model, at steady state, the entire space synchronizes its
choice of homochirality to the same uniformly homochiral
state. Figure (5) shows the result of simulation of reac-
tions (42) in one dimension with M = 100 patches at the

limit kn → 0. The simulation is initialized with a uni-
formly racemic state. The homochiral islands of d and
l form very quickly at the beginning of the simulation
and compete until the entire space becomes uniformly
homochiral.

Here is an interesting fact about this spatial extension:
Let us define the correlation volume V = (2ζ)D (this is
the volume of the correlated cube from −ζ to ζ on each
dimension), where the dimension D = 1 in this case.
In terms of the correlation length and the correlation
volume, the two-point correlation function is given by

φ(x) =
e−|

x
ζ |

1 + 2knVka
=

e−|
x
ζ |

1 + 2ᾱ
. (68)

The new ᾱ = knV/ka is the α from the well-mixed case
defined in Eq. (29) with the volume substituted by the
correlation volume, V = V. The expected value of ω2 at
each point is given by

φ(0) =
1

1 + 2ᾱ
(69)

which is exactly the same if calculated from Eq. (29):

〈
ω2
〉

=

∫ 1

−1
ω2P (ω)dω

=
Γ
(
α+ 1

2

)
√
πΓ(α)

∫ 1

−1
ω2
(
1− ω2

)α−1
dω

=
1

1 + 2α
.

(70)

This shows that there is a correlation volume around
every point in space in which the system behaves as
though it is a well-mixed system with that volume.

IV. SPECULATIVE REMARKS AND FUTURE
DIRECTIONS

We have proposed a mechanism for the initial symme-
try breaking of the first self-replicating chiral molecules
that only relies on minimal assumptions that are insep-
arable from the origin of life, namely a nonequilibrium
chemical system involving self-replication and decay. We
have also established the spatial stability of this mech-
anism and its robustness with respect to diffusion in a
simple one dimensional system. But there is more to the
problem of homochirality. Here are a few examples of
important questions left unanswered in the field:

The field clearly lacks a theoretical framework to ex-
plore how the homochirality of different chemical com-
pounds are related: Why do all amino acids have the
same handedness, and what is the relationship between
the chirality of e.g. sugars and amino acids. Did differ-
ent organic molecules become homochiral in a particular
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FIG. 5. Gillespie simulation of scheme reaction (42) for a one-dimensional system of M = 100 patches, starting from racemic
state and ending with all the patches in the same homochiral state ω = −1. Simulation parameters: N = 1000, ka = kd = 1,
δ = 10−3, and kn = 0.

order, or was there an interdependence between homochi-
rality of different types of molecules forcing the homochi-
rality to occur at the same time for all the organic com-
pounds involved in the origin of life?

Once the initial symmetry breaks in one of the species,
the system is no longer symmetric. The homochiral solu-
tion of one of the chiral compounds interacts differently
with other chiral molecules, and in theory, could select
for a particular enantiomer of other molecules7. Despite
this fact, there are interesting problems that are worth
investigating related this synchronization, the solution to
which depends on the mechanism of origin of life.

We are long way from having all the details on the ori-
gin of life to be able to find the order through which var-
ious chemical compounds have become homochiral. The
answer to this question relies on the answer to a different
question: when did homochirality arise with respect to
the origin of life? Were first self-replicators very simple
chemical compounds, or were they chemical complexes
made of several molecules?

If one believes the RNA world picture of the origin of
life[57], perhaps homochirality started with homochiral-
ity of sugars, and when the first ribosomes were formed,
they could force their choice of chirality on the amino-
acids. In contrast, if the first self-replicating complexes
involved both amino acids and nucleic acids [58], or if
self-replication first manifested in multi-step processes
involving both peptides and nucleic acids (as it is the
case in modern organisms), the problem becomes more
complex. In such scenarios, one should develop more
complex models involving several chiral species with their
replications coupled. The interaction network of various

7 This is how modern organisms maintain their homochirality; all
the enzymes are asymmetric and their asymmetric shape can re-
strict their interactions with other chiral molecules to a particular
enantiomer, selecting one of the two symmetric reactions.

chiral molecules involved in self-replication can be arbi-
trarily complex, but one can get away with just modeling
a cyclic autocatalytic reaction set of N species. That is
because all statistical properties of complex autocatalytic
reaction networks can be computed by reducing the net-
work to cycles, and the entire behavior is determined by
one dominant cycle [59].

We speculate that even in the second scenario, where
the first self-replicators involved both amino-acids and
nucleic acids, the presence of a ribosome-like molecule
could be responsible for coordination of the chirality of
different types of amino-acids. It is important to note
that the ability of polypeptides to form α-helices and
β-sheets relies on the uniform homochirality across all
amino-acids [60].

Another potential future direction in this paradigm
is to model the evolution toward homochirality. We
have shown that when the efficiency of self-replication
is higher than a threshold (that is when the majority
of self-replicators are produced through self-replication,
and not spontaneously), the population transitions to ho-
mochirality. We also argued that even if the system starts
with inefficient self-replicators, over time, they evolve to
become more efficient at self-replication and therefore
transition to homochirality. A potential model to show
this process can be constructed by allowing the rate of
the self-replication reaction to perform a random walk
through each generation (modeling stochastic changes in
self-replication processes) and show that in such popu-
lation, the population average of the parameter α that
describes the efficiency of self-replication increases over
time with no extra assumptions. This model is mathe-
matically challenging since the reaction rates depend on
the particular random walk trajectories that ancestral
lineage of each self-replicator has taken, but the numeri-
cal simulations should be tractable.

From the experimental side, we would love to see a con-
firmation of the noise-induced symmetry-breaking mech-
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anism in an externally driven system with recycling to
clarify the time-scales associated with this phenomenon
in a real experimental setting. Such experiments could
be performed using template replicating RNA (similar to
those used in [16]). These experiments need to be per-
formed in non-equilibrium open flow systems with recy-
cling, where reactants are constantly added and products
removed from experiment.

Finally, in this work, we have shown that homochiral-
ity (if emerged through the mechanism proposed) does
not depend on specific chemical details of origin of life; it
relies only on the defining characteristics of life, i.e. non-
equilibrium self-replication and decay. This property
of our model has a distinct prediction with important
implications in the field of astrobiology, that is, if chi-
ral life were to be found outside of our planet, it has
to be homochiral, while its choice chirality for differ-
ent molecules need not agree with similar terrestrial
molecules. When/if appropriate technology is developed
to detect homochirality from a distance, homochirality
can be used as a more robust biosignature in search for
extraterrestrial life.

V. CONCLUSION

In conclusion, a racemic population of self-replicating
chiral molecules far from equilibrium, even in the
absence of other nonlinearities that have previously
been invoked, such as chiral inhibition, transitions to
complete homochirality when the efficiency of self-
replication exceeds a certain threshold. This transition
occurs due to the drift of the chiral order parameter
under the influence of the intrinsic stochasticity of the
autocatalytic reactions. The functional form of the
multiplicative intrinsic noise from autocatalysis directs
this drift toward one of the homochiral states. Unlike
some other mechanisms in the literature, this process
does not require an initial enantiomeric excess. In
our model, the homochiral states are not deterministic
dynamical fixed points, but are instead stabilized by
intrinsic noise. Moreover, in the spatial extension of our
model, we have shown that diffusively coupled autocat-
alytic systems synchronize their final homochiral states,
allowing a system solely driven by autocatalysis to reach
global homochirality. We conclude that autocatalysis
alone is a viable mechanism for homochirality, without
the necessity of imposing chiral inhibition or other
nonlinearities.
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Appendix A: Decoupling Gaussian Noise

Consider a set of coupled stochastic differential equa-
tions

d~x

dt
= ~H(~x) + ~ξ(t), (A1)

where ξi’s (i ∈ {1, . . . , n}), the components of ~ξ(t), are
zero mean Gaussian noise functions with correlation

〈ξi(t)ξj(t′)〉 = Bi,jδ(t− t′). (A2)

We would like to rewrite Eq. (A1) in terms of some set of
independent Gaussian white noise functions ηi(t)’s (i ∈
{1, . . . ,m} for some m) with the correlation

〈ηi(t)ηj(t′)〉 = δi,jδ(t− t′). (A3)

If we can find an n×m matrix G such that B = GGT,

then it is straightforward to show that ~ξ(t) = G~η(t):

〈ξi(t)ξj(t′)〉 =

〈∑
k

Gi,kηk(t)
∑
l

Gj,lηl(t
′)

〉
=
∑
k,l

Gi,kGj,l 〈ηk(t)ηl(t
′)〉

=
∑
k,l

Gi,kGj,lδk,lδ(t− t′)

=
∑
k

Gi,kG
T
k,jδ(t− t′) = Bi,jδ(t− t′).

(A4)

Now Eq. (A1) in terms of ~η(t) is given by

d~x

dt
= ~H(~x) + G~η(t). (A5)

This decomposition is not unique and multiple choices for
G exist [44]. Perhaps the simplest choice is given by the
n×n matrix G = B1/2. Note that matrix B is symmetric
positive definite, and therefore, is diagonalizable and has
well-defined real symmetric square root. Hence GGT =
GG = G2 = B.

The Fokker-Planck Equations derived from a set of re-
actions or species interactions have a B matrix with the
particular structure (see e.g. Section II B)

B =

m∑
i=1

Ti ~si ⊗ ~si, (A6)

where ~si is the i’th row of an m×n stoichiometry matrix
S. For such B, there is a particular choice of matrix G
whose matrix elements have simpler analytic expressions
compared to the square root choice:

Gi,j =
√
Tj Sj.i (A7)
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It is straightforward to show that GGT = B:(
GGT

)
i,j

=
∑
k

Gi,kGj,k

=
∑
k

√
TkSk.i

√
TkSk,j

=

(∑
k

Tk ~sk ⊗ ~sk

)
i,j

= Bi,j .

(A8)

The number of columns, m, of matrix G from this
method is the same as the number of reactions from
which the Fokker-Planck equation is derived. In the spe-
cial case, where the stoichiometry matrix S has rows that
are multiples of each other, there are simpler choices of G
obtained by reducing the rows of S before calculating G
through the following procedure: Suppose, for example
~sj = a~si. Then, we simply remove the row j of S (and
the corresponding Tj) and replace Ti by Ti + a2 Tj . The
reason that this row reduction works is that the reduced
matrix S and corresponding T ’s define the same matrix
B as before:

B =

m∑
k=1

Tk ~sk ⊗ ~sk

= · · ·+ Ti ~si ⊗ ~si + · · ·+ Tj ~sj ⊗ ~sj + . . .

= · · ·+ Ti ~si ⊗ ~si + · · ·+ a2 Tj ~si ⊗ ~si + . . .

=
∑
k 6=i,j

Tk ~sk ⊗ ~sk + (Ti + a2 Tj)~si ⊗ ~si.

(A9)

Appendix B: Mean Switching Time

Let us define the dimensionless time τ as

τ =
2tkd
N

. (B1)

In terms of τ , Eq. (27) becomes

dω

dτ
= −αω +

√
(1− ω2)η(τ), (B2)

with

〈η(τ)η(τ ′)〉 = δ(τ − τ ′). (B3)

We follow Ref. [41] to calculate the mean switching time
from one homochiral state ω = −1 the other ω = 1.
We impose an absorbing boundary condition on the final
state for the probability density of ω, i.e.

P (1, τ) = 0 (B4)

with the initial condition

P (ω, 0) = δ(ω + 1). (B5)

To find the probability density of the switching time,
ρ(τ), we use the fact that the probability of switching

happening after the time τ is the same as probability of
that the system has not been absorbed by the boundary
before time τ , that is∫ ∞

τ

ρ(τ ′)dτ ′ =

∫ 1

−1
P (ω, τ)dω. (B6)

The switching time probability density function can be
calculated by differentiating both side with respect to
τ . Let us define G(τ ′, ω; τ) as the probability that the
system has not been absorbed by the boundary at time
τ given that it started at some point ω at time τ ′. This
probability satisfies the backward Kolmogorov equation

∂G

∂τ ′
− αω∂G

∂ω
+

1

2

(
1− ω2

) ∂2G
∂ω2

= 0, (B7)

with the terminal condition

G(τ, ω; τ) = 1, (B8)

and the absorbing boundary condition

G(τ ′, 1; τ) = 0. (B9)

In terms of G, the probability density, ρ, of the absorbing
time given the initial condition (τ ′, ω) is given by

ρ(τ |τ ′, ω) = − ∂

∂τ
G(τ ′, ω; τ). (B10)

We define the mean absorbing time, given the initial
condition (τ ′, ω) by

〈τ〉τ ′,ω =

∫ ∞
τ ′

τρ(τ |τ ′, ω)dτ. (B11)

Assuming G decays sufficiently fast at τ → ∞ limit, we
have

〈τ〉τ ′,ω =

∫ ∞
0

τρ(τ |τ ′, ω)dτ

=−
∫ ∞
τ ′

τ
∂

∂τ
G(τ ′, ω; τ)dτ

=− τG(τ ′, ω; τ)|∞τ ′ +

∫ ∞
τ ′

G(τ ′, ω; τ)dτ

=τ ′ +

∫ ∞
τ ′

G(τ ′, ω; τ)dτ

(B12)

Now, we can integrate Eq. (B7) to obtain a differential
equation for 〈τ〉τ ′,ω

1− αω ∂

∂ω
〈τ〉τ ′,ω +

1

2

(
1− ω2

) ∂2

∂ω2
〈τ〉τ ′,ω = 0, (B13)

where we have used the fact that the probability G only
depends on the time difference τ − τ ′ (Markovian prop-
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FIG. 6. Mean switching time, 〈t〉, from one homochiral state
to the other as a function of α. Analytical result (solid red
line) from Eq. (B19) compared with the Gillespie simulation
results (blue points). The analytical expression is valid for
small α where the system is homochiral. For α close to 1
or greater (where the system is expected to stay racemic),
to accurately predict the mean switching time, one needs to
keep track of higher order term (in 1/N) in the correspond-
ing Fokker-Planck equation. Simulation parameters: kd = 1,
ka = 1, kn = 1, N = 1000, and V = α.

erty) and therefore

∂

∂τ ′
〈τ〉τ ′,ω = 1 +

∂

∂τ ′

∫ ∞
τ ′

G(τ ′, ω; τ)dτ

= 1 +

∫ ∞
τ ′

∂

∂τ ′
G(τ ′, ω; τ)dτ −G(τ ′, ω; τ ′)

= 1−
∫ ∞
τ ′

∂

∂τ
G(τ ′, ω; τ)dτ −G(τ ′, ω; τ ′)

= 1−G(τ ′, ω;∞) = 1.

(B14)

There are two boundary conditions, the first one at
ω = 1

〈τ〉τ ′,1 = τ ′. (B15)

The second one at ω = −1 is a tricky one. We know
that the dynamics has a naturally reflecting boundary at

ω = −1, because of the way the ratio ω is defined confines
it to [−1, 1]. Given this reflecting boundary condition, a
stochastic trajectory staring at ω = −1 can only move in
one direction, with the velocity −αω = α. Therefore,

∂

∂ω
〈τ〉τ ′,ω = − 1

α
. (B16)

The solution for Eq. (B13) with these boundary condi-
tions is given by

〈τ〉τ ′,ω = τ ′ − ω2
3F2

(
1, 1, α+

1

2
;

3

2
, 2;ω2

)
+
π cot(πα)

1− 2α
+
H−α + log(4)

1− 2α

−
√
πωΓ(α) 2F1

(
1
2 , α; 3

2 ;ω2
)

Γ
(
α+ 1

2

) ,

(B17)

where pFqs are hypergeometric functions, H−α is gen-
eralized harmonic number evaluated at −α, and Γs are
gamma functions.

Mean switching time 〈τ〉 = 〈τ〉0,−1 is given by

〈τ〉 =
2π cot(πα)

1− 2α
. (B18)

Going back to the dimensionful variables, the mean
switching time 〈t〉 is given by

〈t〉 =
Nπ cot(πα)

kd(1− 2α)
. (B19)

The mean switching time approaches infinity for small α,
large N , or small kd. Figure (6) shows that this analytic
result agrees with the Gillespie simulation of reactions (9)
when the system is in the homochiral regime α� 1. To
find the mean switching time for the parameter regime
α > 1 (where the system is expected to stay racemic), we
need to keep track of higher order terms in the Fokker-
Planck approximation when deriving Eq. (27) [41].
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