
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Triangles bridge the scales: Quantifying cellular
contributions to tissue deformation

Matthias Merkel, Raphaël Etournay, Marko Popović, Guillaume Salbreux, Suzanne Eaton,
and Frank Jülicher

Phys. Rev. E 95, 032401 — Published  1 March 2017
DOI: 10.1103/PhysRevE.95.032401

http://dx.doi.org/10.1103/PhysRevE.95.032401


Triangles bridge the scales: Quantifying cellular contributions to tissue deformation

Matthias Merkel,1, 2, ∗ Raphaël Etournay,3, 4 Marko Popović,1
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In this article, we propose a general framework to study the dynamics and topology of cellular net-
works that capture the geometry of cell packings in two-dimensional tissues. Such epithelia undergo
large-scale deformation during morphogenesis of a multicellular organism. Large-scale deformations
emerge from many individual cellular events such as cell shape changes, cell rearrangements, cell
divisions, and cell extrusions. Using a triangle-based representation of cellular network geometry, we
obtain an exact decomposition of large-scale material deformation. Interestingly, our approach re-
veals contributions of correlations between cellular rotations and elongation as well as cellular growth
and elongation to tissue deformation. Using this Triangle Method, we discuss tissue remodeling in
the developing pupal wing of the fly Drosophila melanogaster.
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FIG. 1. (A) The developing fly wing is an important model system to study epithelial morphogenesis. This panel shows the
wing blade at the developmental time of 23 hours after puparium formation (hAPF). (B) Magnified region of membrane-stained
wing tissue overlaid with the corresponding polygonal network. Cells are represented by polygons (green), cell-cell interfaces
correspond to polygon edges (blue), and polygon corners correspond to vertices (red). (C) We consider four kinds of cell-scale
processes. (D) Two examples for pure shear of a piece of cellular material. (i) Pure shear by cell shape change. (ii) Pure shear
by T1 transitions. Colors in panels C and D indicate cell identities.
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I. INTRODUCTION

Morphogenesis is the process in which a complex or-
ganism forms from a fertilized egg. Such morphogen-
esis involves the formation and dynamic reorganization
of tissues [1–6]. An important type of tissues are ep-
ithelia, which are composed of two-dimensional layers of

cells. During development, epithelia can undergo large-
scale remodeling and deformations. This tissue dynam-
ics can be driven by both internal and external stresses
[3, 6]. Large-scale deformations are the result of many in-
dividual cellular processes such as cellular shape changes,
cell divisions, cell rearrangements, and cell extrusions.
The relationship between cellular processes and large-
scale tissue deformations is key for an understanding of
morphogenetic processes. In this paper, we provide a the-
oretical framework that can exactly relate cellular events
to large-scale tissue deformations.

Modern microscopy techniques provide live image data
of the development of animal tissues in vivo [3–8]. An
important example is the fly wing, where about 104 cells
have been tracked over 17 hours (Fig. 1A) [6]. Using
cell membrane markers, semi-automated image analysis
can segment the geometrical outlines and the neighbor
relationships of all observed cells, and track their lineage
throughout the process (Fig. 1B) [3, 8–12]. This pro-
vides detailed information about many different cellular
events such as cell shape changes, cell rearrangements,
cell division, and cell extrusions.

As a result of a large number of such cellular events,
the cellular network is remodeled and undergoes changes
in shape. Such shape changes can be described as tissue
deformations using concepts from continuum mechan-
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ics. The aim of this paper is to provide a framework
to describe the geometry of tissue remodeling at differ-
ent scales. We identify the contributions to tissue defor-
mation stemming from cell shape changes and from dis-
tinct cellular processes that remodel the cellular network
(Fig. 1C). For example, tissue shear can result from shape
changes of individual cells or alternatively from cell rear-
rangements without cells changing their shape (Fig. 1D).
In general, tissue deformations involve a combination of
such events. Furthermore, cell divisions and extrusions
also contribute to tissue deformations.

The relationship between tissue deformations and cel-
lular events have been discussed in previous work [13–18].
Here, in order to obtain an exact decomposition of tis-
sue deformation, we present a Triangle Method that is
based on the dual network to the polygonal cellular net-
work. We have recently presented a quantitative study
of the Drosophila pupal wing morphogenesis using this
approach [6].

In the following sections Sections II-V, we provide
the mathematical foundations of the Triangle Method
to characterize tissue remodeling. In Section II, we
introduce a polygonal network description of epithelial
cell packings. We discuss different types of topological
changes of the network that are associated with cellu-
lar rearrangements and we define the deformation fields
of the network. In Section III, we define mathematical
objects that characterize triangle geometry and derive
the relation between triangle shape changes and network
deformations. Section IV presents the contribution of
individual topological changes to network deformations.
Section V combines the concepts developed in the preced-
ing sections. We discuss the decomposition of large-scale
tissue deformation into contributions resulting from large
numbers of individual cellular processes. In Section VI,
we apply the Triangle Method to the developing fly wing,
comparing morphogenetic processes in different subsec-
tions of the wing blade. Finally, we discuss our results
in Section VII. Technical details are provided in the Ap-
pendices A 1–B 2, while Appendix C compares our work
to related approaches.

II. POLYGONAL AND TRIANGULAR
NETWORKS

We introduce quantities to characterize small-scale and
large-scale material deformation. To this end, we first
discuss two complementary descriptions of epithelial cell
packing geometry.

A. Description of epithelia as a network of
polygons

The cell packing geometry of a flat epithelium can be
described by a network of polygons, where each cell is
represented by a polygon and each cell-cell interface cor-

A

B

FIG. 2. Triangulation of the cellular network. (A) Each three-
fold vertex n (red dot) gives rise to a single triangle (red),
which is also denoted by n. The corners of the triangle are
defined by the centers of the three abutting cells (green dots).
(B) Triangulation (red) on top of membrane-stained biological
tissue (white). There are no gaps between the triangles.

responds to a polygon edge (Fig. 1B, Fig. 2A) [19]. Poly-
gon corners are referred to as vertices, and a vertex be-
longing to M polygons is denoted M -fold vertex. Thus,
the polygonal network captures the topology and geom-
etry of the junctional network of the epithelium.

Within such a polygonal network, we consider four
kinds of cellular processes (Fig. 1C). (i) Polygons may
change their shapes due to movement of vertices. (ii)
Polygons may rearrange by changing their neighbors. A
T1 transition is an elementary neighbor exchange during
which two cells (red) lose their common edge, and two
other cells (blue) gain a common edge. However, a T1
transition could also just occur partially. For instance,
a single edge can shrink to length zero giving rise to an
M -fold vertex with M > 3. Conversely, an M -fold vertex
with M > 3 can split into two vertices that are connected
by an edge. (iii) A polygon may split into two by cell di-
vision. (iv) A T2 transition corresponds to the extrusion
of a cell from the network such that the corresponding
polygon shrinks to a vertex. Note that the first process
corresponds to a purely geometrical deformation whereas
the last three processes correspond to topological transi-
tions in the cellular network.

B. Triangulation of a polygonal network

To define contributions of cellular processes to the
large-scale deformation of a polygonal network, we intro-
duce a triangulation of the polygonal network (Fig. 2A).
For each vertex n (red) being surrounded by three cells,
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TABLE I. Notation used throughout this article.

Examples

α, β, γ Cell indices

n,m Vertex and triangle indices

i, j, k Dimension indices (either x or y)

r,h and ri, hi Vectors

U, sn and Uij , s
n
ij Tensors

Ũ, q̃n and Ũij , q̃
n
ij Symmetric, traceless tensors

A, Q̃ij ,Uij Large-scale quantities

an, q̃nij , u
n
ij Triangle-related quantities

∆A,∆Q̃ij Finite quantities

δA, δUij Infinitesimal quantities

a triangle n (red) is created by defining its corners to
coincide with the centers rα of the three cells (green).
For the special case of an M -fold vertex with M > 3,
we introduce M triangles as described in Appendix A 2.
The center of a given cell α is defined by the vector

rα =
1

aα

∫
aα
r dA, (1)

where the integration is over the cell area aα and r is
a position vector (Table I). Since triangle corners corre-
spond to cell centers, oriented triangle sides are referred
to by a pair of cell indices 〈αβ〉, and the corresponding
triangle side vector is given by

r〈αβ〉 = rβ − rα. (2)

The so-created triangulation of the cellular material con-
tains no gaps between the triangles. It can be regarded
as the dual of the polygonal network (Fig. 2B).

C. The deformation tensor

To characterize the deformation of the cellular net-
work, we define a deformation tensor Uij that corre-
sponds to the coarse-grained displacement gradient:

Uij =
1

A

∫
∂ihj dA. (3)

Here, A is the area of the coarse-graining region. The
vector field h(r) describes the continuous displacement
field with respect to the reference position r, and the
indices i, j denote the axes x, y of a Cartesian coordinate
system. The region may in general encompass several
cells or just parts of a single cell.

The deformation tensor Uij can be expressed in terms
of the displacements h(r) along the margin of the region
(see Appendix A 1):

Uij =
1

A

∮
hjνi d`. (4)

isotropic expansion pure shear rotation

FIG. 3. Infinitesimal displacement gradients δUij can be
decomposed into trace δUkk describing isotropic expansion,
symmetric, traceless part δŨij describing pure shear, and an-
tisymmetric part δΨ describing rotation.

Here, the vector ν denotes the local unit vector that is
normal to the margin pointing outwards.

For the case of infinitesimal deformations gradients
δUij = Uij , we decompose δUij into its trace δUkk char-
acterizing isotropic expansion, its symmetric, traceless
part δŨij characterizing pure shear, and its anisotropic
part δΨ characterizing rotations (Fig. 3):

δUij =
1

2
δUkkδij + δŨij − δΨεij . (5)

Here, δij denotes the Kronecker symbol and εij is the
generator of counter-clockwise rotations with εxy = −1,
εyx = 1 and εxx = εyy = 0. Note that we mark sym-
metric, traceless tensors with a tilde and that we denote
infinitesimal quantities by prepending a δ (Table I).

Eqs. (3) and (4) define the deformation tensor Uij
based on the continuous displacement field h(r). How-
ever for typical experiments, the displacement h(r) is
only known for a finite number of positions r. In the fol-
lowing, we will thus focus on the displacements of cell
center positions h(rα) = hα and interpolate between
them in order to compute the deformation tensor Uij .

D. Triangle-based characterization of network
deformation

We relate the large-scale deformation characterized by
Uij to small-scale deformation, which we quantify on the
single-triangle level. We describe the deformation of a
single triangle n from an initial to a final state by an
affine transformation, which is characterized by a trans-
formation tensor mn

ij that maps each initial triangle side

vector r〈αβ〉 to the corresponding final side vector r′〈αβ〉

(Fig. 4A):

r
′〈αβ〉
i = mn

ijr
〈αβ〉
j . (6)

Note that Eq. (6) uniquely defines the tensor mn
ij , which

always exists [20]. However for polygons with more than
three sides, no such tensor mn

ij exists in general. This
is the deeper reason for us to choose a triangle-based
approach.

To relate triangle deformation to large-scale deforma-
tion Uij , we first define a continuous displacement field
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triangle     reference triangle

shape transformation
tensor      

C reference triangle

rotation isotropic
scaling

pure shear
deformation

triangle

B

initial state of triangle     

transformation
tensor        

final state of triangle     initial state of triangle     

transformation
tensor        

reference triangle

tensor      tensor      

final state of triangle     A D

FIG. 4. Characterization of triangle deformation and shape. (A) Deformation of a triangle n from an initial state to a final
state. The deformation is characterized by the linear transformation tensor mn

ij mapping the initial sides vectors of the triangle
to the final side vectors (blue arrows). (B) The shape of a triangle n in a given state is characterized by the tensor sij .
Tensor sij maps the side vectors of a virtual equilateral reference triangle to the side vectors of triangle n (blue arrows). (C)
Shape properties of a triangle n. The transformation tensor sij is decomposed into a counter-clockwise rotation by the triangle
orientation angle θ, a pure shear deformation characterized by the triangle elongation tensor q̃ij , and an isotropic rescaling to
match the actual triangle area a. (D) Connection between triangle shape and triangle deformation. A triangle deforms from
an initial state to a final state. Deformation, initial state, and final state are characterized by the tensors mij , sij , and s′ij ,
respectively.

h(r) by linearly interpolating between cell center dis-
placements hα. For any position r that lies within a
given triangle n, we define:

hj(r) = hαj + (ri − rαi )unij . (7)

Here, α denotes one of the cells belonging to triangle n.
Note that the value of h(r) does not depend on the choice
of α [21]. The triangle deformation tensor unij is defined
by

unij = mn
ji − δij . (8)

Note the exchanged order of indices at the transformation
tensor mn

ji. Eq. (7) defines the displacement field h(r)
throughout the entire triangular network such that the
displacement gradient is constant on the area of each
triangle n, taking the value of the triangle deformation
tensor: ∂ihj = unij .

Based on this displacement field, the large-scale de-
formation tensor Uij as defined in Eq. (3) can be ex-
pressed as the average triangle deformation tensor de-
fined in Eq. (8):

Uij = 〈uij〉 . (9)

Here, the brackets denote an area-weighted average:〈
uij
〉

=
1

A

∑
n

anunij (10)

with A being the sum of all triangle areas and an being
the area of triangle n.

Using Eq. (4), the large-scale deformation tensor Uij
can also be computed from the displacements of cell cen-
ters along the margin of the triangular network. The
margin is a chain of triangle sides, and carrying out the
boundary integral in Eq. (4) for each triangle side, Eq. (9)
can be exactly rewritten as:

Uij =
1

A

∑
〈αβ〉

h
〈αβ〉
j ν

〈αβ〉
i ∆`〈αβ〉. (11)

Here, 〈αβ〉 runs over all triangle sides along the boundary
such that cell β succeeds cell α in clockwise order, and:

ν
〈αβ〉
i ∆`〈αβ〉 = εikr

〈αβ〉
k (12)

h
〈αβ〉
j =

1

2
(hαj + hβj ). (13)

Thus, the vector ν
〈αβ〉
i is the unit vector normal to side

〈αβ〉, pointing outside, the scalar ∆`〈αβ〉 is the length of
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side 〈αβ〉, and the vector h
〈αβ〉
j is its average displace-

ment.

III. TRIANGLE SHAPES AND NETWORK
DEFORMATION

We examine the relationship between large-scale de-
formation and cellular shape changes. To this end, we
introduce quantities characterizing the shape of single
triangles, and discuss their precise relation to triangle
deformation.

A. Shape and orientation of a single triangle

Here, we define a symmetric, traceless tensor q̃nij and
an angle θn that together uniquely characterize the shape
of a triangle n. We call q̃nij the triangle elongation, which
is a state variable that specifies the shape anisotropy of
a given triangle. For simplicity, we omit the subscript n
when discussing a single triangle.

We start by introducing a shape transformation tensor
sij , which generates a given triangle n from an equilateral
reference triangle (Fig. 4B). More precisely, each side vec-
tor c〈αβ〉 of the equilateral reference triangle is mapped to
the corresponding side vector r〈αβ〉 of the given triangle
n:

r
〈αβ〉
i = sijc

〈αβ〉
j . (14)

We choose the reference triangle to have area a0 and one
side aligned with the x axis. Its side vectors c〈αβ〉 are
defined in Appendix A 3. Note that Eq. (14) uniquely
defines the shape transformation tensor sij .

The elongation tensor q̃ij can be extracted from the
shape transformation tensor sij by expressing sij as the
tensor product of a rotation by the triangle orientation
angle θ, a pure shear transformation parametrized by the
elongation tensor q̃ij , and an area scaling (Fig. 4C):

s =

(
a

a0

)1/2

exp (q̃) ·R(θ). (15)

Here, we denote tensors by bold symbols. The exponen-
tial of a tensor is defined by the Taylor series of the expo-
nential function, the dot denotes the tensor product, and
the tensor R(θ) = exp (θε) denotes a counter-clockwise
rotation by θ. Note that the exponential of a symmet-
ric, traceless tensor has determinant one and describes a
pure shear transformation. Also note that for given sij ,
Eq. (15) uniquely defines triangle area a, triangle elon-
gation q̃ij , and the absolute triangle orientation angle θ
(see Appendix A 3, [22], [23]).

Norm and axis of the elongation tensor

q̃ = |q̃|

(
cos (2φ) sin (2φ)

sin (2φ) − cos (2φ)

)
(16)

are given by |q̃| = [(q̃xx)2 + (q̃xy)2]1/2 = [Tr (q̃2)/2]1/2

and the angle φ (see Appendix A 3).
Note that the pure shear transformation exp (q̃) and

the rotation R(θ) in Eq. (15) do not commute. Exchang-
ing both in Eq. (15) leads to a different definition of
the elongation angle φ 7→ φ − θ, whereas the elonga-
tion norm |q̃| and the triangle orientation angle θ remain
unchanged.

B. Triangle deformations corresponding to triangle
shape changes

To reveal the precise relationship between triangle de-
formation and triangle shape, we consider again the de-
formation of a triangle n, which is characterized by the
tensor mij (Fig. 4D). We denote the initial and final
shape transformation tensors of the triangle by sij and
s′ij , respectively. Since both shape transformation tensors
are defined with respect to the same reference triangle,
the following relation holds:

s′ij = mik skj . (17)

Based on this equation, the triangle deformation tensor
uij can be expressed in terms of triangle shape change.
For infinitesimal triangle deformations δuij = uij , trace
δukk, symmetric, traceless part δũij , and antisymmetric
part δψ describe isotropic expansion, pure shear and ro-
tation as in Eq. (5):

δuij =
1

2
δukkδij + δũij − δψεij . (18)

These deformation components can be computed from
the corresponding infinitesimal changes δq̃ij , δa, δθ of the
triangle shape properties q̃ij , a, θ (see Appendix A 4):

δũij = δq̃ij + δ̃jij (19)

δukk= δ(ln a) (20)

δψ = δφ+ (δθ − δφ) cosh (2|q̃|) (21)

with

δ̃jij = −2
[
gδθ + (1− g)δφ

]
εikq̃kj . (22)

Here, we have set g = sinh (2|q̃|)/2|q̃| and δφ denotes
the change of the elongation axis angle φ. Eqs. (19)–
(21) have interesting geometric interpretations for time-
continuous shape changes.

For example Eq. (19), which relates triangle shear to
triangle elongation, can be considered for an infinitesimal
time interval δt. The pure shear rate ṽij of a triangle
then obeys ṽijδt = δũij . According to Eq. (A20) in Ap-
pendix A 4, the pure shear rate corresponds exactly to a
time derivative of q̃ij :

ṽij =
Dq̃ij
Dt

. (23)
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This generalized corotational time derivative is defined
by (Dq̃ij/Dt)δt = δq̃ij + δ̃jij , which can be rewritten as

Dq̃ij
Dt

=
dq̃ij
dt
− 2

(
cω + (1− c)dφ

dt

)
εikq̃kj . (24)

Here, the operator d/dt denotes the total time derivative
of a quantity, c = tanh (2|q̃|)/2|q̃|, and ω is the triangle
vorticity with ωδt = δψ. In the limit |q̃| � 1 for which
c ' 1, the generalized corotational derivative becomes
the conventional Jaumann derivative [24]:

Dq̃ij
Dt
' dq̃ij

dt
+ ωikq̃kj + ωjkq̃ki, (25)

where we introduced ωij = −ωεij = (vij − vji)/2. The
general case of finite |q̃| with c 6= 1 is discussed in more
detail in Appendix A 4.

According to Eq. (20), the isotropic triangle expansion
rate vkk with vkkδt = δukk can be written as:

vkk =
1

a

da

dt
. (26)

The isotropic triangle expansion rate thus corresponds to
the relative change rate of the triangle area a.

Finally, Eq. (21) states that the change of the triangle
orientation angle θ can be written as (see Eq. (A22) in
Appendix A 4)

dθ

dt
= ω + ṽijεjkq̃ki

cosh (2|q̃|)− 1

2|q̃| sinh (2|q̃|)
. (27)

Hence, the triangle orientation angle θ may not only
change due to a vorticity ω in the flow field, but also
due to local pure shear. This shear-induced triangle rota-
tion appears whenever there is a component of the shear
rate tensor ṽij that is neither parallel nor perpendicular
to the triangle elongation axis. We discuss this effect of
shear-induced rotation in more detail in Appendix A 4.

C. Large-scale deformation of a triangular network

To understand how triangle shape properties connect
to large-scale deformation of a triangle network, we
coarse-grain Eqs. (19)-(21). We focus on the case where
the shape properties q̃nij , a

n, θn of all involved triangles n
change only infinitesimally. The large-scale deformation
tensor of the triangular network can be computed using
Eq. (9): δUij = 〈δuij〉. Consequently, one obtains large-

scale pure shear as δŨij = 〈δũij〉, large-scale isotropic
expansion as δUkk = 〈δukk〉, and large-scale rotation as
δΨ = 〈δψ〉. We now express large-scale pure shear and
isotropic expansion in terms of triangle shape changes.
We discuss large-scale rotation in Appendix A 8.

1. Pure shear deformation on large scales

To discuss large-scale pure shear deformation, we first
introduce an average triangle elongation tensor:

Q̃ij = 〈q̃ij〉 . (28)

The average is computed using an area weighting as in
Eq. (10).

The large-scale pure shear tensor δŨij can be related

to the change of the average triangle elongation δQ̃ij by
averaging Eq. (19) over all triangles in the triangulation
(see Appendix A 5):

δŨij = δQ̃ij + δJ̃ij + δK̃ij . (29)

Here, in analogy to Eqs. (24) and (A20), we introduced
the mean-field corotational term

δJ̃ij = −2
[
CδΨ + (1− C)δΦ

]
εikQ̃kj , (30)

where C = tanh (2|Q̃|)/2|Q̃|, and |Q̃| and Φ denote norm

and angle of the average elongation tensor Q̃ij , respec-

tively. Note that different definitions for δJ̃ij are pos-
sible and an alternative to Eq. (30) is presented in Ap-

pendix A 5. Moreover, the contribution δK̃ij newly ap-
pears due to the averaging. It is the sum of two correla-
tions:

δK̃ij = −
(〈
δukkq̃ij

〉
− δUkkQ̃ij

)
+
(
〈δ̃jij〉 − δJ̃ij

)
. (31)

We call the first term growth correlation and the second
term rotational correlation.

Growth correlation is created by spatial fluctuations in
isotropic triangle expansion δunkk. Fig. 5A illustrates this
effect for a deformation where no large-scale pure shear
appears δŨij = 0. Two triangles with different but con-
stant triangle elongation tensors q̃nij deform: One trian-
gle expands isotropically and the other triangle shrinks
isotropically. Because of the area-weighting in the av-
eraging, the average elongation tensor Q̃ij thus changes

during this deformation. Therefore, although δŨij = 0

in Eq. (29), the average elongation changes by δQ̃ij 6= 0.
This change in average elongation is exactly compensated
for by the growth correlation term.

Rotational correlation can be created by spatial fluc-
tuations of triangle rotation δψn. We illustrate this in
Fig. 5B, where the large-scale pure shear rate is again
zero δŨij = 0. We consider two triangles with the same
area but different elongation tensors q̃nij . Both triangles
do not deform, but rotate in opposing directions by the
same absolute angle δψn. The large-scale corotational
term is zero δJ̃ij = 0, because there is no overall rotation
δΨ = 0. However, the corotational term for each indi-
vidual triangle δ̃jnij is nonzero allowing for a change of
triangle elongation in the absence of triangle shear. Af-
ter all, the average elongation tensor Q̃ij increases along
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A inhomogeneous
area growth

inhomogeneous
rotation

B

FIG. 5. Correlation contributions to pure shear. (A) Inhomo-
geneous isotropic expansion that is correlated with elongation
creates a change in the average elongation Q̃ij , which is due

to the area weighting in the definition of Q̃ij . This contribu-

tion to the time derivative of Q̃ij is compensated for by the

growth correlation term in δK̃ij . (B) Inhomogeneous rotation
that is correlated with elongation creates a change in the av-
erage elongation Q̃ij . This contribution to the time derivative

of Q̃ij is compensated for by the rotational correlation term

in δK̃ij .

the horizontal, because each individual triangle elonga-
tion tensor does. This change in average elongation is
compensated for by the rotational correlation term.

To obtain the large-scale pure shear rate Ṽij defined

by Ṽijδt = δŨij , we rewrite Eq. (29):

Ṽij =
DQ̃ij
Dt

+ D̃ij . (32)

Here, DQ̃ij/Dt denotes a corotational time derivative

that is defined by (DQ̃ij/Dt)δt = δQ̃ij + δJ̃ij , which can
be rewritten as

DQ̃ij
Dt

=
dQ̃ij
dt
− 2

(
CΩ + (1− C)

dΦ

dt

)
εikQ̃kj . (33)

Here, C = tanh (2|Q̃|)/2|Q̃| as defined below Eq. (30) and

Ω is the average vorticity with ωδt = δΨ. The term D̃ij
in Eq. (32) contains the correlation terms with D̃ijδt =

δK̃ij .
Eq. (32) is an important result for the case without

topological transitions. It states that the large-scale de-
formation of a triangular network can be computed from
the change of the average triangle elongation, the cor-
relation between triangle elongation and triangle area
growth, and the correlation between triangle elongation
and triangle rotation.

The correlations account for the fact that taking the
corotational derivative does not commute with averaging:

D̃ij =

〈
Dq̃ij
Dt

〉
− DQ̃ij

Dt
. (34)

FIG. 6. The elongation q̃αij of a cell α (green) is defined by
the average elongation of the triangles belonging to α (red).
The triangles belonging to α are those that have one of their
corners defined by the center of α.

In particular, as illustrated in Fig. 5B, the rotational
correlation arises by coarse-graining of the corotational
term. Similarly, the growth correlation can be regarded
as arising from the coarse-graining of a convective term
(see Appendix A 5).

2. Elongation and shear of a single cell

To more explicitly relate the above discussion to cell
shape and deformation, we define a cell elongation tensor
q̃αij for a given cell α as follows. We select all triangles n
that have one of their corners defined by the center of α,
and then average their elongation tensors (Fig. 6):

q̃αij = 〈q̃ij〉 . (35)

The average is again area-weighted as defined in Eq. (10).
Then, a cellular pure shear rate can be defined analo-
gously: ṽαij = 〈ṽij〉. This cellular pure shear rate can also
be expressed by changes of q̃αij using Eq. (32). Moreover,

the large-scale elongation Q̃ij and the large-scale pure

shear rate Ṽij can be obtained by suitably averaging the
single-cell quantities q̃αij and ṽαij [25].

3. Isotropic expansion on large scales

Finally, we discuss large-scale isotropic expansion δUkk
of a triangle network. We relate it to changes of the
average triangle area ā = A/N , where A is the total area
of the network and N is the number of triangles in the
network.

To relate large-scale isotropic expansion δUkk to
changes of the average triangle area ā, we average
Eq. (20):

δUkk = δ(ln ā). (36)

Accordingly, the large-scale isotropic expansion rate Vkk
with Vkkδt = δUkk can be expressed as

Vkk =
1

ā

dā

dt
. (37)
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A

cell division

T2 transition

T1 transition

B

C

FIG. 7. Effects of a single topological transition on the trian-
gulation. (A) A T1 transition removes two triangles (m and
n) and creates two new ones (p and q). (B) A cell division cre-
ates two triangles (p and q, yellow). All other triangles shown
(red) change their shape instantaneously. (C) A T2 transition
removes three triangles (m, n, p) and creates a new one (q).

Hence, large-scale isotropic expansion corresponds to the
relative change of the average triangle area ā.

IV. CONTRIBUTIONS OF TOPOLOGICAL
TRANSITIONS TO NETWORK DEFORMATION

So far, we have considered deformations of a triangular
network during which no topological transitions occur.
Now, we discuss the contributions of topological transi-
tions to large-scale deformations [26].

There are two main features of topological transitions
that motivate the following discussion. First, topological
transitions occur instantaneously at precise time points
tk and correspondingly, there is no displacement of cell
centers upon topological transitions.

Second, topological transitions create and remove tri-
angles from the triangulation. For instance for the typ-
ical case of three-fold vertices, a T1 transition removes
two triangles and then adds two new triangles (Fig. 7A),
a cell division just adds two triangles (Fig. 7B), and a
T2 transitions removes three triangles and adds one new
triangle (Fig. 7C).

To define the large-scale deformation tensor across a
given topological transition, an average over triangle de-
formations as in Eq. (9) can no longer be used because
the triangle deformation tensor unij is ill-defined for dis-
appearing and appearing triangles. We thus define the

T1 transition

FIG. 8. A T1 transition induces an instantaneous change of
the average triangle elongation. The average triangle elonga-
tion before and after the T1 transition only depends on the
position of the four involved cell centers (green dots).

large-scale deformation depending on cell center displace-
ments along the margin of the triangular network us-
ing Eq. (11). We denote such a large-scale deformation
tensor across a topological transition by ∆Uij . Because
there are no cell center displacements upon a topolog-
ical transition, the large-scale deformation tensor van-
ishes ∆Uij = 0, and so does large-scale isotropic expan-

sion ∆Ukk = 0 and large-scale pure shear ∆Ũij = 0.
However, even though there is no actual network defor-
mation upon a topological transition, we will define the
deformation contribution by a topological transition in
the following.

A. Contribution of a single topological transition
to pure shear

To discuss the pure shear contribution by a topological
transition, we focus on a single T1 transition occurring
at time tk. Pure shear contributions by cell divisions or
T2 transitions can be discussed analogously.

Because of the triangulation change during a T1 transi-
tion, the average triangle elongation Q̃ij changes instan-

taneously by a finite amount ∆Q̃ij (Fig. 8). To account
for the shear contribution by the T1 transition, we in-
troduce an additional term ∆X̃ij into the shear balance
Eq. (29):

∆Ũij = ∆Q̃ij + ∆X̃ij . (38)

Here, we have set corotational and correlation terms dur-
ing the T1 transition to zero [27]. Because ∆Ũij = 0, we

obtain from Eq. (38) that ∆X̃ij = −∆Q̃ij . Thus, the

shear contribution ∆X̃ij due to the T1 transition com-

pensates for the finite discontinuity in Q̃ij , which occurs
due to the removal and addition of triangles.

Dividing by a time interval ∆t and in the limit ∆t→ 0,
we can transform Eq. (38) into an equation for the shear
rate:

Ṽij =
DQ̃ij
Dt

+ D̃ij + T̃ij , (39)

where T̃ij = ∆X̃ijδ(t− tk) and δ denotes the Dirac delta
function. Hence, a T1 transition induces a discontinuity
in the average triangle elongation Q̃ij , causing a delta

peak in DQ̃ij/Dt. This delta peak is exactly compensated
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FIG. 9. Illustration of the shear rate contributions by average triangle elongation change and T1 transitions. (A) Between the
time points 0 and T , a triangular network is continously sheared along the horizontal axis. At time point tk, a T1 transition
occurs, which instantaneously changes the average triangle elongation. (B) For the process shown in panel A, schematic time-
dependent plots of shear rate (blue, i), the average triangle elongation (green, ii), its derivative (green, iii), and the shear rate
by T1 transitions (red, iv). For each tensor, the respective xx component, i.e. the horizontal component, is plotted. The arrows

in (iii) and (iv) indicate Dirac δ peaks. Their magnitude corresponds to the step in Q̃xx at tk.

for by ∆X̃ijδ(t− tk), such that the large-scale shear rate

Ṽij contains no delta peaks.

As an example, Fig. 9A illustrates a process during
which a network consisting of two triangles (red) is being
deformed between the times 0 and T . These triangles un-
dergo a pure shear deformation along the x axis without
any rotations or inhomogeneities. In the absence of any
topological transition, the shear rate along the x axis,
Ṽxx, corresponds to the derivative of the average trian-
gle elongation, dQ̃xx/dt (Fig. 9B(i-iii)). However, at a
time point tk, a T1 transition occurs and the average
elongation along the x axis changes instantaneously by
∆Q̃xx. Thus, there is a Dirac δ peak in dQ̃xx/dt, which is

compensated by the T1 shear rate T̃xx = −∆Q̃xxδ(t−tk)
(Fig. 9B(iv)) such that Eq. (39) holds exactly.

For the special case where the four cell centers in-
volved in the T1 transition (green dots in Fig. 8) form

a square, the magnitude of ∆X̃ij evaluates exactly to

|∆X̃| = (A� ln 3)/(2A), where A� is the area of the
square and A is the total area of the triangle network
(see Appendix A 6). The axis of ∆X̃ij is along one of the
diagonals of the square. Both remain true for the more
general case of a rhombus, i.e. a quadrilateral whose four
sides have equal lengths.

B. Contribution of a single topological transition
to isotropic expansion

To define the isotropic expansion by a topological tran-
sition, we employ a similar argument as for the pure shear
component. For instance, to account for the isotropic ex-
pansion by a single cell division occurring at time tk, we
introduce a term ∆d into Eq. (36) (cell extrusions can be
treated analogously):

∆Ukk = ∆(ln ā) + ∆d. (40)

Here, ∆(ln ā) denotes the change of ln ā across the cell
division. Since there is no isotropic expansion upon the
cell division ∆Ukk = 0, we thus have ∆d = −∆(ln ā).
Because the total area A of the triangulation remains
constant during the cell division, the isotropic expansion
by a cell division amounts to ∆d = ln (1 + 2/N) with N
being the number of triangles in the network before the
division.

Dividing by a time interval ∆t and in the limit ∆t→ 0,
Eq. (40) transforms into:

Vkk =
d(ln ā)

dt
+ kd (41)

with kd = ln (1 + 2/N) δ(t − tk). Hence, as for the pure
shear component, the contributions of individual topo-
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logical transitions to the isotropic expansion component
can be accounted for by delta peaks.

Note that in order to avoid isotropic expansion con-
tributions by T1 transitions, care has to be taken when
counting the number of triangles N for the special case
of M -fold vertices with M > 3. In Appendix A 2, we
explain how we define N in this case.

V. CELLULAR CONTRIBUTIONS TO THE
LARGE-SCALE DEFORMATION RATE

In this section, we provide equations that express large-
scale pure shear and isotropic expansion as sums of all
cellular contributions. Large-scale rotation is discussed
in Appendix A 8. Here, we present the equations for the
deformation rates, i.e. in the limit of infinitesimal defor-
mations. The case of finite deformations is discussed in
Appendix B.

A. Pure shear rate

We decompose the instantaneous large-scale shear rate
Ṽij into the following cellular contributions:

Ṽij =
DQ̃ij
Dt

+ T̃ij + C̃ij + Ẽij + D̃ij . (42)

The first term on the right-hand side denotes the coro-
tational time derivative of Q̃ij defined by Eq. (33). Note
that some care has to be taken when evaluating the coro-
tational term in the presence of topological transitions
(see Appendix A 6). The shear rate contributions by T1

transitions T̃ij , cell divisions C̃ij , and T2 transitions Ẽij
to the large-scale shear rate are respectively defined by

T̃ij= −
∑
k∈T1

∆Q̃kijδ(t− tk) (43)

C̃ij= −
∑
k∈CD

∆Q̃kijδ(t− tk) (44)

Ẽij= −
∑
k∈T2

∆Q̃kijδ(t− tk). (45)

Here, the sums run over all topological transitions k of
the respective kind, tk denotes the time point of the re-
spective transition, and ∆Q̃kij denotes the instantaneous

change in Q̃ij induced by the transition. Finally, D̃ij
denotes the shear rate by the correlation effects as intro-
duced in Section III C 1.

B. Isotropic expansion rate

We decompose the isotropic expansion rate Vkk as fol-
lows into cellular contributions:

Vkk =
d(ln ā)

dt
+ kd − ke. (46)

Here, ā is the average triangle area as in Section III C 3,
and kd and ke denote cell division and cell extrusion rates,
defined as

kd =
∑
k∈CD

δ(t− tk) ln

(
1 +

2

Nk

)
(47)

ke = −
∑
k∈T2

δ(t− tk) ln

(
1− 2

Nk

)
. (48)

The sums run over all topological transitions k of the
respective kind, tk denotes the time point of the respec-
tive transition, and Nk is the number of triangles in the
network before the respective transition.

Instead of formulating Eq. (46) for a triangulation,
the polygonal network may also be used to derive such
an equation. With the isotropic expansion rate for the
polygonal network Vpkk, the average cell area āp and the
topological contributions by divisions kpd and extrusions
kpe , we obtain (see Appendix A 7):

Vpkk =
d(ln āp)

dt
+ kpd − k

p
e . (49)

This equation can be interpreted as a continuum equation
for cell density [28, 29], where the isotropic expansion
rate contributions by cell divisions kpd and cell extrusions
kpe correspond to cell division and cell extrusion rates,
respectively.

C. Cumulative shear and expansion

Often, it is useful to consider cumulative deforma-
tions rather than deformation rates. The cumulative
shear deformation is defined as

∫ t1
t0

Ṽijdt, other cumu-

lative quantities are defined correspondingly. Note that
this cumulative shear deformation is not a deformation
that only depends on the initial and final configura-
tions at times t0 and t1, but it also depends on the full
path the system takes between those two configurations
(see Appendix A 9). The cumulative isotropic expansion∫ t1
t0

Vkkdt = logA(t1) − logA(t0) is independent of the

full path and given by a change of tissue area between
initial and final states. This follows from Eq. (37). The
cumulative shear can be decomposed into cellular con-
tributions. This decomposition can be obtained by in-
tegrating the decomposition of shear rates Eq. (42) over
time. Similarly, the cumulative isotropic expansion can
be decomposed into cellular contributions by integrating
Eq. (46) over time.

VI. TISSUE REMODELING IN THE PUPAL
FLY WING AS AN EXAMPLE

Our Triangle Method can be used to analyze tissue re-
modeling in the pupal fly wing [3, 6]. Here, we provide a
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FIG. 10. Patterns of tissue shear and contributions to shear in the pupal wing of the fruit fly at different times in hours after
puparium formation (hAPF). Local rate of pure shear (blue), corotational time derivative of the cell elongation (center), and
shear rate by T1 transitions (right). The bars indicate the axis and norm of the tensors. Shown are averages over squares with
size (33µm)2 and over time intervals of about 2 h. The scale bars correspond to 100µm.

more refined and in depth analysis of the wing morpho-
genesis data for three different wild type wings presented
previously [6]. Differences to the previous analyses are
(i) there are slightly improved definitions of the shear
rates for finite time intervals between frames (see Ap-
pendix B 1) (ii) we now analyze and compare subregions
of the wing tissue, which provides additional information
about tissue remodeling.

Note that we have so far only discussed the case of
infinitesimal deformations. However, the sampling rate
of experimental data is necessarily finite. We explain
how we treat such finite deformation data in detail in
Appendix B.

Fig. 10 presents coarse-grained spatial patterns of local
tissue shear Ṽij (blue, left column), the corotational time

derivative of the cell elongation DQ̃ij/Dt (green, center
column), and the contribution to shear by T1 transitions

Ṽij (red, right column) at different times during pupal de-
velopment. The bars indicate the local axis and strength
of shear averaged in a small square. The full dynamics
of these patterns can be seen in the Movies M1–M3 [30].
Because here we do not track cells but use a lab frame
relative to which the tissue moves, convective terms have
been taken into account (see Appendix B 2). The pat-
terns in Fig. 10 correspond to Figure 5 and Video 6 in
ref. [6]. The pattern of tissue shear rate is splayed and

decreases in magnitude over time. The pronounced in-
homogeneities of the shear pattern at 22 hAPF are due
to different behaviors of veins and the intervein regions
[8]. The orientations of the patterns of cell elongation
change and shear by T1 transitions are both approxi-
mately homogeneous at early and late times. At inter-
mediate times, about 22 hAPF, a reorientation of these
patterns occurs, which corresponds to a transitions be-
tween a phase I and a phase II of tissue remodeling [3, 6].
During phase I, cells elongate along the proximal-distal
axis of the wing while they are undergoing T1 transitions
along the anterior-posterior axis of the wing. During
phase II, cells reduce their elongation along the proximal-
distal axis while undergoing T1 transitions along this
axis.

These dynamics and the two phases can be analyzed
by averaging contributions to tissue shear in distinct sub-
regions of the wing (see Fig. 11A) and in the whole wing
blade. We project the tensorial quantities on the x axis,
which is the average axis of cell elongation and is close
to the proximal-distal axis (see Fig. 11B). The quanti-
ties discussed are listed in Fig. 11C. The shear rates as a
function of time and the corresponding cumulative shear
are shown in Fig. 11D and E, respectively, averaged over
the whole wing blade. These data are consistent with the
previous analysis [6]. The fact that the sum of cellular
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FIG. 11. Contributions to tissue shear as a function of time during pupal development of the fly wing. Shown is the data for
one wing. (A) The fly wing undergoes complex tissue remodeling, which we recorded between 15 and 32 hAPF. The colored
areas mark regions of tissue in which all cells were tracked during this time interval. (B) Schematic representation of the
coordinate system used to describe tissue deformations. The x axis points towards the tip of the wing and is aligned parallel
to the axis of cell elongation averaged within the interval between 24 and 32 hAPF and over all four regions. The average
cell elongation computed for a single region deviates at most by 5 degrees from this x axis. (C) Legend specifying different
contributions to tissue shear. (D) Cellular contributions to shear and total shear rate averaged over regions 1-4 in panel A as

a function of time. Plotted are the projections of the tensors on the x axis, for example the component Ṽxx of the tissue shear
rate. (E) Cumulative tissue shear and cellular contributions, projected on the x axis. (F,G) Same plots as in D and E, but for
the subregions 1 to 4 indicated in panel A. In D-G, data was averaged over 10 subsequent inter-frame intervals.
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FIG. 12. Contributions to isotropic tissue expansion as a function of time during pupal development of the fly wing. Shown is
the data for one wing. (A) Large-scale isotropic expansion rate and cellular contributions to it averaged over regions 1-4 as a
function of time. (B) Cumulative isotropic expansion rate and cellular contributions to it. (C,D) Same plots as in A and B,
but for the subregions 1 to 4 indicated in Fig. 11A. The legend in panel A applies to panels B-D, too. In all panels, data was
averaged over 10 subsequent inter-frame intervals.

contributions and tissue shear coincide in panels D and
E confirms the validity of Eq. (42) (solid blue and dashed
yellow lines).

In panels F and G, we show shear rates and cumulative
shear for the four subregions of the wing blade indicated
in Fig. 11A and tracked in Movie M4 [31]. Comparing
the average shear curves in Fig. 11F,G, we find system-
atic differences among the different regions. Most signifi-
cantly, distal regions, which are regions closer to the tip of
the wing (regions 3,4) shear more at early times, whereas
proximal regions, i.e. regions closer to the hinge (regions
1,2), shear more towards the end of the process (solid blue

curves). Moreover, the cumulative shear at the end of the
process is generally larger in distal regions than in proxi-
mal regions. The transition from phase I to phase II can
be seen in all four regions. However, it shifts from about
20.5 hAPF in region 4 to about 23 hAPF in region 1 (see
for example intersection of dotted red and dashed green
curves in panel F). Finally, cell divisions contribute more
to shear distally (region 4), whereas correlations effects
contribute more to shear proximally (region 1). All of
these results, which we found consistently for the three
analyzed wings, reveal a propagation of morphogenetic
events through the tissue.
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We also quantified the isotropic expansion rate Vkk
and its cellular contributions, related by Eq. (46). For
the entire wing (Fig. 12A,B), we again confirm our ear-
lier results reported in [6]. We find that the total area of
the wing blade barely changes (solid blue curve). Corre-
spondingly, cell area decrease (dashed green curve) to-
gether with contributions from cell extrusions (dotted
cyan curve) compensate most of the area changes due
to cell divisions (solid orange curve). When comparing
the regions 1-4 (Fig. 12C,D), area changes due to divi-
sions occur earlier in region 1 and during a shorter time
as compared to regions 2-4. Furthermore, region 1 does
substantially shrink, whereas regions 2-4 barely change
their areas. This difference may be related to the fact
that the wing hinge contracts its area during this pro-
cess. All of these results are again consistent among the
three analyzed wings.

VII. DISCUSSION

In this article, we present a geometric analysis of tissue
remodeling in two dimensions based on a triangulation
of the cellular network. We decompose the pure shear
rate, the isotropic expansion rate, and the rotation rate
of the tissue into cellular contributions. The main result
of this article is given by Eqs. (42) and (46). Eq. (42) pro-
vides an exact expression of the large-scale shear rate as a
sum of distinct cellular contributions, stemming from cell
shape changes, T1 transitions, cell divisions, cell extru-
sions, and from correlation effects. This decomposition is
based on the fact that for a single triangle, shear deforma-
tions are related to cell elongation changes in a corotating
reference frame, see Eq. (23). The corotating reference
frame ensures that elongation changes associated with
pure rotations do not give rise to shear deformations. In
the absence of rotations, small elongation changes and
shear deformations are the same. Because of nonlineari-
ties in the corotational time derivative, the average time
derivative and the time derivative of the average differ
(see Eq. (34)). When coarse-graining, this gives rise to
correlation contributions to tissue shear. Such correla-
tion terms exist when tissue remodeling is spatially in-
homogeneous. For example, inhomogeneities of rotation
rates give rise to correlation contributions to tissue shear
that stem from correlations between rotation rates and
triangle elongation (see Eq. (31)). Similarly, correlations
between area changes and elongation also contribute to
shear. Thus, correlation contributions to large-scale tis-
sue shear are a generic feature resulting from the inter-
play of nonlinearities and fluctuations. Relationships be-
tween the key quantities that underlie the decomposition
of deformations are illustrated in Fig. 13.

We have recently studied tissue morphogenesis in the
pupal wing epithelium using our triangle method both
in fixed reference frames and reference frames comoving
with the tissue [6]. During pupal morphonesesis, the wing
blade elongates along the proximal-distal axis while keep-

ing its area approximately constant. This process can be
divided in two phases [3]. In the first phase, cells elon-
gate more than the overall tissue does. This strong cell
elongation is driven by active T1 transitions expanding
perpendicular to the proximal-distal axis. The cell elon-
gation then subsequently relaxes during phase two by T1
transitions along the proximal-distal axis. At late times,
the tissue reaches a state with slightly elongated cells,
which is a signature of active T1 transitions. Also note
that our analysis has shown that correlations contribute
to tissue shear. In particular, we have shown that cor-
relations between fluctuations of rotations and cell elon-
gations occur and play a significant role for tissue mor-
phogenesis. Our method can therefore detect biologically
relevant processes that are otherwise difficult to spot.

In the present article, we provide a refined analysis of
these previously presented data, confirming our earlier
findings. In addition, we perform a regional analysis of
pupal wing remodeling. Discussing the shear and cellu-
lar contributions to shear of the whole wing blade and
in four different subregions, we find that the main mor-
phogenetic processes of the wing [3, 6] are also reflected
in the different subregions. However, the timing of these
morphogenetic processes differs among the regions, re-
vealing a propagation of morphogenetic events through
the tissue.

Our work is related to other studies that decompose
tissue shear into cell deformation and cell rearrangements
[13–18]. Our approach differs from these studies in that it
provides an exact relation between cellular processes and
tissue deformation gradients on all scales (for details see
Appendix C). Recently, a method based on cell center
connection lines rather than triangles was presented [18].
While ref [18] and the method presented here both pro-
vide a decomposition of shear into cellular contributions,
the method presented here has an important property.
We relate tissue deformations on all length scales to cellu-
lar contributions, taking into account correlation terms.
Simple area-weighted averaging of triangle-based quanti-
ties generates in our approach the corresponding coarse-
grained quantities on large scales (see Appendix C). Note
that our approach can also be applied to finite deforma-
tions (see Appendix B).

We have focused our discussion on tissue deformations
that are planar. It will be interesting to generalize our ap-
proach to curved surfaces and to bulk three-dimensional
tissues. A generalization to three dimensions can be ob-
tained by following the same ideas, but using tetrahe-
dra as geometric elements. Most equations presented
here apply also for bulk three dimensional tissues. Only
Eqs. (15) and (19) require special consideration of tetra-
hedral geometry.

The Triangle Method described here provides a general
framework to study the deformations and remodeling of
cellular material. These include not only biological tis-
sues but also complex fluid such as foams and amorphous
solids. Our approach can thus provide fundamental in-
sight into the geometry and help to understand complex
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FIG. 13. Decomposition of deformations in cellular contributions. Key quantities and their relationships are shown as a
schematic diagram. (A) Decomposition of the isotropic deformation rate into cellular contributions. (B) Decomposition of the
pure shear rate into cellular contributions. Red numbers indicate the definition of the respective quantity (or the equation
where the quantity first appears). Black numbers indicate important relations between the quantities.

rheology of cellular and amorphous materials, both living
and non-living.
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Appendix A: Deformation of a triangle network

1. Deformation and deformation gradients

For an Eucledian space, the following equation holds
for a vector field h:∫

Λ

∂ihj dA =

∮
∂Λ

hjνi d`, (A1)

where the area integral is over a domain Λ with boundary
∂Λ. The vector ν denotes the local unit vector that is
normal to the boundary pointing outwards.

Eq. (A1) follows from Gauss’ theorem:∫
Λ

diva dA =

∮
∂Λ

a ·ν d`, (A2)

if the components of the vector a are chosen as

ak = δikhj (A3)

and i, j are fixed.

2. Triangulation of a cellular network

Triangulation procedure

Here, we define the triangulation procedure outlined
in Section II D more precisely. An inner vertex, i.e. a
vertex that does not lie on the margin of the polygonal
network, gives rise to one or several triangles. Any inner
vertex touches at least three polygons. An inner vertex
that touches exactly three polygons α, β, and γ gives
rise to a single triangle with corners rα, rβ , and rγ , as
explained in Section II D. Moreover, an inner vertex that
touches M with M > 3 polygons α1, . . . , αM gives rise
to M triangles, which are defined as follows. One corner
of each of these M triangles is defined by the average
position c = (α1 + · · ·+ αM )/M . The other two corners
of triangle i with 1 ≤ i ≤ M are defined by rαi and
rαi+1 , where the index i = M + 1 corresponds to the
index i = 1.

All non-inner vertices, i.e. those lying on the margin
of the polygonal network, do not give rise to any trian-
gles. As a result of that, a stripe along the margin of the
polygonal network is not covered by triangles, which is
ca. half a cell-diameter thick.

Apart from this stripe, the resulting triangulation has
no gaps between the triangles. Overlaps between the
triangles are in principle possible. In such a case, at least
one triangle can be assigned a negative area. However in
our experimental data, such cases are very seldom.

Effective number of triangles

We compute the effective number N of triangles a fol-
lows:

N =
∑
n∈V=3

1 +
∑
n∈V>3

(Mn − 2). (A4)

Here, V=3 denotes the set of all inner three-fold vertices
and V>3 denotes the set of all inner M -fold vertices with
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M > 3. The number Mn is the number of cells touched
by vertex n (i.e. vertex n is Mn-fold). Hence, all triangles
arising from a three-fold vertex count as one effective
triangle, and all M triangles arising from a M -fold vertex
with M > 3 count as (M − 2)/M effective triangles.

An interpretation for this effective number N of trian-
gles is given by the following consideration. An M -fold
vertex with M > 3 can be thought of as M − 2 three-
fold vertices that are so close to each other that they can
not be distinguished from each other. If we transform
each inner M -fold vertex with M > 3 of our polygonal
network into such M − 2 three-fold vertices, then N is
the number of inner three fold-vertices in the resulting
network. Put differently, N is the number of triangles in
the triangulation of the resulting network.

3. Triangle shape

Side vectors of the reference triangle

In a Cartesian coordinate system, the vectors c〈αβ〉

describing the equilateral reference triangle are

c〈12〉 = c0

(
1

0

)
, (A5)

c〈23〉 = c0

(
−1/2√

3/2

)
, (A6)

c〈31〉 = c0

(
−1/2

−
√

3/2

)
. (A7)

Here, c0 = 2a
1/2
0 /31/4 is the side length and a0 the area

of the reference triangle.

Extraction of shape properties from the triangle shape
transformation tensor

Here, we show how to extract triangle area a, triangle
elongation q̃ij , and triangle orientation angle θ from the
shape transformation tensor sij according to Eq. (15):

s =

(
a

a0

)1/2

exp (q̃) ·R(θ). (A8)

First, the area can be extracted by computing the deter-
minant of this equation, which yields:

a = a0 det s. (A9)

To compute q̃ij and θ, it is useful to split the tensor sij
into a symmetric, traceless part s̃ij and into a rest hij
containing the trace and the antisymmetric part:

sij = s̃ij + hij . (A10)

BA C

FIG. 14. Geometrical interpretation of the elongation ten-
sor q̃ij for a given triangle. (A) shows an equilateral triangle
(red) with circumscribed circle (blue) and centroid (i.e. center
of mass, yellow). (B) This triangle is deformed by the pure
shear deformation given by exp (q̃), where q̃ij is the elongation
tensor of the so-created triangle. The former circumscribed
circle is transformed to an ellipse (blue), and the former cen-
troid is still the centroid of both the triangle and the ellipse
(yellow). (C) Long and short axes of the ellipse with lengths
l and s, respectively.

Then, the triangle orientation angle θ is such that hij
corresponds to a rotation by θ up to a scalar factor f :

hij = fRij(θ), (A11)

and the triangle elongation can be computed as:

q̃ij =
1

|̃s|
arcsinh

[(
a

a0

)−1/2

|̃s|

]
s̃ikRkj(−θ). (A12)

In [22], we show that these values for a, q̃ij , and θ do
indeed fulfill Eq. (A8), and that they are the unique so-
lutions.

Geometrical interpretation of the triangle elongation tensor

Fig. 14 illustrates the geometrical interpretation of the
triangle elongation tensor q̃ij . Take the unique ellipse
(blue in Fig. 14B) that goes through all three corners
of the triangle (red) and has the same center of mass
(yellow) as the triangle. Then, the long axis of the ellipse
corresponds to the axis of the triangle elongation tensor
q̃ij , and the aspect ratio of the ellipse is given by l/s =
exp (2|q̃|) (Fig. 14C).

This can be seen as follows. As discussed in Sec-
tion III A and the previous section, any given triangle
can be created out of an equilateral triangle using the
pure shear transformation exp (q̃), where q̃ij is the elon-
gation tensor of the given triangle. This is illustrated in
Fig. 14A-B. The circumscribed circle of the equilateral
triangle transforms into the ellipse via the pure shear
transformation. Thus, the length of the long and short
axes of the ellipse are l = r exp (|q̃|) and s = r exp (−|q̃|),
where r is the radius of the circle.

The ellipse is uniquely defined, because the equilateral
triangle and the pure shear deformation are uniquely de-
fined as proven in [22]. If there was another ellipse that
went through all corners of the triangle and had the same
center of mass, this ellipse could be created from a circle
c′ using a different pure shear transformation. Applying
the inverse of this pure shear transformation to the ac-
tual triangle n would yield a triangle n′. Obviously, the
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triangle n′ would have the circumscribed circle c′ and
thus its center of mass would coincide with the center of
its circumscribed circle c′. Thus, n′ would be equilateral.
However, this is not possible since there is only one equi-
lateral triangle from which triangle n can emerge by a
pure shear deformation.

4. Relation between triangle shape and triangle
deformation

Here, we derive Eqs. (19)–(21) in the main text. From
Eq. (17) follows with Eq. (8):

s′ij − sij = ukiskj . (A13)

For infinitesimal changes δq̃ij , δa, δθ of the respective tri-
angle shape properties, the difference of the shape trans-
formation tensors is also infinitesimal δsij = s′ij − sij .
From Eq. (A8) follows:

δsij =
δa

2a
sij + δ|q̃| q̃ik

|q̃|
skj + δφεikskj

+ (δθ − δφ)sikεkj .

(A14)

Inserted into Eq. (A13) and using the decomposition of
the deformation tensor Eq. (5), this yields:

1

2
δukkδij + δũij + δψεij

=
δa

2a
δij + δ|q̃| q̃ij

|q̃|
+ δφεij

+ (δθ − δφ)sikεkls
−1
lj .

(A15)

To disentangle the contributions of the last term to the
three deformation tensor components, we transform the
tensor product into:

sikεkls
−1
lj = εik

[
cosh (2|q̃|)δkj −

sinh (2|q̃|)
|q̃|

q̃kj

]
. (A16)

Hence, we obtain:

δũij = δ|q̃| q̃ij
|q̃|
− (δθ − δφ)

sinh (2|q̃|)
|q̃|

εikq̃kj (A17)

δukk =
δa

a
(A18)

δψ = δφ+ (δθ − δφ) cosh (2|q̃|). (A19)

Eqs. (19)–(21) in the main text follow directly. Note that
Eqs. (A17)–(A19) can be rewritten into:

δũij = δq̃ij − 2
[
cδψ + (1− c)δφ

]
εikq̃kj (A20)

δukk = δ(ln a) (A21)

δψ = δθ − δũijεjkq̃ki
cosh (2|q̃|)− 1

2|q̃| sinh (2|q̃|)
. (A22)

with c = tanh (2|q̃|)/2|q̃|. Here, to derive the expression
for the pure shear part δũij , we used the decomposition

of δq̃ij into contributions of norm and angle changes of
q̃ij , Eq. (A24). To derive the expression for the rotation
part δψ, we used that that from Eq. (A17) follows that:

δũijεjkq̃ki = −2(δθ − δφ)|q̃| sinh (2|q̃|). (A23)

Pure shear by triangle elongation change

To discuss the pure shear formula Eq. (A20), we first
consider the decomposition of an infinitesimal change of
the triangle elongation tensor δq̃ij into a contribution by
the change of the norm δ|q̃| and a contribution by the
change of the angle δφ:

δq̃ij = δ|q̃| q̃ij
|q̃|

+ 2δφεikq̃kj . (A24)

The pure shear δũij from Eq. (A20) can be rewritten in
a similar form:

δũij = δ|q̃| q̃ij
|q̃|

+ 2c(δφ− δψ)εikq̃kj . (A25)

There are two differences between Eq. (A24) and
Eq. (A25) both of which affect the angular part. First,
in Eq. (A25), the rotation δψ is subtracted from the an-
gular change of the elongation tensor, δφ. This accounts
for bare rotations, which do change the elongation ten-
sor q̃ij by changing its angle φ, but do not contribute to
pure shear δũij . Second, the “rotation-corrected” angle
change of the elongation tensor, δφ − δψ, does not fully
contribute to pure shear but is attenuated by a factor c
with 0 < c ≤ 1, which depends nonlinearly on |q̃|. This
second point makes the corotational time derivative in
Eq. (24) different from other, more common time deriva-
tives. However, for small elongations, |q̃| � 1, we have
c → 1 and the corotational time derivative corresponds
to the so-called Jaumann derivative [24].

Shear-induced triangle rotation

Here, we discuss the shear-induced contribution δξ in
Eq. (A22), which we rewrite as

δθ = δψ + δξ (A26)

with

δξ = δũijεjkq̃ki
cosh (2|q̃|)− 1

2|q̃| sinh (2|q̃|)
. (A27)

According to this equation, the triangle orientation angle
θ may change even with vanishing δψ whenever there is
pure shear that is neither parallel nor perpendicular to
the elongation tensor q̃ij , i.e. a pure shear that changes
the elongation angle.

We illustrate this further in Fig. 15. For clarity, we
use a Minerva head in place of a triangle, but with
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A
rotation

(i) (ii) (iii)

B

pure shear

sequence of infinitesimal pure shear deformations

FIG. 15. Illustration of the shear-induced rotation effect δξ
appearing in Eq. (A22). For clarity, we use a Minerva head in
place of a triangle. (A) The definitions of orientation angle θ
and elongation tensor q̃ij are analogous to the triangle quanti-
ties (Fig. 4C). Roughly, the orientation angle θ corresponds to
the direction in which the Minerva head looks. The isotropic
scaling has been set to one for simplicity (a = a0). (B) The
elongated Minerva head is subject to a continuous pure shear
deformation with varying shear axis. The pure shear axis is at
each time point oriented with an angle of π/4 with respect to
the elongation axis φ, such that the elongation norm |q̃| does
not change but only the angle φ. Here, snapshots of such a
deformation are shown. Alternatively, Movie M5 shows this
deformation more smoothly a. Strikingly, the head orientation
angle θ changes by this deformation although the deformation
never includes any rotation component δψ = 0. Here, we have
set |q̃| = (ln 2)/2 such that δθ = δξ = 0.2δφ.

a See Supplemental Material at [URL will be inserted by
publisher]

analogously defined shape and deformation properties
(Fig. 15A). We discuss a continuous pure shear deforma-
tion of this head without rotation or isotropic expansion
at any time point (Fig. 15B):

δukk = 0 (A28)

δψ = 0. (A29)

Because of Eq. (A29), any potential change in the orien-
tation angle θ must be due to the shear-induced effect:
δθ = δξ. Furthermore, the pure shear is defined such
that the elongation norm |q̃| is constant, but the elonga-
tion angle φ may change. This can be accomplished by
a pure shear axis that is at each time point at an angle
of π/4 with respect to the elongation axis. This criterion
can be written as:

δũij = δhεikq̃kj , (A30)

where δh is some infinitesimal scalar quantity. Compar-
ison of this equation with Eq. (A20) and insertion into
Eq. (A27) yields:

δξ = δφ

[
1− 1

cosh (2|q̃|)

]
. (A31)

Hence, although there is no rotation component of the
deformation field δψ = 0, the orientation angle θ changes
by a non-vanishing amount δθ = δξ (Fig. 15B, Movie M5
[32]).

5. Large-scale pure shear

Relation to average elongation

To find the relation between large-scale pure shear δŨij
and large-scale elongation Q̃ij , we average Eq. (19):

δŨij =
〈
δq̃ij

〉
+
〈
δ̃jij
〉
. (A32)

To show Eq. (29), it remains to be shown that:

δQ̃ij =
〈
δq̃ij

〉
+
〈
δukkq̃ij

〉
− δUkkQ̃ij . (A33)

This equation reflects the fact that changes in the tri-
angle areas also contribute to a change in the average
elongation Q̃ij . Formally, the equation can be derived

using the definition of the average elongation Q̃ij = 〈q̃ij〉
together with Eqs. (20) and (36).

Alternative definition for the mean-field corotational term

In Eq. (30) we have introduced a mean-field corota-

tional term δJ̃ij to account for global rotations, which do
not contribute to the overall pure shear rate, but change
the average elongation tensor Q̃ij . We use the defini-
tion Eq. (30) throughout this article. However, note that

there are different conventions possible for δJ̃ij . While
the definition Eq. (30) was chosen in analogy to Eq. (24),
one could alternatively define based on Eq. (22):

δJ̃ij = −2
[
GδΘ + (1−G)δΦ

]
εikQ̃kj , (A34)

where G = sinh (2|Q̃|)/2|Q̃| and δΘ = 〈δθ〉. Note that
both definitions, Eq. (30) and Eq. (A34), yield in general

different values for δJ̃ij .

Correlation terms arising from convective and corotational
terms

Here, we show how the correlation term D̃ij arises from
convective and corotational terms. To this end, we in-
troduce continuous, time-dependent fields for shear rate
ṽij(r, t) and triangle elongation Q̃ij(r, t). Whenever a
given position r lies inside of a triangle n at time point
t, both are defined by:

ṽij(r, t) = ṽnij (A35)

Q̃ij(r, t) = q̃nij . (A36)

Given these definitions, Eq. (23) can be rewritten as:

ṽij =
DQ̃ij(r, t)
Dt

(A37)

with the corotational time derivative DQ̃ij/Dt defined as

DQ̃ij
Dt

=
∂Q̃ij(r, t)

∂t
+ vk∂kQ̃ij +

δ̃jnij
δt

. (A38)
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Here, n is the triangle which contains the position r at
time t. The vector vk denotes the velocity field that
is obtained by linear interpolation between the cell cen-
ter velocities, i.e. by v(r)δt = h(r) with h(r) given by
Eq. (7).

In Eq. (A38), we take the corotational term δ̃jnij/δt
directly from the triangle-related Eq. (23). However in

addition, a convective term vk∂kQ̃ij needs to be intro-
duced for the following reason. The partial time deriva-
tive ∂Q̃ij(r, t)/∂t on the right-hand side is essentially
different from the “total” time derivative δq̃nij/δt appear-
ing in Eq. (24): Whenever the tissue moves such that the
boundary between two triangles passes past position r,
the partial time derivative contains a Dirac δ peak, which
is not contained in the “total” time derivative. This peak
is exactly compensated for by the convective term, which
is only nonzero at triangle boundaries.

To obtain the large-scale shear rate of a triangulation,
we can coarse-grain Eq. (A37) instead of the triangle re-
lation Eq. (23). Eventually, we should obtain the same
relation for the large-scale shear rate, Eq. (32). By com-
paring both ways, we can spot which term in the contin-
uum formulation give rise to which terms in the triangle
formulation.

To coarse grain Eq. (A37), we write the large-scale

shear rate Ṽij as follows (using Eq. (3)):

Ṽij = 〈ṽij〉, (A39)

where the averaging bracket is defined as follows

〈ṽij〉 =
1

A

∫
Λ

ṽij dA. (A40)

Here, the integration is over the whole triangle network
Λ with area A. Substituting Eq. (A37) into Eq. (A39)
yields:

Ṽij =

〈
∂Q̃ij(r, t)

∂t

〉
−
〈

(∂kvk)Q̃ij

〉
+

〈
δ̃jij
δt

〉

+
1

A

∮
∂Λ

νkvkQ̃ij dA.

(A41)

Here, we carried out a partial integration on the term
arising from the convective term, which gave rise to the
boundary integral. In the boundary integral, the vec-
tor νk denotes the unit vector normal to the boundary,
pointing outwards.

The second and the third terms in Eq. (A41) are es-

sential parts of the correlation term D̃ij . In particular,

the term −〈(∂kvk)Q̃ij〉 = −〈vkkq̃ij〉, which arose from
the convective term, is an essential part of the growth
correlation. Similarly, the term 〈δ̃jij/δt〉 is an essential
part of the rotational correlation.

To obtain Eq. (32) from Eq. (A41), we note that the

average elongation is Q̃ij = 〈Q̃ij〉, and transform its total

time derivative:

δQ̃ij
δt

=
1

δt

(
1

A(t+ δt)
− 1

A(t)

)∫
Λ(t)

Q̃ij dA

+
1

Aδt

(∫
Λ(t+δt)

Q̃ij dA−
∫

Λ(t)

Q̃ij dA

)

+
1

Aδt

∫
Λ(t)

δQ̃ij dA.

(A42)
These three terms can be respectively transformed into:

δQ̃ij
δt

= −VkkQ̃ij +
1

A

∫
∂Λ

νkvkQ̃ij dA+

〈
∂Q̃ij(r, t)

∂t

〉
.

(A43)
The first term is the mean-field term in the growth corre-
lation and the second term is the boundary term gener-
ated by the convective term. Both terms appear due to a
possible change of the triangulation domain Λ. After all,
Eq. (32) follows by inserting Eq. (A43) into Eq. (A41).

6. Pure shear by a single T1 transition

In the absence of T1 transitions, we have ∆Ũij =

∆Q̃ij+∆J̃ij+∆K̃ij , which can be obtained by integrating

Eq. (29) over time. Here, ∆Ũij is the tissue pure shear

computed using Eq. (4), ∆Q̃ij is the change of the aver-

age triangle elongation, and ∆J̃ij and ∆K̃ij are the coro-
tational and correlation contributions. We now define the
shear associated with the T1 transition ∆X̃ij such that
the following decomposition holds in the presence of a
single T1 transition: ∆Ũij = ∆X̃ij+∆Q̃ij+∆J̃ij+∆K̃ij .

During a single T1 transition, two adjacent triangles
are replaced by two new triangles such that the quadrilat-
eral formed by both triangles remains unchanged (Fig. 8).
In order to define the shear associated with this retrian-
gulation, we choose a continuous deformation that trans-
forms each of the initial triangles into one of the final tri-
angles as follows. Each initial triangle is first deformed
to an equilateral triangle by a pure shear deformation
starting from the initial q̃nij and arriving at q̃nij = 0. The
resulting equilateral triangle is reoriented and rescaled
such that by a subsequent pure shear deformation in-
creasing q̃nij , the final triangle shape is reached. Because
the quadrilateral formed by both triangles has the same
shape before and after the T1 transition, ∆Ũij = 0.
Moreover, the continuous deformation via equilateral in-
termediate states does not generate corotational or cor-
relation contributions ∆J̃ij = ∆K̃ij = 0, such that we
define

∆X̃ij = −∆Q̃ij . (A44)

The absence of corotational and correlation contribu-
tions is consistent with the fact that the quadrilateral
formed by the pair of triangles does not rotate during
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the T1 transition. Note that in principle, one could
also use different continuous deformations to compute
∆Q̃ij + ∆J̃ij + ∆K̃ij . This would correspond to a differ-

ent convention for the definition of ∆X̃ij . In this case,

corotational and correlation contributions to ∆X̃ij could

in general occur and the definition of ∆X̃ij may depend
on which of the initial triangles is transformed into which
of the final triangles. Thus, the convention proposed here
is the simplest choice, does not introduce rotational con-
tributions, and does not depend on the association of
initial to final triangles.

Note that the triangle elongation angle Φ changes dur-
ing the T1 transition. Although in between T1 transi-
tions, δΦ contributes to δJ̃ij (see Eq. (30)), the conven-

tion chosen here, ∆J̃ij = 0, implies that the T1-induced
change in Φ does not contribute to the corotational time
derivative DQ̃ij/Dt.

Special case: square or rhombus

Here, we derive the shear by a single T1 transition
for the special case where the four involved cell centers
(green dots in Fig. 8) form a square or, more generally,
a rhombus.

For the case of a square, all involved triangles are
isosceles triangles with a base angle of π/4. Such a tri-
angle has an elongation tensor with an axis parallel to
the base and with the norm |q̃n| = (ln 3)/4. This can be
shown using the formulas presented in Appendix A 3, or
by the following reasoning. We ask for the shape trans-
formation tensor snij needed to transform an equilateral
reference triangle into an isosceles triangle with the same
area and a base angle of π/4. We set one of the sides
of the reference triangle and the base of the isosceles tri-
angle parallel to the x axis. Then, the ratio of the base
length of the isosceles triangle to the side length of the
reference triangle is 31/4, and the ratio of the heights
of both triangles is 3−1/4. Correspondingly, the shape
transformation tensor reads

sn =

(
31/4 0

0 3−1/4

)
. (A45)

This shape transformation tensor corresponds to the
elongation tensor q̃nij that is parallel to the x axis and
has norm |q̃n| = (ln 3)/4.

The shear by the T1 transition is given by the change
of the average elongation tensor. For the case of a square,
both triangles before and after the T1 transition have the
same elongation tensor with norm |q̃n| = (ln 3)/4. Thus,
also the average elongation tensors for the square before
and after the T1 transition have norm |Q̃| = (ln 3)/4.
However, the axes of both average elongation tensors are
perpendicular to each other, oriented along the diagonals
of the square. Thus the shear by the T1 transition, which
is given by the change of the average elongation tensor
has norm |∆X̃| = (ln 3)/2.

The more general case of a rhombus can be treated by
transforming the rhombus into a square by a pure shear
transformation along the short diagonal of the rhombus.
The effects of this pure shear transformation on the aver-
age elongation tensors before and after the T1 transition
cancel out exactly. Note however that this argument only
works because the axis of this pure shear transformation
is parallel or perpendicular to the elongation axes of all
involved triangles.

In the above arguments, the average elongation was
computed only for the rhombus with area A�. However,
when the triangulation under consideration extends be-
yond the rhombus and has area A, the norm of the shear
by the T1 transition results to be |∆X̃| = (A� ln 3)/(2A).

7. Cellular contributions to isotropic expansion of
a polygonal network

We derive a decomposition of the isotropic expansion
rate Vpkk of the polygonal network. To this end, we first
define the infinitesimal deformation tensor δUpij for the

whole polygonal network using a variant of Eq. (11),
where we sum over polygon edges b along the outline
of the polygonal network instead of triangle sides along
the outline of the triangular network:

δUpij =
1

Ap

∑
b

δhbjν
b
i∆`

b. (A46)

Here, Ap is the area of the polygonal network, the vec-
tor νbi is the unit vector normal to side b that points
outside, the scalar ∆`b is the length of side b, and
δhbj = (δhmj + δhnj )/2 with m and n being the vertices at
the ends of edge b, and δhmj and δhnj being their respec-
tive displacement vectors.

Then we have that:

δUpkk =
δAp

Ap
, (A47)

where δAp is the change of the area across the de-
formation. This equation can be shown using that
Ap =

∑
b r
b
kν
b
k∆`b where the sum is over all polygon

edges b along the outline of the polygonal network,
rbk = (rmk + rnk )/2 with m and n being the vertices at
the ends of edge b, and rmk and rnk being their respective
positions.

Defining the average cell area by āp = Ap/Np where
Np is the number of cells in the polygonal network, we
have for the case without topological transitions:

δUpkk = δ(ln āp). (A48)

Topological transitions are accounted for as explained in
Section IV B. Hence, we finally obtain Eq. (49) with

kpd =
∑
k∈CD

δ(t− tk) ln

(
1 +

1

Np
k

)
(A49)
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kpe = −
∑
k∈T2

δ(t− tk) ln

(
1− 1

Np
k

)
, (A50)

where the sums run over all topological transitions k of
the respective kind, tk denotes the time point of the re-
spective transition, and Np

k is the number of cells in the
network before the respective transition.

8. Cellular contributions to large-scale rotation in
a triangle network

For the sake of completeness, we discuss the decom-
position of large-scale rotation Ω = 〈ω〉, i.e. Ωδt = δΨ,
into cellular contributions similar to the shear rate de-
composition Eq. (42). In particular, we want to relate
Ω to average triangle orientation, which we characterize
using the complex hexatic order parameter P6 with:

P6 = 〈p6〉 with p6 = e6iθ. (A51)

Here, we use again an area-weighted average over all tri-
angles, i denotes the imaginary unit, and θ is the triangle
orientation angle defined in Eq. (15).

In the absence of topological transitions, the change of
the hexatic order parameter P6 relates to the large-scale
rotation rate Ω as follows (using Eq. (27)):

dP6

dt
= 6iP6

[
Ω + ṼijεjkQ̃kif(|Q̃|)

]
+
(
〈vkkp6〉 − VkkP6

)
+ 6i

(
〈ωp6〉 − ΩP6

)
+ 6i

(〈
ṽijεjkq̃kif(|q̃|)p6

〉
− ṼijεjkQ̃kif(|Q̃|)P6

)
(A52)

with f(w) = [cosh (2w)− 1]/[2w sinh (2w)].
The complex hexatic order parameter P6 contains two

pieces of information, the magnitude Z6 of hexatic order
and its orientation Θ6, which are real numbers defined
by:

P6 = Z6e
6iΘ6 . (A53)

Here, the orientation angle is defined to lie within the
interval −π/6 < Θ6 ≤ π/6. The value of the magnitude
can be expressed as the average Z6 = 〈cos (6[θ −Θ6])〉.
Using Eq. (A53), Eq. (A52) splits into an equation for
the magnitude:

dZ6

dt
=
〈
vkk cos (6[θ −Θ6])

〉
− VkkZ6

− 6
〈
ω sin (6[θ −Θ6])

〉
− 6
〈
ṽijεjkq̃kif(|q̃|) sin (6[θ −Θ6])

〉 (A54)

and into an equation characterizing the orientation:

dΘ6

dt
= Ω + ṼijεjkQ̃kif(|Q̃|) + Σ (A55)

with correlations Σ given by:

Σ =
1

Z6

[
1

6

〈
vkk sin (6[θ −Θ6])

〉
+

(〈
ω cos (6[θ −Θ6])

〉
− ΩZ6

)
+

(〈
ṽijεjkq̃kif(|q̃|) cos (6[θ −Θ6])

〉
− ṼijεjkQ̃kif(|Q̃|)Z6

)]
.

(A56)

Eq. (A55) relates the orientation of the hexatic order Θ6,
which can be interpreted as an average triangle orienta-
tion, to the large-scale vorticity Ω. For what follows, we
multiply Eq. (A55) with δt:

δΨ = δΘ6 − δŨijεjkQ̃kif(|Q̃|)− Σδt. (A57)

Here, δΘ6 denotes the change of the average triangle
orientation Θ6. Note the analogy of this equation with
Eqs. (29) and (36).

To account for the effect of topological transitions, one
can proceed as in Section IV. The displacement gradi-
ent across a topological transition is zero and so is its
anisotropic part ∆Ψ = 0 and the shear ∆Ũij = 0. To
account for example for a T1 transition, we introduce
a new term ∆ΞT6 into Eq. (A57), which represents the
rotation by the T1 transition:

∆Ψ = ∆Θ6 −∆ŨijεjkQ̃kif(|Q̃|) + ∆ΞT6 . (A58)

Here, ∆Θ6 is the change of Θ6 induced by the T1 tran-
sition, and we have set the correlations across the T1
transition to zero as we did in Section IV A. After all,
we obtain from Eq. (A58) that ∆ΞT6 = −∆Θ6.

Wrapping up, we find the following decomposition of
the large-scale vorticity:

Ω =
dΘ6

dt
− ṼijεjkQ̃kif(|Q̃|) + ΓT6 + ΓC6 + ΓE6 −Σ (A59)

with the rotations by T1 transitions ΓT6 , cell divisions
ΓC6 , and cell extrusions ΓE6 defined by:

ΓT6 = −
∑
k∈T1

∆Θk
6 δ(t− tk) (A60)

ΓC6 = −
∑
k∈CD

∆Θk
6 δ(t− tk) (A61)

ΓE6 = −
∑
k∈T2

∆Θk
6 δ(t− tk). (A62)

Here, the sums run over all topological transitions k of
the respective kind, tk denotes the time point of the re-
spective transition, and ∆Θk

6 denotes the instantaneous
change in Θ6 induced by the transition.

Note that in principle, one could also use for instance
the triatic order parameter:

P3 =
〈
e3iθ

〉
. (A63)
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A

shear rotates axis of elongation tensor:

shear changes xx component of elongation tensor:

B

FIG. 16. Path-dependence of the cumulative pure shear.
Shown are two finite deformations with the same initial and
final states, but with a different cumulative shear. Initial and
final states are isosceles triangles, with the same elongation
norm. (A) The triangle is sheared along the y axis. (B) The
triangle is sheared such that the elongation tensor is rotated
but the norm stays constant.

However, for our purposes we prefer to use P6 over P3.
This is because for a regular hexagonal array of cells, P3

vanishes, whereas P6 is nonzero. Hence, P6 would allow
us to track large-scale rotations of a regular hexagonal
pattern of cells, which would not be possible using P3.

9. Path-dependence of the cumulative pure shear

Here, we discuss the finite deformation of a triangular
network that starts from a state with configuration I and
ends in another state with configuration F . The initial
and final configuration I and F respectively define all
triangle corner positions and the topology of the network.
We define the corresponding cumulative pure shear by:∫ F

I

δŨij =

∫ T

0

Ṽij dt, (A64)

where the deformation starts at time 0 in state I and
ends at time T in state F .

The cumulative pure shear does not only depend on the
initial and final states I and F , but also on the network
states in between. We demonstrate this path-dependence
of the cumulative pure shear for the case of a single trian-
gle (Fig. 16). The initial state I is given by a triangle with
an elongation tensor parallel to the x axis with q̃nxx = Q0,
whereQ0 is a positive scalar. The final state F is given by
a triangle with an elongation tensor parallel to the y axis
with q̃nxx = −Q0. In initial and final states, the triangle
areas are the same and in both states, θn = 0. Fig. 16
illustrates two different deformation paths to reach state
F from state I. In Fig. 16A, the triangle is sheared along
the horizontal axis, which corresponds to an cumulative
shear along this axis of:∫

A

δũnxx = −2Q0. (A65)

This follows from Eq. (19). In Fig. 16B, the triangle
is undergoes a time-dependent pure shear such that the
elongation axis is rotated but its norm stays constant.
At the same time, to ensure that the orientation angle

does not change δθn = 0, the rotation δψn as given by
Eq. (21) is nonzero. The additional contributions by the
corotational term in Eq. (19) eventually yield [22]:∫

B

δũnxx = − sinh (2Q0). (A66)

Thus, the cumulative pure shear for both integration
paths is different – or put differently, the cumulative
shear is path-dependent. Note that an equivalent state-
ment is that the cumulative shear over a cyclic deforma-
tion is in general nonzero, where by cyclic deformation,
we mean a deformation with coinciding initial and final
states.

Finally, we remark that at least for a triangular net-
work with more than two triangles, the path-dependence
of the cumulative pure shear can be generalized as fol-
lows [22]. We consider a set of tensors Gtr

ij , G
s
ijkl, G

a
ij ,

and Hij that only depend on the given state of the tri-
angular network. Then, the following equation:∫ F

I

(
Gtr
ijδUkk +GsijklδŨkl +Ga

ijδΨ
)

= Hij(F )−Hij(I)

(A67)
can be generally true only if Gsijkl = 0 and Ga

ij = 0.
Hence, even adding a state-dependent factorGsijkl and in-
cluding rotation and isotropic scaling does not resolve the
general path-dependence of the cumulative pure shear.

Since any kind of two-dimensional material can be tri-
angulated, path-dependence of the pure shear holds in-
dependent of our triangle-based approach. It is a mere
consequence of integrating the instantaneous deforma-
tion rate Vij , which is substantially different from defin-
ing deformation with respect to a fixed reference state as
usually done in classical elasticity theory [33].

Appendix B: Analysis of experimental data

1. Quantification of spatially averaged cellular
deformation contributions

The equations derived in Sections III B, III C, and V
hold exactly only for infinitesimal deformations and time
intervals. However, experimental data always has a finite
acquisition frequency. Here, we discuss how we adapt our
theoretical concepts to deal with finite time intervals in
practice.

We start from a series Ok of observed states of a cel-
lular network with k = 1, . . . , Nstates. Each of these
states defines cell center positions and cell neighborship
relations. The states are registered at times tk, respec-
tively. We denote the corresponding time intervals by
∆tk = tk+1 − tk. As a first step, each of the cellular
network states is triangulated according to Section II D.

To quantify the deformation rate and all cellular contri-
butions to it between two observed states Ok and Ok+1,
we introduce three virtual intermediate network states
Ik1 , Ik2 , and Ik3 (Fig. 17, [6, 22]). By introducing these
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pure deformation
= cell center motion

T1 transitions

cell divisions

T2 transitions

observed state Oi: 

intermediate state Ik:

intermediate state Ik:

intermediate state Ik:

observed state Okvi: 

B

C

D

E

FIG. 17. Illustration of the virtual intermediate states Ik1 , Ik2 ,
and Ik3 introduced between two observed states Ok and Ok+1.

intermediate states, we shift all topological transitions to
the beginning or to the end of the time interval ∆tk.
This separates topological transitions from cell center
motions, which now only occur between the states Ik1 and
Ik2 (Fig. 17B,C). We justify this by the fact that given
only the observed data, it is in principle impossible to
know at what exact time between tk and tk+1 a given
topological transition occurred.

We define the three intermediate states Ik1 , Ik2 , and Ik3
based on the observed states Ok and Ok+1 as follows.

1. The intermediate state Ik3 is defined based on Ok+1

by reverting all divisions that occur between the
observed states Ok and Ok+1. To this end, each
pair of daughter cell centers is fused into a mother
cell center. The position of the mother cell center
is defined by the average position of the daughter
cell centers.

2. The intermediate state Ik1 is defined based on Ok

by removing the centers of all cells that undergo a
T2 transition between the observed states Ok and
Ok+1.

3. The intermediate states Ik1 and Ik3 contain the same
set of cell centers, which however differ in their po-
sitions. Also, the topology of both states is differ-
ent. We thus define the intermediate state Ik2 based
on Ik1 by moving all cell centers to their respective
positions in Ik3 .

Note that the intermediate states carry just enough in-
formation to define the triangulation. Vertex positions,
which would be needed to define cellular networks are
not contained.

For the precise explanation of how we compute the cel-
lular contributions to the deformation rate, we focus on
the pure shear part. Contributions to the isotropic ex-
pansion rate or the rotation rate can be computed anal-
ogously. In the following, we denote the large-scale shear
rate quantified from experimental data and contributions
to it with the superscript “exp”.

We define the pure shear induced by a given kind of
topological transition as the negative change of average
elongation that is associated with the respective state
change (Fig. 17). We thus compute the shear rates by T1

transitions T̃exp
ij , cell divisions C̃exp

ij , and T2 transitions

Ẽexp
ij as follows:

T̃exp
ij = − 1

∆tk

[
Q̃ij(I

k
3 )− Q̃ij(I

k
2 )
]

(B1)

C̃exp
ij = − 1

∆tk

[
Q̃ij(O

k+1)− Q̃ij(I
k
3 )
]

(B2)

Ẽexp
ij = − 1

∆tk

[
Q̃ij(I

k
1 )− Q̃ij(O

k)
]
. (B3)

Here, Q̃ij(X) denotes the average triangle elongation in
the virtual or observed state X. We divide by the time
interval ∆tk to obtain the respective rate of pure shear.

To compute the large-scale shear rate Ṽexp
ij , the coro-

tational term J̃exp
ij , and the correlation term D̃exp

ij , we
proceed as follows. We realized that direct application
of Eq. (42) led to large deviations for the fly wing data,
which is exact only to first order in the time interval ∆tk.
We thus split the time interval ∆tk into N subintervals
and then compute Ṽexp

ij , J̃exp
ij , and D̃exp

ij by summing the
respective subinterval contributions. To this end, we in-
troduce intermediate states Sr with r = 1, . . . , N − 1,
which are defined by interpolating all cell center posi-
tions linearly between the states S0 = Ik1 and SN = Ik2 .
Then, the velocity gradient tensor Vexp

ij is computed by

summing the deformation gradients defined by Eq. (11)
for all subintervals:

Vexp
ij =

1

∆tk

N−1∑
r=0

Urij (B4)

with the subinterval deformation gradient

Urij = − εim
2A(Sr)

M∑
α=1

(
rα+1
m (Sr)− rαm(Sr)

)
×(

rα+1
j (Sr+1) + rαj (Sr+1)− rα+1

j (Sr)− rαj (Sr)
)

.

(B5)
Here, A(Sr) and rα(Sr) are total triangulation area and
position of the center of cell α in state Sr, respectively.
The inner sum runs over all margin cells α in counter-
clockwise order. The shear rate Ṽij is the symmetric,
traceless part of Vij .
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The corotational term J̃exp
ij is computed as follows:

J̃exp
ij =

N−1∑
r=0

J̃rij (B6)

with

J̃rij = −2
[
CrΨr+(1−Cr)(Φr+1−Φr)

]
εikQ̃kj(S

r). (B7)

Here, Cr = tanh (2|Q̃r|)/(2|Q̃r|), where Q̃kj(S
r) is the

average triangle elongation in state Sr, and |Q̃r| and Φr

are its norm and angle. The symbol Ψr denotes the an-
tisymmetric part of the subinterval deformation tensor
Urij , analogous to Eq. (5).

The correlation term D̃exp
ij is computed as

D̃exp
ij =

1

∆tk

N−1∑
r=0

[
−
(〈

urkkq̃ij(S
r)
〉
− UrkkQ̃ij(S

r)
)

+
(
〈̃jrij〉 − J̃rij

)]
(B8)

Here, un,rkk and j̃n,rij are isotropic expansion and corota-
tional term of triangle n with respect to the subinterval
between Sr and Sr+1, and q̃nij(S

r) is the elongation of
triangle n in state Sr. The averaging for a given value of
the summation index r is carried out with respect to the
triangle areas in state Sr.

Finally, we compute the corotational derivative of the
average elongation as follows:

DQ̃exp
ij

Dt
=

1

∆tk

[
Q̃ij(O

k+1)− Q̃ij(O
k) + J̃exp

ij

]
(B9)

Here, J̃exp
ij is the corotational term as computed from

Eq. (B6).
Using all these definitions, we can make Eq. (42) hold

arbitrarily precise by choosing a sufficiently large value
for N . For the data shown in Figs. 11 and 12, we chose
N = 100. Note that this approach to deal with the finite-
ness of the time intervals ∆tk is different from the ap-
proaches chosen in our previous publications [6, 22].

2. Spatial patterns of shear components

To compute spatial patterns of large-scale tissue defor-
mation and their cellular components as in Fig. 10, we
introduce a grid of squared boxes, which are labeled by
the index b. In Eq. (10), we introduced an average over
triangles to compute large-scale quantities. Here, we in-
troduce such an average for a given box b. For instance,
the box-averaged shear rate Ṽbij = 〈ṽij〉b is defined as:

〈vij〉b =
1

Ab

∑
n

anb v
n
ij (B10)

The sum is over all triangles n that have an overlap with
box b, and anb is the area of this overlap. The normaliza-
tion factor Ab is the overlap area between box b and the
triangulation, i.e. Ab =

∑
n a

n
b .

Infinitesimal time intervals

Here and in the following, we focus our discussion on
the computation of the pure shear part and its cellu-
lar contributions. First we ask how the box-averaged
shear rate Ṽbij decomposes into cellular contributions for
an infinitesimal time interval δt and in the absence of
topological transitions. To this end, we insert the rela-
tion between single triangle shear rate and triangle shape,
Eq. (23), into Eq. (B10) and obtain an equation that is
analogous to Eq. (32):

Ṽbij =
DQ̃bij
Dt

+ D̃bij . (B11)

However here, the corotational time derivative contains
an additional term B̃bij :

DQ̃bij
Dt

=
δQ̃bij
δt

+ B̃bij +
δJ̃bij
δt

(B12)

with the definitions

Q̃bij = 〈q̃ij〉b (B13)

B̃bij = −
(〈

q̃ij
d

dt
(ln fb)

〉
b

− Q̃bij

〈
d

dt
(ln fb)

〉
b

)
(B14)

δJ̃bij = −2
[
Cb〈δψ〉b + (1− Cb)δΦb

]
εikQ̃

b
kj . (B15)

Here, fnb = anb /a
n is the area fraction of triangle n that

is inside box b, and Cb = tanh (2|Q̃b|)/2|Q̃b|. The sym-

bols |Q̃b| and Φb denote norm and angle of the average

elongation tensor Q̃bij , respectively. The correlation term
in Eq. (B11) is defined by

D̃bij = −
(〈

vkkq̃ij
〉
b
− 〈vkk〉bQ̃bij

)
+

1

δt

(
〈δ̃jij〉b − δJ̃bij

)
.

(B16)
Eq. (32) describes a triangulation that is followed as it
moves through space, whereas here, we consider a box b
that is fixed in space. Correspondingly, the we interpret
the additional term B̃bij in the corotational derivative as
a convective term.

Finite time intervals

To practically compute the pure shear contributions for
a given box b for experimental image data, we proceed
similar to the previous section. We consider again a fi-
nite time interval ∆tk between two subsequent observed
states Ok and Ok+1. To separate pure shear contribu-
tions by topological transitions from contributions by cell
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center motion, we introduce again the intermediate states
illustrated in Fig. 17. Correspondingly, the shear rates

by T1 transitions T̃exp,b
ij , by cell divisions C̃exp,b

ij , and by

T2 transitions Ẽexp,b
ij are defined as:

T̃exp,b
ij = − 1

∆tk

[
Q̃bij(I

k
3 )− Q̃bij(I

k
2 )
]

(B17)

C̃exp,b
ij = − 1

∆tk

[
Q̃bij(O

k+1)− Q̃bij(I
k
3 )
]

(B18)

Ẽexp,b
ij = − 1

∆tk

[
Q̃bij(I

k
1 )− Q̃ij(O

k)b
]
. (B19)

The tensors Q̃bij(X) denote the box-averaged triangle
elongation in the virtual or observed state X.

To compute the box-averaged shear rate Ṽexp,b
ij , the

convective term B̃exp,b
ij , the corotational term J̃exp,b

ij , and

the correlations D̃exp,b
ij between Ok and Ok+1, we use

the subintervals and the states Sr with r = 0, . . . , N
introduced in the previous section. We again compute
the quantities for each subinterval separately and then
sum over the subintervals:

Ṽexp,b
ij =

1

∆tk

N−1∑
r=0

〈ũrij〉 (B20)

B̃exp,b
ij = − 1

∆tk

N−1∑
r=0

(〈
q̃ij(S

r)
∆frb
frb

〉
b

− Q̃bij(S
r)

〈
∆frb
frb

〉
b

)
(B21)

J̃exp,b
ij =

N−1∑
r=0

J̃b,rij (B22)

J̃b,rij = −2
[
Cb,rΨb,r + (1− Cb,r)(Φb,r+1 − Φb,r)

]
×

εikQ̃
b
kj(S

r)

(B23)

D̃exp,b
ij =

1

∆tk

N−1∑
r=0

[
−
(〈

urkkq̃ij(S
r)
〉
b
− 〈urkk〉bQ̃bij(Sr)

)
+
(
〈̃jrij〉b − J̃b,rij

)]
.

(B24)

Here, un,rkk and ũn,rij are trace and symmetric, traceless
part of the deformation tensor of triangle n according
to Eq. (8) with respect to the subinterval between Sr

and Sr+1, q̃nij(S
r) is the elongation of triangle n in

state Sr, fn,rb is the value of fnb in state Sr, and its

change is ∆fn,rb = fn,r+1
b − fn,rb . We furthermore used

Cb,r = tanh (2|Q̃b,r|)/(2|Q̃b,r|), where |Q̃b,r| and Φb,r are
norm and angle of the box-averaged elongation in state
Sr, Q̃bij(S

r). The symbol Ψb,r denotes the antisymmet-
ric part of the box-averaged deformation tensor in state r
and the tensor j̃n,rij denotes the corotational term for tri-
angle n with respect to the subinterval between Sr and

Sr+1. Finally, the corotational derivative of the box-
averaged elongation is computed as

DQ̃exp,b
ij

Dt
=

1

∆tk

[
Q̃bij(O

k+1)− Q̃bij(O
k) + J̃exp,b

ij

]
. (B25)

For the patterns shown in Fig. 10, we used N = 100
subintervals.

Appendix C: Comparison to related approaches

Other work has discussed tissue deformation and con-
tributions of cellular processes to tissue deformation [13–
18]. Such approaches differ in the definitions of cellular
contributions to tissue shear as well as the tissue deforma-
tion measures used. Our approach provides an exact local
decomposition of tissue deformation into cellular contri-
butions which can be coarse-grained by simple averaging
(Eq. (3)). In fact, an area-weighted average of triangle
measures generates in our approach the exact large scale
deformation tensor (Eq. (9)). Other approaches are usu-
ally either approximate and neglect certain contributions
or they involve nonlinear deformation measures, which
cannot be simply averaged to obtain the large-scale tis-
sue deformation. However in our approach, averaging of
corotational terms leads to correlation contributions that
are exactly defined and correspond to a renormalization
effect. Note that the definitions of deformations and de-
formation contributions defined here commute with their
coarse-graining. This implies that if a cell network is di-
vided into subnetworks, our results are independent of
whether (i) the deformation and its contributions are de-
termined for the whole tissue or (ii) the deformations
and their respective contributions are determined first for
each subnetwork individually and the resulting quantities
are then averaged. This property holds at most approxi-
mately for alternative approaches that use nonlinearities
[14, 18]. Furthermore, in the work presented here, large-
scale tissue deformation can be determined from the de-
formation of the tissue margin alone (Eqs. (4) and (11)).
Note that because of these coarse-graining properties, we
could identify the significance of correlation contributions
to tissue shear in the developing fly wing (Eq. (34)).

Our approach can separate the precise contributions of
different types of topological transitions to tissue shear.
Recent work also has this property [18], but another,
qualitatively different, approach currently does not pro-
vide such a separation [15, 16]. The approach in Refs.
[15, 16] accounts for cell rearrangements (i.e. T1 transi-
tions) by a tensor that quantifies the continuous sliding
of cells relative to each other. As a consequence, the de-
formation contribution of a T1 transition to tissue shear
is not associated with the precise time point of the topo-
logical transition, but is typically distributed over a short
time interval. In contrast, the method of Ref. [18] and
the Triangle Method presented here associate the contri-
bution of a topological transition to deformations with
the time point at which the transition occurs. There
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exists an analogy of tissue deformations to plasticity of
complex materials. Cell deformations correspond to elas-
tic material deformations and topological transitions cor-
respond to changes of a stress-free reference state of a
plastic material. Both elastic and plastic stress events
contribute to the overall material deformation. Plastic
contributions are associated with the time points when
the reference state defining elastic stresses changes. The
precise definition of such reference state changes permits
the exact decomposition of overall deformations in con-
tributions stemming from specific reference changes.

In the main text of our manuscript, we have developed
our framework for the case of infinitesimal time intervals.
However, our approach can also be applied to finite time
intervals as discussed in Appendix B 1. The essential idea
is to integrate the infinitesimal quantities over the finite
time interval. When in experiments only network config-

urations at discrete time points are available, this can be
done by linearly interpolating the cell positions between
frames. Alternative approaches decompose finite tissue
deformations in a non-linear manner which does not re-
quire this interpolation [13, 18]. Note that the equations
presented in the main text are valid for infinitesimal time
intervals between subsequent states. However, they hold
for arbitrary cell shapes.

The frameworks based on infinitesimal time intervals,
in Refs. [14–16] and in our work, have the property that
contributions of cell shape changes to tissue deformations
can be expressed as a difference or a material time deriva-
tive of a state quantity (Eqs. (23), (32), and (42)). This
directly reflects the fact that cellular shape only depends
on the geometry of a tissue at a given time point. This
property is somewhat obscured in approaches that use
nonlinearities to account for finite time intervals [18].
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