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ABSTRACT 18 We examine high-resolution urban infrastructure data using every pipe for the water 19 distribution network (WDN) and sanitary sewer network (SSN) in a large Asian city (≈4 million 20 residents), to explore the structure, as well as the spatial and temporal evolution of these 21 infrastructure networks. Network data were spatially disaggregated into multiple subnets for 22 functional zones to examine intra-city topological differences for WDN and SSN, while time-23 stamped SSN data were examined to understand network evolution over several decades as the 24 city expanded. Graphs were generated using a dual mapping technique (Hierarchical 25 Intersection Continuity Negotiation - HICN), which emphasizes the functional attributes of these 26 networks. Network graphs for WDN and SSN are characterized by several network topological 27 metrics, and a double Pareto (power-law) model approximates the node-degree distributions of 28 both water infrastructure networks (WDN and SSN), across spatial and hierarchical scales 29 relevant to urban settings, and throughout their temporal evolution over several decades. These 30 results indicate that generic mechanisms govern the networks' evolution, similar to those of 31 scale-free networks found in nature. Deviations from the general topological patterns are 32 indicative of: (1) incomplete establishment of network hierarchies and functional network 33 evolution, (2) capacity for growth (expansion) or densification (e.g., in-fill), and (3) likely 34 network vulnerabilities. We discuss the implications of our findings for the (re-)design of urban 35 infrastructure networks to enhance their resilience to external and internal threats.  36 
Keywords: complex networks, functional dual mapping, double power-law, HICN, water 37 distribution system, sanitary sewers 38 PACS numbers: 89.75.Fb, 89.75.Da, 89.65.Lm, 89.20.Kk  39 
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I. INTRODUCTION 40 Urban infrastructure networks are designed and planned for each city and as new urban 41 districts are added to suit the city's geography, to meet the demands of the growing urban 42 population for critical services (energy, water, transportation, communication, etc.), and to 43 comply with engineering design constraints based on local regulations. As cities around the 44 world are growing at accelerating pace, it is of considerable interest to investigate how the 45 structure and functions of urban infrastructure networks evolve over time and space. 46 Specifically, what are the topological differences between urban infrastructure networks for 47 water distribution and drainage? How does the network topology change over time as the city 48 grows? How are the impacts of urban design changes and geographical constraints manifested in 49 the spatial organization and the link between network structure and functions? These and 50 related questions motivate our study, which examines high-resolution water infrastructure data 51 for a rapidly growing, large city in Asia confronted with significant water security challenges. 52 Power-law relationships have been found for the geometries of cities [1–5], as well as for 53 socio-economic metrics of urban areas, such as GDP, income, crime, innovation, etc. [7–10], and 54 other functional attributes, such as traffic  [6,11]. Many authors argue that, in comparison to 55 socio-economic, biological or communication networks, urban infrastructure networks, such as 56 roads, tend to show sparse structures with the absence of scale-free topologies [2,6,12]. A 57 limited number of studies have analyzed the structure and function of below-ground urban 58 infrastructure networks, and, to our knowledge, few have analyzed large networks, because such 59 data are not as freely available as above-ground infrastructure  [13]. For example, Yazdani and 60 Jeffrey [14] analyzed the geometry of water distribution networks (WDN) of four small cities 61 using a complex networks approach (primal mapping, see below). They found these networks, 62 similar to the roads analyzed by other authors, to be sparse with an absence of degree-based 63 hubs, with node-degrees ranging from 2 to 4 (average=2).  64 In complex networks analyses of infrastructure networks, using so-called primal 65 
mapping, nodes are usually conceived as intersections, and the segments crossing at these 66 intersections as links. In contrast to this, dual mapping approaches rely on additional 67 information of these infrastructure networks, such as hierarchies, to determine the nodes 68 (pipes) and links (intersections) of a network, embedding it in so-called "information space". By 69 recovering the inherent hierarchy of the network and removing the constraints of primal 70 mapping, dual mapping allows for the hierarchical properties of the networks to emerge, and 71 thus produces more useful information about the functional aspects of the network  [15–17].  72 Kalapala et al. [18] found national road networks analyzed as dual maps for the US, Denmark 73 and England to be scale-invariant. Masucci et al. [19] introduced a refined dual mapping 74 approach, Hierarchical Intersection Continuity Negotiation (HICN), which is based on 75 
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hierarchies, and was used to analyze the evolution of London's road network [19]. Their analysis 76 showed that, while the entire street networks resulted in a robust lognormal distribution, the 77 node-degree distributions for only the major roads resulted in a truncated double power-law (or 78 double Pareto) distribution, and the road networks analyzed in  [15] conform with these 79 patterns.  80 Here, we investigate the temporal evolution of the sanitary sewer network (SSN) 81 topology over several decades, as well as network topologies across space and functional 82 hierarchies for both, WDN and SSN in a large Asian city. To our best knowledge, this is the first 83 study to explore temporal and hierarchical evolution of urban water infrastructure networks. 84 We find that earlier results found for the topology of mature road and sewer networks in a mid-85 size U.S. city (around 1 million residents; flat topography; temperate climatological setting) [20], 86 and for major road networks in several countries  [15,18,19] also apply to the sanitary sewer 87 and water distribution networks of this large Asian city set in a very different geographical 88 setting (arid climate, significant topography). We add several insights on the evolution of water 89 infrastructure networks, on differences and similarities in the topologies of the two types of 90 water infrastructure networks, as well as on the interpretation of deviations from the generic 91 patterns found for urban infrastructure networks. 92 Our analysis is based on dual mapping of water infrastructure networks, where the pipe 93 diameter, which determines the flow capacity (e.g., designed maximum discharge) of these 94 pipes, is used to assign hierarchies. This mapping based on a functional attribute of the analyzed 95 water networks results in generic patterns across spatial and temporal scales, as the networks 96 grow along with population size and city area. Our analyses show that various topological 97 metrics are determined primarily by network size. The NDD for both types of water networks 98 can be approximated by a Pareto power-law [Eq. 1(a); large, mature networks], or double Pareto 99 power-law distribution [Eq. 1(b); small, immature networks], described by a function in the 100 form:  101 
p(k) = ak-Υ     (1a)  102 

p(k) = ak-Υtrunk bk-Υtail     (1b), 103 for 2<k, where the exponent, γ, of the trunk for both WDN and SSN converge above a threshold 104 of network size, measured as dual-mapped nodes N>102. While the generality of power-law 105 scaling of SSN is in agreement with earlier work  [15,16,19,20] and extended to WDN in this 106 study, we reveal here, for the first time, that variations in the tail part of  the NDD indicate 107 differences in the structure of the networks, their stage of evolution and potential functional 108 vulnerabilities.  109  These insights about the evolution of water infrastructure networks are highly relevant 110 in terms of: 1) reducing the extent of individual engineering planning necessary for constructing 111 new or extending existing urban water pipe networks. Information about the city size allows the 112 
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prediction of the topological features of the water infrastructure network (distribution of pipe 113 hierarchies, i.e., diameters, and number of intersections) necessary to efficiently supply its 114 population, because below-ground pipe networks unavoidably result in generic topological 115 features; and 2) offering a simple and inexpensive approach to examine potential vulnerabilities 116 of the networks, based on deviations from the expected topological features. Thus, these findings 117 can have important implications for infrastructure network maintenance, retro-fitting, and (re-) 118 design. 119 In the following, we first describe (Section II) the data analysis methods we deployed, 120 and discuss data constraints that translate to limitations. In Section III we present topological 121 features of dual-mapped networks for: 1) variously sized subsets of water networks clipped 122 from the whole network, 2) the temporal evolution of the SSN as the city grows over a 47-year 123 period (1969-2015), and 3) pipe networks of different hierarchies incrementally adding smaller 124 diameter pipes to the main water conveyors. We set a particular focus on the double Pareto 125 power-law functions characterizing the node-degree distributions of the networks. We close 126 (Section IV) with a discussion of the practical implications of our analyses in terms of water 127 infrastructure design, spatiotemporal evolution, vulnerabilities, and network resilience. 128 
II. METHODS  129 A. Dual mapping  130 Converting a spatial map into a network graph allows topological analysis of the 131 network, by simplifying spatial structures into network relations. In primal mapping, each 132 network (e.g., pipe or road) segment is mapped as an edge (e), and the intersections of these 133 segments are mapped as nodes (n), as done for water distribution networks in  [21]. Conversely, 134 in dual mapping, pipes are generally conceived as nodes, and intersections as edges. We applied 135 the HICN dual mapping approach proposed by Masucci et al. [19]. The authors based the HICN 136 method on a hybrid of two dual mapping techniques: the more widely used intersection 137 continuity negotiation (ICN)  [15,17,22,23] and the street name approach (SN), which are both 138 described in Porta et al.  [15]. ICN uses the geometrical properties of the planar map to derive 139 the nodes of the graph, by merging aligned (straight) road segments across intersections. SN 140 uses the "information space", and merges contiguous road segments into one node, if they have 141 the same street name. Masucci et al.  [19] combined these methods, by merging contiguous pipe 142 segments according to the ICN method with a π/2 threshold (merging road segments that are 143 connected with the convex angle > 90°) for different classes of roads as proposed in the SN 144 method. Instead of using street names as classes of roads, the authors used road hierarchies as 145 classes (motorways, class A roads, class B roads, minor roads), thus introducing the hierarchical 146 element into dual mapping.  147 
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We applied the HICN method here to create a dual graph from a spatial map by merging 148 multiple contiguous edge segments and re-defining them as one node if the convex angle 149 between segments is >90°, and the hierarchy (in this case: pipe diameter) is unchanged (given 150 that it does not cross a pipe of larger diameter). This approach recognizes the continuity of a 151 pipe over a multitude of intersections, and organizes the network into functional units based on 152 flow capacity (i.e., pipe diameter, and thus maximum designed flow). In a first step, we extracted 153 the lists of nodes and edges of the primal graph. The edge list contains identifiers, source and 154 target nodes, as well as the pipe diameter for later classification of their hierarchy. In the second 155 step, contiguous pipe segments of the same hierarchy are merged to form a single node, starting 156 from a randomly selected pipe (edge) in the network, and growing it in both directions until the 157 angular threshold is reached, or the pipe hierarchy changes. This procedure is repeated until all 158 pipes (primal edges) in the network are converted into dual nodes. In the final step, dual edges 159 are created where two dual nodes share an intersection.  160 The benefit of this dual mapping approach over primal mapping is that primal mapping 161 would partition functional pipe units into several edges connected by multiple nodes 162 (intersections), and consequently restrict the topological analysis [e.g., in primal mapping, any 163 node has a maximum of ≈ 4 edges, while a functional pipe unit of high order in the hierarchy 164 (e.g., a main supply pipe) can connect to dozens of lower order pipes (e.g., supply districts or 165 households)]. Figure 1 illustrates the primal mapping versus the dual mapping approach applied 166 here.  167 

 168 Fig. 1: Schematic of primal versus dual mapping approach applied in this study (left: spatial maps, right: 169 network graphs). Top: primal mapping counts each pipe segment between intersections as edges (e), and 170 the intersections as nodes (n), resulting in e=7, and n=3 in this schematic example. Bottom: Dual mapping 171 creates a node from several pipe segments, which form a functional unit based on unchanged pipe 172 diameter (flow capacity). Intersections connecting different functional pipe units form edges, resulting in 173 e=3 and n=4. 174 
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B. Topological analysis of spatial and temporal evolution 175 Subnets of the water distribution and sewer pipe systems were created in four different 176 ways, and were used to create dual mapped graphs, and to analyze spatial and topological urban 177 metrics:  178 1) Subnets of WDN and SSN clipped from the entire pipe networks based on water 179 Distribution Zones (DZs). DZs represent functional units for water distribution, which are each 180 equipped with one (or several) water reservoir(s) from where water is supplied to the 181 customers. We used the same DZ boundaries to clip sanitary sewer subnets from the whole 182 network, and analyzed the largest connected component found therein. 183 2) Functional sewer units were extracted by creating a hierarchical network based on 184 Strahler numbers, as is used for river networks  [24–26], and then incrementally removing 185 higher-order sewer pipes from the whole network, which created functional sewer subnets. 186 Strahler numbers (first developed in hydrology by Horton and Strahler  [24,25]) are used to 187 assign hierarchies to branches of a mathematical tree, and were first employed to sewers in the 188 generation of virtual drainage networks  [27]. In the Strahler Ordering method, the smallest 189 branches (in hydrology: headwater streams) are given a Strahler Order i=1 ("first-order" 190 stream), two converging first-order streams create a second-order stream, and so on. Two 191 converging streams of the same order (i) create a stream of order (i+1), but if a lower-order 192 stream merges with a higher-order stream the number of the higher-order stream remains 193 unchanged. The largest stream in the network has the highest Strahler number. 194 3) Sewer networks modeled for 10 time steps reproduced the functional sewer network 195 evolution from 1969-2015 (Fig. 2 shows 6 of the 10 time steps). We used time-stamped SSN data 196 in the form of construction year of sewer pipes, and adjustment of replaced pipes to the original 197 installation date. This was done by determining the outlet of the sewer system at the treatment 198 plant and creating sewer-sheds with the help of the bifurcating tree Strahler Ordering method 199 described above, and then adjusting downstream pipe segments' age to the oldest upstream 200 pipe.  201 4) Networks of different hierarchies were analyzed for different pipe diameters, starting 202 with the largest pipe diameter, and incrementally changing the diameter thresholds to "grow" 203 the network from the skeleton up to the entire network. Figure 3 illustrates the entire WDN and 204 SSN with different pipe hierarchies.  205 The largest connected component (functional sub-units) for each water sub-network was 206 analyzed, and treated as undirected networks for the analysis of the topological features. We 207 applied this approach to the analysis of the spatial subnets clipped according to functional water 208 DZs, as well as to different pipe diameters.  209 
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 210 Fig. 2. Temporal evolution of sewer network 1970-2015. 1970 network is highlighted in all time steps. 211 Topological analysis was performed for 10 time steps with results being consistent with those of the 212 functional subnets; data for 6 time steps are shown. 213  214 

 215 Fig. 3. Pipe hierarchies (diameters) of the entire WDN (left) and SSN (right). Network topologies were 216 analyzed separately for the highest pipe hierarchy, and for networks with pipes added for an 217 incrementally shrinking pipe diameter threshold. Networks shown here are the entire networks "grown" 218 from the “backbone” (largest diameter pipes). 219 C. Data and analysis limitations 220 In the extraction of subnets for our analysis, we removed disconnected pipes from the 221 network, and present the results of the network topological analyses by network size, 222 
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represented by the number of dual mapped nodes. This eliminates a potential bias introduced by 223 the reduction of SSN subnets by the disconnected pipes. 224 Finite size effects of real-world systems and data limitations challenge the statistically 225 robust estimation of power-law (PL) parameters  [28]. Patterns found at small scales can only 226 repeat themselves at larger scales across a limited range of scales, and are subject to subtle 227 changes as scales are changed, thus being limited in resembling the theoretical concept of "scale-228 free" networks [3]. We recognize these challenges and estimate PL pdfs [p(k), probability 229 
distribution functions] with frontal truncation to account for minimum node-degree and network 230 resolution, and distal truncation to acknowledge finite-size effect. We fit double power-law 231 functions [29] following the guidelines proposed by Clauset et al. [30], and refined by Corral and 232 Deluca [28], using maximum-likelihood estimation and testing for goodness-of-fit for PL to our 233 data. Minimum node-degree for frontal truncation is expected to be 2, representing a single pipe 234 segment, connected at both ends. The generating mechanism (bounded preferential 235 attachment), which produces power-law behavior, would adequately describe the evolution of 236 urban water networks, which lends confidence to our chosen method. This physical generating 237 mechanism has been explored by Carletti et al.  [31]. See Appendix A for more information on 1) 238 the methods of network extraction, 2) the algorithm applied for generating dual maps, and 3) for 239 fitting of power-law distribution functions. 240 

III. RESULTS AND DISCUSSION 241 
Investigated total urban area focused on the city's water DZs, and was approximately 242 623 km2 in area, with 8,725 km of water distribution pipes. Analyzed sanitary sewer lines 243 (≈5,133 km) served around 80% of the total population in 2015. Data analyzed comprised all 244 water supply and sanitary sewer lines from the source to the street connections (without house 245 connections), and from the street connections to the wastewater treatment plant for the city 246 area, respectively. Subnet creation according to water DZs resulted in subnets ranging in areas 247 from about 1 to 110 km2, with estimated populations from 56 to 300,272, respectively. 248 Converted into dual mapped graphs, these networks contained between 11 and 4,029 dual 249 nodes for WDN (82 to 33,588 nodes in primal mapping) and between 9 and 8,117 dual nodes for 250 SSN (239 to 83,291 primal nodes). All topological network analyses were performed based on 251 the dual graphs of the water pipe networks.  252 

A. Topological Metrics of Water Networks 253 Network density is the fraction of links in a graph over the maximum possible number of 254 links, indicating how well connected the nodes are within the network. While for primal mapped 255 
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planar networks there is an upper boundary for the number of edges a node can have  [12] M ≤ 256 
3N-6, in dual mapping, network density is defined as:  257 

q = [2M/N(N-1)]      (2) 258  where N = number of nodes, M = number of edges. Network density values for the analyzed 259 graphs fall within a single PL distribution with an exponent of 0.96, which strongly emphasizes 260 the self-similarity of and homogeneity among the analyzed networks [Fig. 4(a)].  261 Average node-degree of the analyzed networks fell within a range between 1.8 and 2.5 262 for all subnets of sizes 10 to 8,117 nodes. With growing network size, the average node-degree 263 increased to around 2.5 for WDN with significant scatter, with a mean of 2.2, while for SSN the 264 average node-degree did not rise significantly above 2.0, and had a mean of 2.0 for all networks 265 [Fig. 4(b)]. This is an interesting result, as an average node-degree of ≈2 (with little variance) is 266 expected for branching trees in primal mapping. In dual mapping, even though the average 267 node-degree remains between 2 and 3, we find a much larger variance than in primal mapping, 268 with few nodes having as many as ≥50 links. This indicates the importance of looking at the 269 shape of the distributions, not only at the mean topological metrics, which we expand on in 270 Section III.B. 271  The clustering coefficient is the ratio of the number of edges between the neighbors of a 272 node n, and the maximum number of edges that could possibly exist between the neighbors of n. 273 It hence measures the number of triangles in a network. The clustering coefficient of a node is 274 calculated as:    275 
    CCn = [2en/(kn(kn-1))]                        (3) 276 where kn is the number of neighbors of n and en is the number of connected pairs between all 277 neighbors of n. We calculated the average clustering coefficients for all nodes in each network, 278 which is an indicator of modularity in the network  [32]. The low clustering coefficients (<0.1 for 279 all networks >60 nodes, and in 96% of all cases) show that the analyzed networks do not have 280 small-world characteristics and modular organization is weak  [33].  281 Compared with average node-degree the clustering coefficient increases with average 282 node-degree, which may be an indicator of the network forming clusters, in this case in the form 283 of subnets (for SSN), and increasing modularity of WDN as these networks grow. However, 284 clustering was found to be higher in WDN than in SSN, which indicates a more modular 285 structure of the WDN networks compared to the more tree-like structures expected for SSN 286 [Fig.4(c)].  287 Network centralization indicates whether the network structure is decentralized 288 (network centralization = 0) or star-like (centralization = 1). It is calculated as:   289 
  C = [N/N-2(max(k)/(N-1)-q)] = [max(k)/N - q]                (4) 290 
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where q=density  [34]. Network centralization of the analyzed networks decreases with 291 increasing network size [Fig. 4(d)]. Characteristic path length is the average shortest path 292 connecting any two nodes in a network. This, too, increases with size for all WDN and SSN 293 subnets [Fig. 4(e)]. 294 Clustering and centralization metrics are in accordance with our knowledge of the city’s 295 water distribution system, which is organized into gravity-driven distribution zones, as well as 296 the gravity-driven sanitary sewer system resulting in tree-like structures. The hilly terrain of the 297 city makes these gravity-driven systems break up into relatively small natural watershed 298 boundaries, following the undulating shape of the landscape, and hence create a collection of 299 sub-watersheds and sub-sewer-sheds connected toward the inlets and outlets. 300 The network heterogeneity metric used here is the coefficient of variation of the node-301 degree distribution, and is defined as the coefficient of variation (CV)  [34]. This metric reflects 302 the tendency of a network to contain hubs. Network heterogeneity was between 0.5 and 1.5 for 303 most analyzed networks [Fig. 4(f)], while a significant occurrence of hubs was found for 304 networks with higher heterogeneity values (>1.5), which is in line with expected heavy-tailed 305 distributions for CV>>1.  306 
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 307 Fig. 4. Topological network metrics for all (110) analyzed subnets, including the entire networks for 308 various time steps, and hierarchical subnetworks. WDN (blue circles) and SSN (red dots): (a) Network 309 density follows a PL distribution (y = 1.76x-0.96, R2=0.995); (b) Average number of neighbors (av. node-310 degree) increases for small network sizes, and converges to ≈ 2 for SSN, and ≈ 2.3 for WDN); c) Clustering 311 coefficient versus average node-degree; d) centralization follows a power law (y = 2.03x-0.62, R2=0.85); e) 312 characteristic path length increases in the form: y = 1.38x0.31, R2=0.83); f) network heterogeneity. 313 B.  Node-degree distributions 314 Besides these network topological metrics, we analyzed the node-degree distributions, p(k), 315 for each subnet, and find that dual-mapped infrastructure networks for both water distribution 316 and sewer networks of various sizes, hierarchies and ages follow a truncated (double) power-317 law distribution. While for small networks (< 120 nodes) fitting a model to the empirical NDD 318 
[p(k)] delivered unreliable estimates, for larger networks we fitted double power-law functions, 319 as well as exponentially truncated power-law functions to the data. We determined the breaking 320 points between trunk and tail of the double Pareto power-law distributions by using the method 321 introduced by  [30], and fitted a truncated power-law function to the "trunk" segment (k ≥ 2) 322 
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and the "tail" segment (k > kbreak) of the distributions, respectively (see Fig. 5(a)).  A threshold 323 size of 120 nodes was set, as γtrunk values below that strongly fluctuated, which is a result of 324 fitting to too few data points for a network that is not fully developed. Two outliers (DZs 6 and 325 25) of the WDN subnets [see Fig. 5 (c)], with network sizes n = 511, and n = 735 dual nodes, 326 respectively, also resulted in unsatisfactory results, when trying to fit a function to the NDD. The 327 mean PL exponent for analyzed networks above 120 dual-mapped nodes was γtrunk = 2.53 ±0.25 328 for WDN, and γtrunk = 2.41 ±0.30 for SSN. For the tail of the distributions, we found γtail = 1.35 329 ±0.40 for WDN, and γtail = 1.45 ±0.55 for SSN [p-values from the KS-statistic for power-law fits 330 ranged from 0.15-0.99 with a mean of 0.70].  331 Four major findings can be derived from these results:  332 1) The trunks of the distributions for large and mature networks converge at γtrunk = 2.45 333 ±0.27 for network size ≥200 dual-mapped nodes [Fig. 5(c)], which emphasizes the generic 334 patterns of these networks in spite of their geometric differences. This value is in the same range 335 reported for sewer networks by Klinkhamer et al.  [20]. 336 2) The tails exhibit noise, and tails are reduced as the networks grow and mature. The noise 337 can be explained by an imperfect process of preferential attachment that is limited at the local 338 scale, as elaborated by Carletti et al.  [31], because in real-world cases, information about the 339 entire network is incomplete or spatial restrictions do not allow perfect preferential attachment. 340 Carletti et al.  [31] found that this partial information leads to an exponential tail, as opposed to a 341 power-law tail, but that the power-law behavior is preserved over a finite small range of node-342 degrees. The partial information model of network growth  [31] translates to constraints for link 343 formation, in our case, spatial or design constraints for the attachment of water pipes. We fitted 344 both, double Pareto, as well as exponentially truncated power-laws, and found that the former 345 resulted in better fits. Based on our findings and according to the model presented by Carletti et 346 al.  [31], evolution of the water infrastructure networks analyzed here leads to convergence of 347 the pdfs from the trunk towards the tail, as pipes are added to the network, and the tail part of 348 the distribution is reduced, hence reducing the noise in the overall distribution. This is reflected 349 by the increasing breaking points between the trunk and tail distributions [Fig. 5(d)]. High-350 degree, low-probability pipes form the backbone of the system. As the networks mature and 351 more districts/households are connected to the networks by preferential attachment, the pdfs of 352 NDD become more evidently (single and truncated) power-law [Fig. 5(a), Fig. 6(d)]. 353 3) Both types of networks, WDN and SSN, produced surprisingly similar results [see Fig. 354 5(b)], in spite of their differences in pipe layouts. This could be explained by the organization of 355 the city's water distribution system into multiple water DZs, each equipped with one or more 356 water reservoirs from where the water is distributed to customers by gravity. As such, this WDN 357 functions more as tree-like structures with "reversed" flows (DZs with a single source to 358 multiple destinations), as compared to SSN (multiple sources to single (few) destination). Thus, 359 
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loops seem to a limited functional role in this WDN. In other WDN where pressure distribution 360 and flow directions vary with demand (load) variations, loops play a more important role.   361 

 362 Fig. 5. Characteristics of node-degree distributions: (a) NDD of SSN in 2005 (3,938 dual-mapped nodes, 363 52,675 primal nodes) follows a (double) PL function with breaking point kbreak= 10, p(k≥2) = 1.22k-2.41 for 364 the trunk, and p(k> kbreak) = 2.74k-2.95 for the tail; (b) Comparison of NDD of similarly sized subnets of WDN 365 (DZ10, circles) and SSN (2005 network, asterisks) highlights the similarity of topologies among SSN and 366 WDN; (c) Box plot showing heteroscedasticity of PL exponents for the trunks of WDN (hollow) and SSN 367 (dashed) across the full range of subnet sizes; [mean (small squares), median (thick line), interquartile 368 range (box), [25-75th-percentile ±(1.5* Interquartile Range)] (whiskers), outliers (diamonds)]. Υtrunk 369 converges at γtrunk = 2.45 ±0.27 for network size ≥200 dual-mapped nodes (mean of γtrunk = 2.53 for WDN, 370 and γtrunk = 2.41 for SSN), except for two WDN outliers (see text); (d) Breaking points between the two 371 power-laws of NDD for WDN (blue circles) and SSN (red asterisks). Outliers are discussed in the text and 372 shown in Fig. 6-8. 373 4) However, WDN had larger divergence between the scaling parameters of the trunk and 374 the tail, than SSN, indicating differences in the hierarchical topologies between WDN and SSN 375 (Υtrunk = 2.53 ±0.25, Υtail = 1.35 ±0.40 for WDN, and Υtrunk = 2.41 ±0.30, Υtail = 1.45 ±0.55 for SSN). 376 The relatively flatter tail of WDN could be attributed to 1) redundancy of critical distribution 377 lines, increasing the probability of high node-degree pipes as compared to SSN, and 2) potential 378 for network growth (relative "overdesign" of supply pipes to allow for network growth, i.e., 379 potential for adding lower-degree and terminal nodes, corresponding to street and house 380 connections serving a limited number of customers). Table 1 summarizes the values discussed 381 above for different network size groups. 382 
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Table 1: Summary of the results characterizing the NDD of WDN and SSN subnets and SSN temporal 383 evolution. Displayed values are mean values for the respective size group. 384 
No. of nodes <kbreak> <kmax> <γtrunk> <γtail> WDN SSN WDN SSN WDN SSN WDN SSN >120-200 5.2 3.2 16.0 13.4 2.69 2.43 1.80 1.54 >200-500 5.3 4.8 30.0 18.8 2.64 2.44 1.70 1.91 >500-1000 7.6 6.8 31.8 20.3 2.43 2.33 2.05 2.25 >1000 10.4 10.2 41.4 36.8 2.46 2.41 2.12 2.53  385 We further explored this by examining the change in the breaking point (kbreak) between the 386 trunk and the tail segments of the node-degree distribution, and the consequential convergence 387 of the trunk and tail for a given network. We chose two WDN subnets with >103 dual-mapped 388 nodes with low kbreak, which fall outside the trend, and two WDN with kbreak≥ 10, highlighted in 389 Fig. 5 (d), (dashed circles; DZs 11, 10, and 01, 32, respectively). As can be seen from Fig. 5, kbreak 390 increases and finally disappears, the slopes of the trunk and the tail of the distributions 391 converge, and the hierarchies of the networks become more established [Fig. 6 (a-d)]. For the 392 outliers falling well below the kbreak trend, we can observe much flatter tails [DZs 11, 10; Fig. 6 (a, 393 b)] compared to other subnets [DZs 01, 32; Fig. 6 (c, d)]. Discussions with the city’s water utility 394 indicate that these deviations might in fact be an indicator of network evolution in terms of 395 providing network growth potential. The selected subnets with significantly lower kbreak values 396 and flatter PL tails were stated to contain capacity for network growth or expansion.  397 
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 398 Fig. 6. WDN subnets along a gradient of breaking points between the power-laws of trunk and tail (kbreak 399 outliers from Fig. 6d): (a) DZ11: kbreak= 5, p(k)trunk= 0.40k-2.49 and p(k)tail= 0.09k-1.47, n=2,425 (dual-mapped 400 nodes); (b) DZ10: kbreak= 8, p(k)trunk= 1.46k-2.80 and p(k)tail= 0.26k-1.88, n=3,179; (c) DZ01: kbreak= 10, 401 
p(k)trunk= 1.17k-2.37 and p(k)tail= 0.138k-1.686, n=1,497; (d) DZ32: In this subnet power-law distributions of 402 trunk and tail converge as the breaking point between the two power-laws increases (kbreak= 20), and p(k) 403 = 1.07k-2.27, (n=2,271). 404 The subnets shown in Fig. 6 (a) and (d) are shown in Fig. 7 (a) and (b) as network graphs, 405 and as spatial maps in Fig. 8 (a) and (b), respectively, to allow for visual inspection of the 406 differences in network structures. The small kbreak value and flat, scattered tails found for DZ11 in 407 Fig. 6 (a) indicate a significant hub-spoke structure [Fig. 7 (a)], while larger kbreak values or 408 distributions with converged trunk and tail found for DZ32 in Fig. 6 (d) show more regular 409 network patterns indicative of mature networks [Fig. 7 (d)]. The network heterogeneity (h) also 410 indicates the hub-spoke structure with DZ11 (Fig. 6a) having large network heterogeneity (h = 411 2.34). The existence of hubs for a given network size would emphasize the tail of a power-law 412 distribution, as relatively more nodes with a higher number of links could be found in such a 413 network, shifting these nodes towards the tail end of the distribution. The spatial maps do not 414 seem to reveal these structural features (Fig. 8).  415 
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 416 Fig. 7. WDN graphs of selected sub-networks: a) DZ11: tendency to contain high node-degree hubs, 417 heterogeneity=2.34; b) DZ32: h=1.58. 418 

 419 Fig. 8. Spatial maps of the selected water distribution sub-networks (a: DZ11, b: DZ32). 420 The results presented above add another element to the power-law relationships found 421 for the geometries of cities [1–5], as well as for socio-economic metrics of urban areas [7–10], 422 and other functional attributes, such as traffic  [6,11]. Adding to the topological investigations of 423 the urban water networks, we also analyzed the patterns of the urban space occupied by these 424 structures, the temporal evolution of population in comparison to SSN growth, and the 425 economies of scale of the infrastructure networks. Interested readers can find the results of 426 these analyses in Appendix B.  427 
IV. IMPLICATIONS 428 Our analysis of functionally sampled subnets, temporal evolution of SSN over almost five 429 decades, as well as hierarchical subnets from large to small diameter pipes produced highly 430 
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consistent results, showing the dominant dependence of several topological metrics on network 431 size, and convergence of γtrunk values for WDN and SSN for N >200 nodes. We find the topological 432 metrics of SSN to be stable over time, based on the temporal evolution of SSN over a 50-year 433 period.  434 We identified a dominance of hub-spoke structures for deviations of kbreak towards smaller 435 values, as well as large heterogeneity values. We examined whether any topological changes 436 could be observed for the evolution of the “skeleton” of our networks, which we assessed by 437 stripping the networks from small-diameter pipes, then incrementally adding smaller diameter 438 pipes and analyzing the resulting networks at each step. Again, in line with aforementioned 439 results, the networks resulting from this procedure perfectly fitted into the general patterns 440 found in our analysis, and indications of network "maturation" over time were not evident in 441 SSN.  442 We conclude that the functional (dual mapped) topology of planned urban infrastructure 443 networks starts out similar to that of river networks draining natural landscapes, where the 444 "backbone" of the system is laid down early in its evolution, showing power-law characteristics 445 from the beginning  [35,36]. Of course, river networks evolve under natural forcing and over 446 geologic time scales (making the temporal analysis of their evolution a challenge), orders of 447 magnitude longer compared to urban infrastructure networks that are designed, built and 448 maintained to provide specific urban services. Even when spatial maps of infrastructure 449 networks appear to be random or grid-like  [5], we observe that power-law functional traits 450 characterize these networks.  451 The generality of our findings in terms of topological metrics for the two types of water 452 infrastructure networks was surprising to us. We had expected to find 1) network topological 453 indicators to change with evolution over time; and 2) different types of networks to have 454 stronger differences in network topology, due to the differences in their functions and design. 455 Instead, differences in network layout and design, particularly for WDN were evident in 456 deviations from the respective kbreak values, as well as network heterogeneity. Given the overall 457 consistency of the results, it is these differences that bear the most interesting information for 458 interpreting network structures. Discussions with the city’s water utility indicate that these 459 deviations might in fact be an indicator of network evolution in terms of providing network 460 growth potential. The selected subnets with significantly lower kbreak values and flatter PL tails 461 were stated to contain capacity for network growth or expansion. According to the water utility, 462 it is in these subnets that most of the network failures have occurred, hence bearing the highest 463 vulnerabilities. These findings provide further support for the relevance of our findings for an 464 efficient planning of new water pipe networks, or existing networks to be retro-fitted, as well as 465 for the assessment of potential vulnerabilities of the networks based on deviations from the 466 expected topological features. 467 
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The Asian city we examined here has a geographic setting with large elevation differences 468 within the city set in a hilly terrain, and desert-like conditions and water scarcity force the water 469 utility to run a rationed water supply schedule. In contrast, the U.S. city analyzed in  [20] has a 470 flat topography set in a temperate region, and continuous water supply. In spite of these 471 differences in topography, climate, and water management, all of the analyzed infrastructure 472 networks show similar patterns of Pareto power-law node-degree distributions both above 473 ground (roads) and below ground (sewers, water distribution networks). 474 These findings point to generic mechanisms shaping urban infrastructure networks above 475 
and below ground. Further analyses of water infrastructure data are warranted to establish 476 consistency among diverse cities in terms of size, age, water management, and geographic 477 settings. Such evidence can contribute to establishing new concepts for resilient urban design 478 and retro-fitting of degrading infrastructure networks subject to dynamic demands, as well as 479 for targeted intervention into these structures, in order to maintain the resilience and reliability 480 of critical urban services.  481 
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APPENDIX A 504 
Network extraction: The subnets analyzed here and extracted from ESRI shape files 505 contained varying numbers of components and fractions of disconnected pipes (largest 506 connected components ranging from 99 to 70 % of total nodes for WDN, and down to 30 % for 507 sewer networks), which is partly due to imprecise mapping. Water DZ outlines were used to 508 extract sewer subnets from the whole network. This sampling of sewer subnets resulted in a 509 higher number of disconnected pipes and components, and hence reduction of subnet sizes. We 510 considered extending the disconnected lines using a GIS extension, snapping or integration tool, 511 but gap sizes were large and could have resulted in pipe links that are not in place in reality. We 512 analyzed larger functional SSN for the temporal evolution of SSN, for pipe hierarchies, and with 513 functional subnets using the Strahler Ordering method, which allowed us to compare a wide 514 range of network sizes for both WDN and SSN. In addition, we presented the results of the 515 network topological analyses by network size, represented by the number of dual mapped 516 nodes. This eliminates a potential bias introduced by the reduction of SSN subnets by the 517 disconnected pipes. 518 

Dual mapping: Caution should be used, as the dual mapping approach used here can 519 introduce some artefactual bias: our procedure chooses a random pipe segment and grows it in 520 both directions to merge the segments into a dual node. While pipes selected early are more 521 likely to have a higher degree, a pipe selected later will have fewer segments left for it to grow, 522 and thus result in lower degree. Therefore, the process may result in some artificial hierarchy. 523 However, because we are using pipe diameter as hierarchical classes, this effect should be 524 minimal. 525 
Topological analysis: Fitting power-laws to dual-mapped (HICN) node-degree 526 distributions [p(k); probability distribution functions, pdfs] for urban infrastructure network data 527 faces constraints related to data availability and also limitations of network data range: (1) 528 urban agglomerations are usually ≤103 km2, causing a “finite-size effect”; (2) even at the highest 529 resolution available, total number of primal nodes are ≈104; and (3) dual-mapped maximum 530 node-degree is in the order of ≤102. Thus, network data available do not cover multiple orders of 531 magnitude to test for “pure” power-law pdfs. Given these constraints, statistically robust 532 estimation of PL parameters is difficult [28]. These challenges become more apparent in our 533 analyses when water network data for different sized subnets are analyzed for comparison, or 534 when network growth over time is examined.  535 Our analysis recognizes these challenges and estimates PL pdfs with frontal truncation to 536 account for minimum node-degree and network resolution, and distal truncation to 537 acknowledge finite-size effect. We fit double power-law functions [29] following the guidelines 538 proposed by [30] and refined by [28], using maximum-likelihood estimation and testing for 539 
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goodness-of-fit for PL to our data. Minimum node-degree for frontal truncation is expected to be 540 2, representing a single pipe segment, connected at both ends. We chose this frontal truncation, 541 because we are analyzing networks without house connections, and thus terminal nodes with 542 
k=1 occurring in the networks analyzed here have a lower probability than the house 543 connections (or even higher resolution data, i.e. water pipes within each house) would have.  544 However, PL functions also produced statistically robust results when fitted across all k, but 545 caused a slight change in the exponent. Choice of truncation therefore needs to balance 1) choice 546 of truncation for a more accurate fitting of slope to account for missing data, and 2) recognition 547 of the fact that a frontally truncated power-law ignores a large portion of the data. Consistence 548 in the method is critical for a comparison of the data.  549 We lend confidence to the suitability of fitting power-law functions to our data, as the 550 generating mechanism (bounded preferential attachment), which produces power-law behavior, 551 would adequately describe the evolution of urban water networks. This physical generating 552 mechanism has been explored by Carletti et al.  [31]. 553 

APPENDIX B 554 We also investigated the patterns of the space occupied by the infrastructure networks 555 analyzed in the main part of this paper, the temporal evolution of population in comparison to 556 SSN growth, and the economies of scale of the infrastructure networks. 557 The sizes of the districts, which are comprised within the water distribution zones, and 558 the population within these districts can both be approximated by power-law probability 559 distributions. The length of water pipes required to service each customer within the city also 560 approximately follows a power-law (Fig. A-1). The latter is consistent with Maurer et al. [37], 561 who found power-law economies of scale (sewer pipe length versus population) in a study of 562 combined sewer systems for a Swiss case study. 563 The temporal evolution of sewer networks in our case study demonstrates the growth of the 564 city, which experienced several waves of population increases due to migration. Population 565 growth over five decades is exponential, as migration adds to natural (logistic) growth. The 566 evolution of the sewer network follows these waves, with a more step-wise function for the 567 growth of the SSN following major investment cycles (Fig. A-2).  568 
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Fig. A-2. Growth of population and SSN in our casestudy city occurs in waves, with a distinct step-wise growth function for SSN. Dashed lines arefitted models (exponential growth model forpopulation, super -positioned logistic growthmodel for SSN).  
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