
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Optimizing interconnections to maximize the spectral
radius of interdependent networks

Huashan Chen, Xiuyan Zhao, Feng Liu, Shouhuai Xu, and Wenlian Lu
Phys. Rev. E 95, 032308 — Published  7 March 2017

DOI: 10.1103/PhysRevE.95.032308

http://dx.doi.org/10.1103/PhysRevE.95.032308


Optimizing inter-connections to maximize the spectral radius of interdependent networks

Huashan Chen,1, 2, 3 Xiuyan Zhao,2 Feng Liu,1, ∗ Shouhuai Xu,3, † and Wenlian Lu2, 4, ‡

1State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Mathematical Sciences, Fudan University, Shanghai, P. R. China
3Department of Computer Science, University of Texas at San Antonio, USA

4Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
(Dated: February 14, 2017)

Spectral radius (i.e., the largest eigenvalue) of the adjacency matrices of complex networks is an important
quantity that governs the behavior of many dynamic processes on the networks, such as synchronization and
epidemics. Studies in the literature focused on bounding this quantity. In this paper, we investigate how to
maximize the spectral radius of interdependent networks by optimally linking k inter-network connections (or
inter-connections for short). We derive formulas for the estimation of the spectral radius of interdependent
networks and employ these results to develop a suite of algorithms that are applicable to different parameter
regimes. In particular, a simple algorithm (Algorithm 2) is to link the k nodes with the largest k eigenvector
centralities in one network to the node in the other network with a certain property related to both networks. We
demonstrate the applicability of our algorithms via extensive simulations. We discuss the physical implications
of the results, including how the optimal inter-connections can more effectively decrease the threshold of epi-
demic spreading in the Susceptible-Infected-Susceptible (SIS) model and the threshold of synchronization of
coupled Kuramoto oscillators.

PACS numbers: 02.10.Ox, 89.75.Hc, 89.75.Fb

I. INTRODUCTION

In the last two decades, we witnessed a significant advance
in understanding the structure and function of complex net-
works [1–4]. Many phenomena occurring on networks are
now known to be affected by their structure, e.g., the ab-
sence of epidemic threshold in large scale-free networks [5–
7]. The spectral radius ρ of the adjacency matrix of networks
has emerged as a key quantity governing the properties of
dynamical processes on networks, including the Susceptible-
Infected-Susceptible (SIS) model [8–13], the Kuramoto type
of synchronization of coupled oscillators [14], and percolation
[15]. For example, the critical value of the coupling strength
in a network of coupled oscillators is proportional to 1/ρ [14],
and a network with a larger ρ reduces the critical value of
the coupling strength more towards synchronization. For per-
colation in directed networks [15], the critical node removal
probability is 1 − 1/ρ, and a network with a larger ρ is more
robust against random node removal. The importance of ρ
has attracted a due amount of attention, but the focus was on
bounding and approximating it [16–19]. Moreover, the issue
of ρ has not been investigated in the context of interdependent
networks, which aim to model the interactions between real-
world complex networks (e.g., electricity and telecommunica-
tion infrastructures) [20–22].

In this paper, we study the spectral radius of interdepen-
dent networks from an optimization perspective: How can we
maximize the spectral radius ρ of an interdependent network
by optimally linking k inter-connections of weight α between
two networks G1 and G2? The problem is interesting be-
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cause ρ also governs the properties of dynamic processes oc-
curring on interdependent networks, including the processes
mentioned above. We use a parameter α to represent the cou-
pling strength of the interconnection betweenG1 andG2 [23–
25] (e.g., the infection rate associated to the inter-connections
in epidemic model, or the coupling strength in the model of
coupled oscillators). We stress that α can be arbitrary, and the
case α = 1 can be seen as the unweighted case. We use the
Perturbation Theory to derive approximate expressions for the
spectral radius of the resulting interdependent networks with
respect to a small or large α, and use these approximations to
identify the optimal inter-connections. The results are sum-
marized as follows:

• In the case α is small (e.g., α ≤ 1), we identify a new
algebraic property corresponding to a certain relation
between networks G1 and G2, and then use this prop-
erty to design an optimal algorithm for maximizing ρ.
The algorithm is applicable when k is small (for exam-
ple, when k ≤ 40). For arbitrary k, we discover an
interesting phenomenon that actually leads to a much
faster algorithm.

• In the case α is large (e.g., α ≥ 100), we present
a Genetic Algorithm (GA) that is applicable for arbi-
trary k. The algorithm leads to larger spectral radii
than the other algorithms that use the random inter-
connection strategy or various node-centrality based
inter-connection strategies.

• The case that α is medium (in-between the small and
large cases) can be seen as a (nonlinear) combination
of the first two cases. We show that the algorithms that
work for small or large α also work well in this case.
In particular, we observe a threshold at α∗ ≈ 21, above
which the GA outperforms the algorithm that works for
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smaller α and below which the GA is outperformed by
the algorithm that works for smaller α.

It is worth mentioning that all the algorithms mentioned above
are independent of the sizes of G1 and G2. Moreover, we
use examples to show how the resulting ρ promotes the SIS
spreading processes and accelerates the synchronization of
coupled Kuramoto oscillators in interdependent networks.

II. OPTIMIZING SPECTRAL RADIUS OF
INTERDEPENDENT NETWORKS

We use the following notations. In denotes the identity ma-
trix of n dimensions. A network G with n nodes is represented
by an n× n adjacency matrix A = [ai,j ]

n
i,j=1, where ai,j = 1

means nodes i and j are connected and ai,j = 0 otherwise.
We use ρ(G) and ρ(A) interchangeably for the spectral radius
of adjacency matrix A or network G.

Let G1 = (V1, E1) and G2 = (V2, E2) be two con-
nected (i.e., irreducible) undirected networks, where V1 =
{v1, . . . , vm} and V2 = {u1, . . . , un} at vertex sets, E1 and
E2 are edge sets. Let E∗ denote a set of k inter-connections
between G1 and G2 with a uniform weight α, which can be
an arbitrary positive real number. As mentioned above, α
represents the strength of the couplings between G1 and G2,
such as the infection rate associated to the inter-connections
in epidemic model and the coupling strength in the model of
coupled oscillators. Let C = (cij)m×n represent the inter-
connections between G1 and G2 with

cij =

{
1 (i, j) ∈ E∗
0 otherwise.

Let G = (V,E) denote the resulting interdependent net-
work, where V = V1 ∪ V2 and E = E1 ∪ E2 ∪ E∗. Let
A1 = [a

(1)
i,j ]ni,j=1, A2 = [a

(2)
i,j ]ni,j=1 and A = [ai,j ]

n
i,j=1 re-

spectively denote the adjacency matrix of G1, G2, and G.
Assume further that both G1 and G2 are aperiodic (i.e., the
largest common divisor of the lengths of all loops of each
node is 1), implying that the algebraic dimensions of ρ(A1)
and ρ(A2) are 1. Then,

A =

[
A1 αC
αD A2

]
=

[
A1 0
0 A2

]
+ α

[
0 C
D 0

]
,

where D = C> because G1 and G2 are undirected.
The optimization problem is formalized as: Given A1, A2

and α, find C with k nonzeros to maximize the spectral radius
ρ(A). In order to tackle this problem, we first derive analytic
formulas for the spectral radius of interdependent networks
via the perturbation approach, and then employ these formulas
to design algorithms. In the present paper, we focus on the
case ρ(A1) > ρ(A2), while noting that the treatment of the
case ρ(A1) < ρ(A2) is equivalent. The investigation of the
case ρ(A1) = ρ(A2) is left as an open problem for future
research, because it leads to a different optimization problem.
Our investigation considers three cases of the inter-connection
weight α: small, large, and medium.

A. The case of small inter-connection weight

Let ψ = [ψ1, · · · , ψm]> be the right and left eigenvector of
A1 corresponding to ρ(A1) (noting that A1 is symmetry and
the algebraic dimension of ρ(A1) is assumed to be one), re-
spectively. We permutate the indices of the nodes of G1 such
that ψ1 ≥ ψ2 ≥ · · · ≥ ψm and re-scale them as

∑n
i=1 ψi = 1.

Let x> = ψ>C and M = [ρ(A1)In − A2]−1 = [mij ]n×n.
It can be proved that M has all elements positive because A1

is irreducible (namely G1 is connected) and ρ(A1) > ρ(A2)
(see [26]). For a sufficiently small inter-connection weight α,
the perturbation approach leads to,

ρ(A) = ρ(A1) + α2x>Mx+ o(α2). (1)

Please see Appendix A for the derivation of Eq.(1).
Since α is sufficiently small, the maximization of ρ(A)

implies the maximization of λ2 = x>Mx in Eq.(1), which
suggests us to investigate the numerical characteristics of M .
Consider the relative difference between ρ(A1) and ρ(A2),
denoted by

µ =
ρ(A1)− ρ(A2)

ρ(A2)
,

where µ > 0 because ρ(A1) > ρ(A2). We observe that if
ρ(A1)� ρ(A2), then M is nearly diagonal. Define

Γ =

min
l=1,...,n

mll

max
i6=j

i,j=1,...,n

mij
.

Later we will numerically verify the fact that

Γ ∼ b∗µ, (2)

where b∗ =
ρ(A2)

maxi 6=j(a
(2)
i,j )

. We also give a theoretical valida-

tion of Eq.(2) in Appendix B. This means thatM is diagonally
dominant because Γ� 1 when µ� 1. The to-be-verified fact
(2) leads to an approximation of λ2 as follows. Let us rewrite
λ2 as

λ2 = Σ1 + Σ2 (3)

where Σ1 =
∑n
l=1 xlxlmll and Σ2 =

∑
i,j=1,··· ,n

i6=j
xixjmij .

Then,

Σ1/Σ2 =

∑n
l=1 xlxlmll∑

i,j=1,··· ,n
i6=j

xixjmij
≥

min(mll)
∑n
l=1 x

2
l

max(mij)
∑

i,j=1,··· ,n
i6=j

xixj
.

Noting that there are at most k nonzero components in x, we
have

∑
i,j=1··· ,n

i6=j
xixj ≤ (k − 1)

∑n
l=1 x

2
l . This implies∑n

l=1 x
2
l∑

i,j=1··· ,n
i6=j

xixj
≥ 1

k − 1
.

Therefore, we have

Σ1/Σ2 ≥
Γ

k − 1
.



3

The to-be-verified fact (2) implies Σ1 � Σ2 when µ � 1,
namely

λ2 ≈ Σ1 =

n∑
l=1

x2lmll. (4)

Therefore, in the case of µ � 1, we can use Eq.(4) to refor-
mulate the problem of maximizing λ2 approximately as:


max
C=(cij)

Σ1 =
∑n
l=1 x

2
lmll

Subject to cij ∈ {0, 1}
C has k nonzero elements.

(5)

Since x> = ψ>C, C should be selected to keep the largest
components of ψ (i.e., ψ1, · · · , ψk) and the largest diago-
nal elements in M as in the product term of Σ1 as possible.
We pick the k largest diagonal elements in M , denoted by
Mj1,j1 ≥ Mj2,j2 ≥ · · · ≥ Mjk,jk . We take the 1st, · · · , k-th
rows and the j1th, · · · , jk-th columns of matrix C to com-
prise a submatrix of C, denoted by Ĉ = (ĉpq) ∈ Rk,k with
ĉpq = cp,jq for all p, q. As shown in the Appendix C, the
following rule for C is necessary to maximize Σ1.

Rule 1. Matrix C should satisfy:

• cij = 0 for all i /∈ I or j /∈ J;

• ĉp,q = 1 implies ĉp′,q′ = 1 for all p′ ≤ p and q′ ≤ q.

In fact, if there are some p, q and p′, q′ with p′ ≥ p and/or
q′ ≥ q such that ĉp,q = 1 but ĉp′,q′ = 0, changing their
values with ĉp′,q′ = 1 and ĉp,q = 0 (but keep the others in-
tact) will lead to an increase in Σ1. Please see Appendix C
for an illustrative example of k = 3. Denote by Cn,k the
set of all square matrices (of n dimensions) satisfying Rule
1. We observe from Rule 1 that the definition of Cn,m,k is
self-contained and independent from the graph structures of
G1 and G2. Hence, the cardinality of Cn,m,k is independent
of the graph structures of G1 and G2. In addition, from Rule
1, the nonzero elements ĉp,q of C should satisfy p ≤ k and
q ≤ k, which implies that these nonzero elements are located
in the first k-rows and first k-columns. In the more interesting
cases of min{n,m} > k, Cn,m,k is independent of the sizes
of G1 and G2, namely Ck,k,k = Cm,n,k for all m ≥ k and
n ≥ k. In this case, we can denote Cn,m,k as Ck instead. For
example, when k = 3, we have C3 consisting of

1 1 1
0 0 0
0 0 0

 ,

1 1 0
1 0 0
0 0 0

 , and

1 0 0
1 0 0
1 0 0

 .

The preceding discussion leads to Algorithm 1, which selects
the matrix C that maximizes λ2 from all C ∈ Ck.

Algorithm 1 Maximize ρ(A) according to (5) via numerical
features
Input: Adjacency matrices A1, A2; Link weight α; # of inter-

connections k
Output: ρ(A), ρ(A1) + α2λ2

1: compute A1’s spectral radius ρ(A1) and the corresponding left
eigenvector ψ>; compute matrix M = [ρ(A1)In −A2]−1

2: initialize C to be a m ∗ n zero matrix, and set k edges← ∅
3: compute the set P of all of the integer partitions of k
4: for each partition ξ ∈ P do
5: let t be the maximum value in partition ξ
6: find the largest t values in the diagonal elements of M
7: return their indices as a set ζ
8: for j ∈ ζ do
9: let s be the number of nonzero elements in ξ

10: find the largest s elements of eigenvector ψ>

11: return their indices as a set η
12: for i ∈ η do
13: C[i, j]← 1
14: add edge (i, j) to set k edges
15: end for
16: for g ∈ ξ do
17: if g > 0 then
18: g ← g − 1
19: end if
20: end for
21: end for
22: compute ρ(A), ρ(A1) + α2λ2

23: end for
24: return the maximum ρ(A), ρ(A1) + α2λ2 among all partitions

The computational complexity of Algorithm 1 can be mea-
sured by the cardinality of Ck when min{m,n} > k. The
cardinality of Ck is equivalent to the integer partitions of k. A
partition of a positive integer k is defined to be a sequence of
positive integers whose sum is k. We let the function f(k) de-
note the number of partitions of the integer k. As an example,
f(4) = 5, and here are all 5 of the partitions of the integer
k = 4:

4 = 4
4 = 3 + 1
4 = 2 + 2
4 = 2 + 1 + 1
4 = 1 + 1 + 1 + 1

We can use the following function f(k, p) to count the parti-
tions of k:

f(k, p) =


1 (k = 1)

1 + f(k, k − 1) (k = p)

f(k − p, p) + f(k, p− 1), (k > p)

(6)

Hence, the cardinality of Ck can be obtained as |Ck| = f(k) =
f(k, k), which was given by Hardy and Ramanujan [27] and
independently by Uspensky[28, 29] as:

f(k) ≈ ec∗
√
k

4 ∗ k ∗
√

3
,
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where c is given as:

c = π ∗ (2/3)1/2

This is, however, just an approximation to f(k).
In order to get a concrete value k with which Algorithm 1

is practical, let us compare the computational complexity Ck
with the polynomial k3 as a concrete example. In this exam-
ple, FIG.1 shows that when k ≤ 40, Algorithm 1 is faster
than polynomial k3 and the exponential complexity ek that is
incurred by the brute-force method. That is, when k ≤ 40, Al-
gorithm 1 is practical; when k > 40, we need to design more
efficient algorithms. We should stress that the number 40 is
specific to the upper-bounding computational complexity that
is considered practical, which is k3 in this example. In other
words, this number will vary according to the upper-bounding
computational complexity, which reflects the available com-
puter resource.
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FIG. 1. Computational complexity of Algorithm 1.

In order to verify the results of Algorithm 1, we consider
four kinds of complex network models as follows.

• REG(n,m): denoting regular a network with n vertices
of degree m [30];

• ER(n, p): denoting an ER random network with n
nodes and edge probability p [31];

• WS(n,m, p): denoting a WS small-world network with
n nodes with each node havingm nearest neighbors and
rewiring probability p [32];

• BA(n,m): denoting a BA scale-free network with n
nodes and m new edges being added at each time step
[33].

Since the to-be-verified fact (2) serves as a foundation for
Algorithm 1, let us first confirm it, namely that µ → ∞
implies Γ ∼ b∗µ, we consider a network generated by
WS(n, 0.2n, 0.2). FIG.2 shows that as µ increases, Γ/µ con-
verges to the horizontal line ρ(A2)/max(a

(2)
i,j ), i 6= j. The

same simulation results hold for the other three network mod-
els (data are not shown here).
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FIG. 2. Confirming the fact (2) via network WS(n, 0.2n, 0.2) with
n = 100, 200, 500, 1000.

Now we verify the results of Algorithm 1. First, we
compare the spectral radius resulting from Algorithm 1 and
the spectral radius resulting from the theoretical approxima-
tion detailed in Eq.(A7) of Appendix A. We plot the simu-
lation result in FIG.3 with k = 40, G1=ER(100, 0.8) and
G2=ER(100, 0.4), while noting that the same effect is ob-
served in the other scenarios of G1 and G2. We observe that
the spectral radius resulting from the theoretical approxima-
tion Eq.(A7) is in an excellent agreement with the spectral
radius resulting from Algorithm 1 for α ≤ 100 (i.e., small
α). However, this agreement disappears for large α (e.g.,
α ≥ 101).

10-3 10-2 10-1 100 101 102 103

α

101

102

103

104

105

106

ρ(A)

ρ(A1)+α
2*λ2

FIG. 3. Comparison between the spectral radius resulting from
Algorithm 1 (the solid blue curve) and theoretical approxima-
tion of Eq.(A7) (the dashed red curve) with respect to α, where
G1 =ER(100,0.8), G2 =ER(100,0.4), and k = 40.

Second, in order to show that Algorithm 1 maximizes ρ(A),
we consider two alternate algorithms: the Random algorithm
that picks k inter-connections uniformly at random; the De-
gree centrality algorithm that connects the k highest-degree
nodes in G1 respectively to the k highest-degree nodes in G2.
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(b)G1=WS(n, 0.6n, 0.4),G2=WS(n, 0.1n, 0.4)
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(c)G1=BA(n, 0.2n),G2=BA(n, 0.02n)
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(d)G1=ER(n, 0.6),G2=WS(n, 0.2n, 0.2)
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(e)G1=ER(n,0.6),G2=BA(n, 0.1n)
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FIG. 4. Comparing Algorithm 1 to the two alternate algorithms via the difference of the spectral radius of the resulting interdependent
network and the maximum of the two networksG1 andG2 (indicating the increase in spectral radius because of the inter-connections), namely
∆ρ = ρ(A)-max(ρ(A1), ρ(A2)) with respect to n for small α. The solid red curve represents Algorithm 1, the dotted blue curve represents
the Degree centrality algorithm, and the dashed green curve represents the Random algorithm, where k = 20, α = 1, G1 and G2 are indicated
in the captions.

Since G1 and G2 are generated by the ER, WS and BA net-
work models, there are six combinations for the resulting in-
terdependent networks.

The network parameters are set to meet the condition that
µ >> 0. We illustrate the result via the case of m = n,
while noting that the general case (m 6= n) can be treated
similarly. FIG.4 plots the simulation results with α = 1, aver-
aged over 100 simulation runs. We observe that Algorithm 1
always leads to a much larger ρ(A) than the other algorithms,
while noting that the Random algorithm leads to the smallest
ρ(A).

Dealing with the case of arbitrary k. Although Algo-
rithm 1 leads to optimal results when k is small (e.g., k < 40
in the example mentioned above, it becomes infeasible when
k is large (e.g., k ≥ 40 in the example). Fortunately, we
observed an interesting phenomenon in the simulation study:
The ‘1’ elements in the adjacency matrix C generated by Al-
gorithm 1 always stay on the same column, coinciding with
the index of the largest diagonal element of matrix M . In
other words, the matrix C generated by Algorithm 1 exhibits
a star structure. Moreover, we observed that the larger the
networks, the more obvious the phenomenon.

The above phenomenon can be explained as follows. FIG.5
shows that the relative difference between the k largest com-
ponents of ψ, ψ1, . . . , ψk decreases with the network size n,
meaning that for n� k,

ψ1 ≈ ψ2 ≈ . . . ≈ ψk. (7)

200 400 600 800 1000 1200 1400 1600 1800 2000

n

0

0.2

0.4

0.6

0.8

1

"
A

1;
k

Regualar network
ER network
Small-world network
Scale-free network

FIG. 5. Confirming assumption (7) via the relative difference
between ψ1 and ψk in four network models: REG(n, 0.4n),
ER(n, 0.1), WS(n, 0.2n, 0.2), and BA(n, 0.2n), where ∆ψ1,k =
(ψ2

1 − ψ2
k)/ψ2

k, k = 10.

This observation implies that in order to maximize Σ1, all of
the nonzero components of x should contribute to the largest
diagonal element of M , namely, Mj1,j1 . In other words, the
case Ĉ1,jq = 1 for all q = j1, · · · , jk and Ĉp,q = 0 otherwise
can maximize Σ1 approximately. That is, when n is large
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and k is arbitrary (especially for a large k, such as k ≥ 40
in the example mentioned above, that cannot be handled by
Algorithm 1), we can find (or approximate) the optimal inter-
connections by connecting the nodes in G1 with the indices
associated to the largest k components of ψ to the single node
inG2 with the index associated to the largest diagonal element
of M . This insight leads to Algorithm 2, which is much faster
than Algorithm 1.

Algorithm 2 Maximize ρ(A) for arbitrary k
Input: Adjacency matrices A1, A2; # of inter-connections k;
Output: matrix C, ρ(A)
1: compute ρ(A1) and the corresponding left eigenvectorψ>; com-

pute matrix M = [ρ(A1)In −A2]−1

2: initialize C as a m ∗ n zero matrix, k edges← ∅
3: find the largest diagonal element of M , return its index as j
4: find the largest k absolute values in the eigenvector ψ, return

their indices as set η
5: for i ∈ η do
6: C[i, j]← 1
7: add (i, j) to k edges
8: end for
9: compute ρ(A) corresponding to matrix C

10: return matrix C , ρ(A)

For a large k (such as k ≥ 40 in the example mentioned
above, in which case Algorithm 1 is not feasible), we com-
pare Algorithm 2 with the Random and Degree centrality al-
gorithms mentioned above. FIG.6(a) plots the simulation re-
sult with G1=ER(200,0.4) and G2=BA(200,20), while not-
ing that the same effect is observed in the other scenarios
of network models. We observe that Algorithm 2 always
leads to the largest spectral radius in the example case of
k ≥ 40. For the case of small k, we consider k = 10 and
compare Algorithm 2, Algorithm 1, the Random algorithm,
and the Degree centrality algorithm. FIG.6(b) shows that Al-
gorithm 1 always leads to the largest ρ(A), and that Algo-
rithm 2 perfectly coincides with Algorithm 1 except for some
n ∈ (10, 100) in which case the difference is still very small,
where G1=ER(n,0.4) and G2=BA(n,0.2n). It is clear that
both Algorithm 1 and Algorithm 2 perform much better than
the Degree centrality algorithm and the Random algorithm.

We conclude that when n is large, for any k (including the
case of a small k or k ≤ 40 in the example mentioned above),
Algorithm 2 is as good as Algorithm 1 but incurs a much
smaller computational complexity. It is also worth mentioning
that we considered other centrality notions (e.g., the closeness
centrality, the eigenvector centrality), and found they lead to
the same results. Moreover, the effect of the Betweenness
centrality algorithm coincides with the Degree Centrality al-
gorithm. Finally, it is not surprising to see that the Random
algorithm gives the worst result.

40 50 60 70 80 90 100

k

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

lo
g

1
0
("
;
)

Algorithm 2
Degree centrality algorithm
Random algorithm

(a)G1=ER(200, 0.4),G2=BA(200, 20)

50 100 150 200
n

-3

-2

-1

0

lo
g
10

(∆
ρ
)

Algorithm 1
Algorithm 2
Degree centrality algorithm
Random algorithm

(b)G1=ER(n, 0.4),G2=BA(n, 0.1n)

FIG. 6. (a) Comparing the spectral radius ∆ρ = ρ(A)-
max(ρ(A1), ρ(A2)) of Algorithm 2 and the Random and Degree
centrality inter-connection algorithms mentioned above, where k ≥
40, G1=ER(200, 0.4), G2=BA(200, 0.1n), and α = 1. (b) Com-
paring the spectral radius ∆ρ = ρ(A)-max(ρ(A1), ρ(A2)) of Algo-
rithms 1-2 and the Random and Degree-centrality inter-connection
algorithms, where k = 10, G1=ER(n, 0.4), G2=BA(n, 0.1n), and
α = 1.

B. The case of large inter-connection weight

In the case of sufficiently large α, we can rewrite matrix A
as

A = α

(
ε

[
A1 0
0 A2

]
+

[
0 C
C> 0

])
= αÃ (8)

where ε = 1/α. We want to estimate ρ(Ã) as ε → 0. As de-
tailed in Appendix D, the spectral radius of the interdependent
networks can be expressed as

ρ(A) = α
√
µ0 + µ1 + o(1/α), (9)

where µ0 is the spectral radius of matrix C>C, and

µ1 =
a>A1a+ b>A2b

a>a+ b>b
(10)
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with
[
a
b

]
being the right eigenvector of matrix Z =

[
0 C
C> 0

]
corresponding to the largest eigenvalue

√
µ0. As a matter of

fact, a is the right eigenvector ofCC> and b is the right eigen-
vector of C>C corresponding to the largest eigenvalue.

In order to maximize ρ(A), we need to consider two op-
timization problems instead. First, we need to maximize µ0

because it has the highest order term:
max
C

ρ(C>C)

Subject to : cij ∈ {0, 1}
C has k nonzero elements.

(11)

This problem clearly has multiple solutions. Second, we need
to maximize µ1 for all the solutions of (11), which can be
written as: {

max
C

µ1

Subject to: C ∈ solution(11)

where “solution(11)” represents the set of solutions to (11).
It can be proved that µ0 = ρ(C>C) = k if and only if

either C has a star structure centered at some node k0 with
links to some Q = {q1, . . . , qk}, or C has an inverse star
structure centered at some mode k0 with links to Q.

In the case C has a star structure with Q = {1, · · · , k} and
k0 = 1 (without loss of generality), CC> and C>C have the
following structures:

CC =

[
ones(k, k) 0 0

0 0 0

]
, C>C =

k 0
0 0
0 0

 ,
where “ones(p, q)” stands for a matrix ∈ Rp,q whose ele-
ments are all equal to 1. Thus, we have b = (b1, · · · , bn)>

with bi = 1 when i = k0 and bi = 0 otherwise; we also
have a = (a1, · · · , am)> with ai = 1 if i ∈ Q and ai = 0
otherwise. Now, Eq.(10) becomes

µ1 =

∑
i∈Q,j∈Q a

(1)
i,j + a

(2)
k0k0

k + 1
. (12)

In the case C has an inverse star structure, a similar reason-
ing makes Eq.(10) become

µ1 =

∑
i∈Q,j∈Q a

(2)
i,j + a

(1)
k0k0

k + 1
. (13)

Therefore, the maximum value of µ1 is

max
k0,|Q|=k

(∑
i∈Q,j∈Q a

(1)
i,j + a

(2)
k0k0

k + 1
,

∑
i∈Q,j∈Q a

(2)
i,j + a

(1)
k0k0

k + 1

)
,

(14)

and the optimal inter-connection links formulate a star-like or
inverse star-like structure according to the discussion above.
In the case that G1 and G2 do not have self-links, meaning
a
(1)
kk = a

(2)
kk = 0 for all k, the maximal values of µ1 is in-

dependent of the selection of k0. Thus, the optimal solution

corresponding to the subset-sum maximization problem over
Q.

We now present a Generic Algorithm (GA) for identifying
the k inter-connection links according to (14). The algorithm
searches over the set J as follows: (i) the fitness is defined
by Eq.(14); (ii) Crossover is realized by picking one half ele-
ments in Q from one parent and replacing them with those of
the other parents; and (iii) mutation is realized by randomly
picking elements with probability 0.1 and replacing them with
the other elements that are randomly chosen.

Algorithm 3 Generic Algorithm (GA)
Input: Adjacency matrices A1, A2; # of inter-connections k;
Output: matrix C, ρ(A)
1: initialize a number T of iterations, a size S of population, a rate
Pc of crossover, a rate Pm of mutation

2: initialize Q as a m ∗ 1 (and (n ∗ 1)) vector by randomly picking
k components as 1 and the others zero.

3: initPop()
4: for i = 1 : T do
5: newpop=selection(pop)
6: newpop=crossover(newpop, Pc, S)
7: newpop=mutation(newpop, Pm, S)
8: pop=newpop
9: end for

10: result=best(pop)
11: return matrix C (a star or inverse star structure), ρ(A)

To verify Algorithm 3, we consider star or inverse star
structure for C via:

• Random algorithm for large α: Randomly pick k0 and
J with equal probability;

• Degree centrality algorithm for large α: Pick k0 and J
according to the maximum weight degree (sum).

All picking operations are done without replacement. We then
take the maximum value of µ1 from the star and inverse star
structures.

FIG.7 compares the spectral radius resulting from the opti-
mal choices of inter-connection links according to Algorithm
3 and the spectral radius resulting from the theoretical approx-
imation of Eq.(9). We observe that Eq.(9) gives an excel-
lent approximation of the spectral radius ρ(A) for a large α
(α ≥ 102).

FIG.8 shows that Algorithm 3 corresponding to Eq.(14) al-
ways leads to the largest spectral radius when compared with
the other two algorithms mentioned above. The simulation
results are averaged over 100 simulation runs.

C. The case of medium inter-connection weight

For a small α (α ≤ 100), Algorithm 1 works well for a
small k (e.g., k ≤ 40 in the example mentioned above) and
Algorithm 2 work well for arbitrary k. For a large α (α ≥
102), Algorithm 3 works well. In what follows, we consider
the case of medium α, namely 100 ≤ α ≤ 102.



8

10-3 10-2 10-1 100 101 102 103

α

102

103

20
k

×104

ρ(A)  
α
√

u0 + µ1

20

×104

FIG. 7. Comparison between the spectral radius resulting from the
Genetic algorithm (solid blue curve) and the spectral radius resulting
from the theoretical approximation of Eq.(9) (dashed green curve),
where G1 =ER(100,0.6), G2 =WS(100,40,0.4), and k = 80.

For α ∈ [10−3, 100], Fig.9(a) shows that Algorithms 2 and
3 always perform better than their respective alternate algo-
rithms. For 100 ≤ α ≤ 102, Fig.9(b) shows that Algorithm
3 is as good as Algorithm 2, both of which perform better
than their two alternate algorithms (Random and Degree cen-
trality algorithms), respectively. However, there is a critical
value of α around α∗ = 21, below which (i.e., α < α∗) Algo-
rithm 2 is slightly better than Algorithm 3, and above which
(i.e., α > α∗) Algorithm 3 is slightly better than Algorithm 2.
However, the differences are very small as shown in Fig.9(c).
We conclude that for medium α, namely 100 ≤ α ≤ 102, it is
reasonable to use Algorithm 2 instead of Algorithm 3 because
the former is computationally more efficient.

The results are summarized as follows:

• For α ≤ 1, Algorithm 2 is almost as good as Algo-
rithm 1 when k is small (e.g. k ≤ 40 in the example
mentioned above). Since Algorithm 1 is not efficient
when k is large (e.g., k ≥ 40 in the example mentioned
above) and Algorithm 2 is always fast regardless of k,
Algorithm 2 should be used when α ≤ 1.

• For α ≥ 100, Algorithm 3 should be used.

• For 0 ≤ α ≤ 100, we observe a critical value α = 21,
below which Algorithm 2 is slightly better than Algo-
rithm 3 and above which Algorithm 3 is slightly better
than Algorithm 2. Since Algorithm 2 is fast and the
difference between the results of Algorithm 2 and Al-
gorithm 3 is small, Algorithm 2 should be used.

III. PHYSICAL IMPLICATIONS

In this section we discuss the physical implications of the
results mentioned above, while noting that maximizing the
spectral radius can enhance the network robustness against

failures, blackouts, jamming, and attacks [34]. In what fol-
lows we elaborate this effect in two concrete scenarios: epi-
demic spreading and synchronization.

A. Spreading Processes

Let us first consider the Susceptible-Infected-Susceptible
(SIS) epidemic model in networks [8–13], which has been
used to model a family of spreading processes, ranging from
the viral propagation in social and technological networks to
the dissemination of information such as rumors and data [35].
In this model, each node may be in one of two states: sus-
ceptible or infected. Each node in the network represents an
individual, and each link represents a connection along which
the infection can propagate. A susceptible node becomes in-
fected with probability γvu over an edge connecting to an in-
fected node. An infected node returns to the susceptible state
with probability β. The SIS model considers a finite network
graph G = (V,E,W ), where V = {1, 2, . . . , n} is the set
of vertices, E is the set of edges, and W is the weight matrix
denoting the weight at each link and can be regarded as the
weight adjacent matrix of graph G.

For concreteness, consider a discrete-time model with time
t = 0, 1, 2, . . .. Denote by sv(t) the probability that v ∈ V
is susceptible at time t, and iv(t) the probability that v ∈ V
is infected at time t, where sv(t) + iv(t) = 1. The master
equation of the nonlinear dynamical system is [8–13]

iv(t+1) =
(
1−

∏
(u,v)∈E

[1− γvuiu(t)]
)
(1−iv(t))+(1−β)iv(t).

(15)
A very recent result [13] shows that the dynamics always
converge to a unique equilibrium (i∗1, . . . , i

∗
n)>, namely that

limt→0 iv(t) = i∗v and a remarkable property of the SIS epi-
demic model is the appearance of a phase transition when
ρ(W ) approaches the spreading threshold τ with W = (γvu).
If ρ(W ) ≤ τ , the dynamics converge to the origin equilibrium
(i.e., i∗v = 0 for all v ∈ V , which implies that the spreading
dies out); if ρ(W ) > τ , the dynamics converge to a unique
nonzero equilibrium (i.e., i∗v > 0 for all v ∈ V ) [13]. We note
that [13] considered the case that the elements of W take val-
ues in {0, 1}, but the extension to the weighted case is straight-
forward. Hence, the spectral radius ρ(W ) is a measure of the
network spreading power: the larger the spectral radius, the
more powerful the spreading [13, 35].

In order to quantify the effect of optimal inter-connections
to maximize the spectral radius of the resulting interdependent
networks, and therefore the effect on the equilibrium state,
we consider an interdependent network G resulting from two
networks G1 = (V1, E1,W1) and G2 = (V2, E2,W2) with
adjacent matrixA1 andA2 respectively. Suppose the infection
spreading rate within networks G1 and G2 as a uniform γ and
the inter-network transmission rate as [1− (1− γ)r] for some
constant r > 0 [36]. Let α(r) = [1− (1− γ)r]/r, which can
be regarded as the weight of edges linking G1 and G2. The
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FIG. 8. Comparison of Λ = ρ(A) − α√u0 with respect to k and large α: the solid red curve corresponds to Algorithm 3, the dotted blue
curve corresponds to the Degree centrality algorithm for large α, and the dashed green curve corresponds to the Random algorithm for large
α, where n = 100 and α = 103.
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FIG. 9. (a) Comparison of ∆ρ = ρ(A) − max(ρ(A1), ρ(A2)) derived from Algorithm 2, Algorithm 3 (i.e., the genetic algorithm), and the
two alternate algorithms with respect to 10−3 ≤ α ≤ 100. (b) Comparison of Λ = ρ(A) − α√u0 derived from Algorithm 2, Algorithm 3
(i.e., the genetic algorithm), and the two alternate algorithms with respect to 100 ≤ α ≤ 103. The solid pink curve represents Algorithm 2, the
dotted blue curve represents Algorithm 3, the dashed green curve represents Degree centrality algorithm, and the black chain curve represents
Random algorithm. (c) Detailed difference between Algorithm 3 (i.e., the genetic algorithm) and Algorithm 2 in the range of 10−3 ≤ α ≤ 103,
where δρ(A) denotes the spectral radius resulting from the Genetic algorithm subtracting the spectral radius resulting from Algorithm 2. The
parameters are G1 =ER(100,0.8), G2 =ER(100,0.4), and k = 80.

SIS model in the interdependent networks becomes

iv(t+ 1) =
(
1−

∏
(u,v)∈Ej

[1− γiu(t)]−
∏

(u,v)∈E∗

[1− γα(r)iu(t)]
)

∗ (1− iv(t)) + (1− β)iv(t), v ∈ G1 ∪G2.

(16)

Thus, the critical value of spreading dynamics should satisfy

γρ(A) = β with

A =

(
A1 α(r)C

α(r)C> A2

)
Denote by τc = γ/β.

For simulation, we consider G1=WS(100,8,0.4) and
G2=BA(100,2) with linking weight α = 1 (equivalently
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r = 1) and k inter-connections. We simulate Eq.(16) with
(γ, β) = (0.1, 0.9) with τc = 1/9 and the initial infection
of 5% of nodes that are randomly picked. We calculate the
quantity 1

|G|
∑
v∈V1∪V2

i∗v at the 500th step to represent the
equilibrium infection rate. Fig.10 (a) shows that the spectral
radius ρ(A) of interdependent network by connecting G1 and
G2 according to Algorithm 2 is larger than the Random al-
gorithm and the Degree centrality algorithm. This results in
ρ(A) exceeds the critical value 1/τc = β/γ = 9 at around
k = 10, earlier than the two alternate algorithms. This means
that Algorithm 2 leads to a much earlier outbreak of the in-
formation or epidemics when increasing the number of inter-
connections, as shown in FIG.10 (b). This is in a good agree-
ment with our theoretical analysis.
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FIG. 10. (a) The spectral radius of the interdependent complex net-
works ρ(A) = ρ(G) with k inter-connections resulting from dif-
ferent inter-connection algorithms. (b) Comparision of equilibria
resulting from different inter-connection algorithms with respect to
the number of inter-connections k. All values are averaged over
1,000 simulation runs with (γ, β) = (0.1, 0.9), G1=WS(100,8,0.4),
G2=BA(100,2), and α=1.

B. Synchronization of coupled oscillators

The problem of synchronization in complex networks,
where each node is a Kuramoto oscillator [37], was first re-
ported for WS networks [38, 39] and BA networks [40]. These
studies were mainly numerical explorations of the onset of
synchronization, with the main goal of characterizing the crit-
ical coupling beyond which groups of nodes beating coher-
ently first appear. Exact analytical results to determine the
transition to synchronization on general complex networks
were presented in [14, 34, 41, 42].

In the extended Kuramoto model of coupled oscillators
[14], the dynamics of oscillators can be approximated by an
equation for the phases θi of the form

θ̇i = ωi + s

N∑
j=1

zij sin(θj − θi), (17)

where ωi is the natural frequency of oscillator i, N is the total
number of oscillators, and s represents the overall coupling
strength. For each i, the corresponding ωi is independently
chosen from a known oscillation frequency probability distri-
bution g(ω). In order to incorporate the presence of a het-
erogeneous network, let zij denote the elements of a n × n
adjacency matrix Z.

An important characteristic of the collective dynamics of
the ensemble is the global complex-valued order parameter:

r =

∑N
i=1 ri∑N
i=1 di

, (18)

where di is the degree of node i defined as di =
∑N
j=1 zij and

ri is defined by

rie
iψi =

N∑
j=1

zij〈eiθj 〉t. (19)

Note that r measures the extent of coherence of the system, ψ
is the average phase of all of the oscillators, r = 1 corresponds
to the complete in-phase synchronization, and r = 0 corre-
sponds to the absence of an in-phase synchronization. Stud-
ies have showed that the onset of synchronization occurs at a
critical coupling strength that is inversely proportional to the
spectral radius of the adjacency matrix of the coupling net-
work. The critical transition value, denoted by sc, is

sc =
s0
ρ(Z)

, (20)

where s0 ≡ 2/(πg(0)) and ρ(Z) is the largest eigenvalue of
the adjacency matrix Z.

Consider interdependent network G that is created from
two networks G1 and G2, whose adjacency matrices are re-
spectively denoted by A1 = [a

(1)
i,j ]mi,j=1 and A2 = [a

(2)
i,j ]ni,j=1.

The adjacency matrix of G is

A =

[
A1 αC
αC> A2

]
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Thus, for node i in network G1, Eq.(17) becomes

θ̇i = ωi+s

∑
j∈G1

a
(1)
i,j sin(θj − θi) + α

∑
j∈G2

cij sin(θj − θi)

 ,
and for node i in network G2, Eq.(17) becomes

θ̇i = ωi+s

∑
j∈G2

a
(2)
i,j sin(θj − θi) + α

∑
j∈G1

c>ij sin(θj − θi)

 ,
The critical value of the coupling strength towards synchro-
nization on interdependent complex networks becomes

sc =
s0
ρ(A)

. (21)

This suggests that a larger spectral radius of the interdepen-
dent network G will reduce the critical value of the coupling
strength more towards coherence and thus will advance the
emergence of the synchronization phenomenon. Accelerating
synchronization can be physically useful in, for example, bio-
logical processes, power grids, and transportation networks.

In order to quantify the effect, we choose a distribution
of natural frequencies given by g(ω) = (3/4)(1 − ω2) for
−1<ω<1 and g(ω) = 0 otherwise. We consider the in-
terdependent network G resulting from G1=WS(100,10,0.4)
and G2=BA(100,2) with α = 1 and k = 80. The spec-
tral radius ρ(A) of the interdependent network with k inter-
connections resulting from Algorithm 2, the Degree centrality
algorithm, and the Random algorithm are 15.6993, 11.6679,
and 10.4733, respectively. This suggests that Algorithm 2 can
accelerate the synchronization in interdependent networks.
We set Algorithm 2 as the baseline by taking sc = s0/ρ(A),
where ρ(A) is the spectral radius resulting from Algorithm 2.
Fig.11 shows that when the coupling strength s exceeds the
critical value sc (i.e., s/sc = 1), the onset of synchronization
appears in the interdependent network with inter-connections
resulting from Algorithm 2. However, the onsets of synchro-
nization in the interdependent networks resulting from the two
alternate algorithms are triggered when s/sc > 1. Further-
more, one can see that r has a larger value in the interdepen-
dent networks resulting from Algorithm 2 than in the interde-
pendent networks resulting from the two alternate algorithms.
This is in a good agreement with our theoretical analysis.

IV. DISCUSSIONS AND CONCLUSIONS

We have studied the problem of how to select k inter-
connections between two networks to maximize the spectral
radius of the resulting interdependent network. We have pro-
posed algorithms that are applicable in different scenarios.
For the case of small and medium inter-connection weight
α, a fast algorithm based on the numerical characteristic of
the adjacent matrices of G1 and G2 performs well, better
than the alternate methods of random inter-connections or
node-centrality based inter-connections. We have found that
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FIG. 11. The order parameter r obtained from the numerical solution
of Eq.(21) and Eq.(21) as a function of s/sc for interdependent net-
work G, which is obtained from G1 generated by WS(100,10,0.4)
and G2 generated by BA(100,2) with α = 1 and k = 80. All values
are averaged from 1,000 simulation runs.

the other notions of node-centrality, including betweenness,
eigenvector, and closeness centralities, perform similarly with
the node-centrality. The research has both theoretical signifi-
cance and practical value, as shown in the context of the SIS
model and the onset of synchronization in the coupled oscil-
lators of Kuramoto model.

 
 1 

FIG. 12. Illustration of Algorithm 2.

It can be seen that Algorithm 2 and Algorithm 3 do not de-
pend on the parameter α, but their performance is dependent
upon α. Specifically, Algorithm 2 generally provided an ef-
ficient and fast method of connecting two networks to max-
imize the spectral radius when the inter-connection weight
α is not very large. As illustrated in FIG.12, Algorithm 2
leads to a star-like subgraph of inter-connections, which is
composed of the k nodes in network G1 (which has a larger
spectral radius) with the highest eigenvector centralities, and
the node in G2 that corresponds to the largest diagonal ele-
ment in (ρ(A1)I − A2)−1. This inspires us to introduce a
new notion of node-centrality, dubbed ζ-centrality, in a graph
G with adjacent matrix F for each ζ > ρ(F ) as follows:
let M(ζ) = (ζI − F )−1 with elements mij(ζ); then, the
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ζ-centrality of node i is mii(ζ). It can be seen that Algo-
rithm 2 selects the node in G2 with the largest ζ-centrality
with ζ = ρ(A1). As shown in Fig.13, this centrality is dif-
ferent from the popular notions of centralities, for example,
degree centrality, betweenness centrality, closeness centrality
and eigenvector centrality.
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FIG. 13. Comparison between the ζ-centrality and the other four
centralities, where G2=WS(100,8,0.4), and “∆ζ-centrality” is the
largest ζ-centrality (Algorithm 2) subtracting the ζ-centrality of the
node with the largest centrality of another kind (i.e., the degree, be-
tweenness, eigenvector and closeness centrality).

There are several interesting problems for future research.
For example, the case of ρ(A1) = ρ(A2) leads to a differ-
ent optimization problem, which would require another al-
gorithm. The case of ρ(A1) → ρ(A2) or ρ(A1) ≈ ρ(A2)
also would require a separate treatment. This is because these
conditions render Algorithms 1 and 2, or more specifically
the calculation of the auxiliary matrix M , numerically unreli-
able and inefficient, due to the fact that ρ(A1)In − A2 is ill-
conditioned and therefore Approximation (2) cannot be used.
Besides, the optimization problem appears to be NP-hard.
However, a formal proof appears to be hard because known
NP-hard problems are often about combinatorial properties
rather than algebraic properties of matrices. Another prob-
lem is to inter-connect two networks with k inter-connections
to minimize the spectral radius of the resulting interdependent
network.
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APPENDIX A: Derivation of Eq.(1)

Our goal is to approximate the spectral radius of interde-
pendent networks with a small inter-connection weight α as:

ρ(A) = ρ(A1) + αλ1 + α2λ2 + o(α2), (A1)

and the right eigenvector of A corresponding to ρ(A) is

ξ =

[
φ+ αu1 + α2u2
αv1 + α2v2

]
+ o(α2), (A2)

as α → 0. According to the property of nonnegative ma-
trices, all of the quantities mentioned above are real, where
u1, u2, v1, v2 ∈ R and λ1, λ2 ∈ R are to be determined be-
low. According to Aξ = ρ(A)ξ, we have

Aξ =

[
A1 αC
αD A2

] [
φ+ αu1 + α2u2
αv1 + α2v2

]
+ o(α2)

=

[
A1φ+ αA1u1 + α2A1u2 + α2Cv1
αDφ+ α2Du1 + αA2v1 + α2A2v2

]
,

ρ(A)ξ

=

[
ρ(A1)φ+αρ(A1)u1+α2ρ(A1)u2+αλ1φ+α2λ1u1+α2λ2φ

αρ(A1)v1+α2ρ(A1)v2+αλ1v1,

]
which lead to:

A1u1 = ρ(A1)u1 + λ1φ, (A3)
A1u2 + Cv1 = ρ(A1)u2 + λ1u1 + λ2φ, (A4)
A2v1 +Dφ = ρ(A1)v1, (A5)
A2v2 +Du1 = ρ(A1)v2 + λ1v1. (A6)

Multiplying ψ> to Eq.(A4), we have

ψ>A1u1 = ρ(A1)ψ>u1 + λ1ψ
>φ.

Since ψ>φ 6= 0 (both are positive because A1 is irreducible,
according to the Perron-Frobenius theorem [26]), we have

λ1 = 0.

From Eq.(A6), we can obtain

v1 = [ρ(A1)In −A2]−1Dφ.

Multiplying Eq.(A5) by ψ>, we have

λ2 =
ψ>C[ρ(A1)In −A2]−1Dφ

ψ>φ
.
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Hence, we have the following approximation:

ρ(A) = ρ(A1) + α2λ2 + o(α2)

= ρ(A1)+α2ψ
>C[ρ(A1)In −A2]−1Dφ

ψ>φ
+o(α2).

For undirected graphs, we have C = D>. This leads to:

ρ(A) = ρ(A1) + α2ψ
>C[ρ(A1)In −A2]−1C>φ

ψ>φ
+ o(α2).

(A7)
Since A is symmetric, we have φ=ψ. By the normalization
mentioned above, we have ψ>ψ = 1. Due to x> = ψ>C and
M = [ρ(A1)In −A2]−1 = [mij ]n×n, Eq.(A7) becomes (1).

APPENDIX B: Derivation of Eq.(2)

Denote by M∗ the adjoint matrix of M . Since M−1 =
1

det(M)
M∗, we have

M = (ρ(A1)I −A2)−1

=
1

det(ρ(A1)I −A2)
(ρ(A1)I −A2)∗

∼ 1

ρ(A1)n
(ρ(A1)I −A2)∗. (B1)

From Eq.(B1), we can obtain mll and mij , i 6= j. In what
follows we give the derivations of the main diagonal element
m11 and the non-diagonal element m1n, while noting that the
other elements elements can be derived in a similar fashion.

m1n ∼
1

ρ(A1)n
(ρ(A1)I −A2)

∗
1n

=
−1

ρ(A1)n

∣∣∣∣∣∣∣∣∣∣

−a(2)21 ρ(A1)−a
(2)
22 −a(2)13 ... −a(2)2,n−1

−a(2)31 −a(2)32 ρ(A1)−a
(2)
33 ... −a(2)3,n−1

...
...

...
...

...
−a(2)n1 −a(2)n2 −a(2)n3 ... −a(2)n,n−1

∣∣∣∣∣∣∣∣∣∣
=

−1

ρ(A1)n
· ((−a(2)n1 )

n−1∏
l=2

(ρ(A1)− a
(2)
ll ) +O(ρ(A1)

n−3))

=
1

ρ(A1)n
· a(2)n1 ·

(
ρ(A1)

n−2 −
(
n−1∑
l=2

a
(2)
ll + f1n(A2)

)

· ρ(A1)
n−3 +O(ρ(A1)

n−4)

)
. (B2)

Let T1 =
∑n−1
l=2 a

(2)
ll + f1n(A2), where f1n(A2) is the func-

tion of the cofactors ofA2(1, n). Since ∀i, j, a(2)ij and
∑
j a

(2)
ij

are both finite, hence T1 is finite. When µ � 1, namely
ρ(A1)→∞, we have

m1n ∼
1

ρ(A1)n
· a(2)n1 · ρ(A1)

n−3

(
ρ(A1)−

n−1∑
l=2

a
(2)
ll + f1n(A2)

)

∼
1

ρ(A1)n
· a(2)n1 · ρ(A1)

n−2

=
1

ρ(A1)2
· a(2)n1 . (B3)

On the other hand, we have

m11 ∼
1

ρ(A1)n
(−1)1+1

∣∣∣∣∣∣∣∣∣∣
ρ(A1)−a

(2)
22 −a(2)23 −a(2)24 ... −a(2)2,n

−a(2)32 ρ(A1)−a
(2)
33 −a

(2)
34 ... −a(2)3,n

...
...

...
...

...
−a(2)n1 −a(2)n2 −a(2)n3 ... ρ(A1)−a

(2)
n,n

∣∣∣∣∣∣∣∣∣∣
=

1

ρ(A1)n
·
(
ρ(A1)

n−1 −
(

n∑
l=2

a
(2)
ll

)
ρ(A1)

n−2 +O(ρ(A1)
n−3)

)
(B4)

∼
1

ρ(A1)n
· ρ(A1)

n−1 =
1

ρ(A1)
. (B5)

Similarly, we can ignore the part T2 =
(∑n

l=2 a
(2)
ll

)
when

deriving Eq.(B5) from Eq.(B4). Hence, we derive the follow-
ing approximation:

Γ =

min
l=1,...,n

(mll)

max
i6=j

i,j=1,...,n

(mij)
∼ ρ(A1)

max
i6=j

i,j=1,...,n

a
(2)
ij

∼ µ · ρ(A2)

max
i6=j

i,j=1,...,n

a
(2)
ij

∼ b∗µ.

(B6)

APPENDIX C: Validation of Rule 1

Let

C3,1 =

1 1 1
0 0 0
0 0 0

 , C3,2 =

1 1 0
1 0 0
0 0 0

 , C3,3 =

1 0 0
1 0 0
1 0 0

 .

Denote by λ3,∗ the value of Σ1 =
∑n
l=1 x

2
lmll after substitut-

ing C3,∗ into it, we have

λ3,1 = ψ2
1m11 + ψ2

1m22 + ψ2
1m33 (C1)

λ3,2 = (ψ1 + ψ2)2m11 + ψ2
1m22 (C2)

λ3,3 = (ψ1 + ψ2 + ψ3)2m11 (C3)

We cannot compare λ3,1, λ3,2, λ3,3 based on their algebraic
expressions in general, but can compare them in specific sce-
narios. Suppose the matrix C that leads to the maximum Σ1 is
not any of C3,1, C3,2, C3,3. For example, suppose C has the
form

C3,4 =

1 0 1
0 1 0
0 0 0

 .

Thus, we have x>3,4 = [ψ1, ψ2, ψ1] ≤ x>3,1 = [ψ1, ψ1, ψ1].
Obviously,

λ3,4 = x>3,4Mx3,4 < λ3,1 = x>3,1Mx3,1.

This means that when C takes the form of C3,4, λ3,4 must be
smaller than the λ3,1 resulting from C3,1, which contradicts
the aforementioned assumption. Similarly, given an arbitrary
adjacency matrix C3,s ∈ R3×3, if s > 3, one can always find
a C3,i, i = 1, 2, 3 that makes λ3,s < λ3,i.
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APPENDIX D: Derivation of Eq.(9)

Denote by λ and
[
a
b

]
the eigenvalue and eigenvector of ma-

trix Z =

[
0 C
D 0

]
with D = C> in our case, respectively.

[
0 C
D 0

] [
a
b

]
= λ

[
a
b.

]

This implies

CDa = λ2a,DCb = λ2b.

So, the largest eigenvalue of Z, denoted by µ0, is the square
root of CD (equivalently DC), and the right eigenvector a
with respect to DC and the right eigenvector b with respect to
CD compose the eigenvector of Z.

Suppose the algebraic dimension of the largest eigenval-
ues of CD and DC is one. The right-eigenvector of A cor-
responding to the largest eigenvalue is a perturbation from
[a>, b>]>. Let

ρ(Ã) =
√
µ0 + εµ1 + o(ε),

and its right eigenvector be

π(ε) =

[
a+ εr1
b+ εs1

]
+ o(ε),

where r1, s1 ∈ Rm and µ1 ∈ R are to be determined later.
Similar to the arguments above, we have

A1a+ Cs1 =
√
µ0r1 + µ1a. (D1)

A2b+Dr1 =
√
µ0s1 + µ1b. (D2)

Let
[
c>, d>

]
be the left eigenvector of Z corresponding to the

largest eigenvalue
√
µ0, meaning

c>C =
√
µ0d
>, d>D =

√
µ0c
>.

Multiplying (D1) by c> and (D2) by d>, we have

c>A1a+
√
µ0d
>s1 =

√
µ0c
>r1 + µ1c

>a,

d>A2b+
√
µ0c
>r1 =

√
µ0d
>s1 + µ1d

>b.

Summing them up gives

µ1 =
c>A1a+ d>A2b

c>a+ d>b
. (D3)

So, the approximation can be given by

ρ(A) = α
√
µ0 +

c>A1a+ d>A2b

c>a+ d>b
+ o(1/α). (D4)
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