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Griffiths Phase on Hierarchical Modular Networks with Small-world Edges

Shanshan Li
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The Griffiths phase has been proposed to induce a stretched critical regime that facilitates self-
organizing of brain networks for optimal function. This phase stems from the intrinsic structural
heterogeneity of brain networks, i.e. the hierarchical modular structure. In this work, the Grif-
fiths phase is studied in modified hierarchical networks with small-world connections based on the
3-regular Hanoi network. Through extensive simulations, the hierarchical level-dependent inter-
module wiring probabilities are identified to determine the emergence of the Griffiths phase. Nu-
merical results and the complementary spectral analysis on the relevant networks can be helpful for
a deeper understanding of the essential structural characteristics of finite dimensional networks to
support the Griffiths phase.

PACS numbers: 05.70.Ln, 89.75.Hc, 89.75.Fb

I. INTRODUCTION

The well-known criticality hypothesis suggests biolog-
ical systems operate at the borderline between the sus-
tained active and inactive state. It has been observed in
various processes such as gene expression [1], cell growth
[2] and neuronal avalanches [3]. In different contexts, the
critical point enables optimal transmission and storage of
information [4, 5], maximal sensitivity to stimuli [6], opti-
mal computational capabilities [7]. Empirical studies on
brain networks [8–10], however, exhibit a stretched crit-
ical region. The Griffiths phase (GP), characterized by
generic power-laws over a broad region in the parameter
space, provides an alternative mechanism for critical be-
havior in brain networks without fine tuning [11, 12]. It
is confirmed numerically and analytically that the struc-
tural heterogeneity induces the Griffiths phase that even-
tually enhances the self-organization mechanism of brain
networks.

Brain networks have been found to be organized into
modules across hierarchies [13–15]. Modules in each
hierarchy are grouped into larger modules, forming a
fractal-like structure. Previous work models brain net-
works with finite dimensional hierarchical modular net-
works (HMNs) [11, 12], and successfully confirms the ex-
istence of the Griffiths phase using dynamical models,
such as the Susceptible-Infected-Susceptible (SIS) model
and the Contact Process (CP). The essential charac-
teristics of previous network models is the hierarchical
level-dependent inter-module wiring probabilities. It is
conjectured that plain modular networks are not able
to support the Griffiths phase, and disorder in different
scales significantly influences properties of critical behav-
iors [11]. In this work, the idea of a Griffith phase is
extended to other hierarchical structures encountered in
previous studies of dynamical processes on complex net-
works.

Certain hierarchical networks, with a self-similar struc-
ture and small-world connections, have shown to exhibit
novel dynamics [16–21]. In this work, the hierarchical
models are designed based on one such example with a

finite topological dimension, the 3-regular Hanoi network
[16, 18, 22, 23]. To tune the modular feature that is
present in brain networks, a single node of the original
network is modified into a fully connected clique with a
varying size. By introducing different classes of inter-
module connections, the essential heterogeneous connec-
tivity pattern is explored to induce the Griffiths phase
on finite dimensional networks. It turns out that the
hierarchical level-dependent inter-module wiring proba-
bilities plays an important role affecting the property of
the phase transition at criticality.

As a complement to the computational approach, the
spectral analysis on the adjacency matrix and the Lapla-
cian matrix of networks is conducted. A localized prin-
ciple eigenvector of the network adjacency matrix indi-
cates the network heterogeneity, which has been used to
quantify the localization of activity on networks above
the critical propagation rate in the dynamical model
[24]. This concept has been applied to analytically ex-
plain the emergence of rare regions and the Griffiths
phase [11, 12, 25]. However, the observation that a lo-
calized principle eigenvector is not necessarily the fin-
gerprint of the Griffiths phase has been reported in
highly-connected networks with intrinsic weight disorder
or finite-size random networks with power-law degree dis-
tributions [12, 26]. As an extension to finite dimensional
models, a class of networks is found here where the Grif-
fiths phase is absent although their principle eigenvectors
are localized. As the second approach of the spectral
analysis on the network connectivity matrix, the Lifs-
chitz tails in the spectral density of the Laplacian ma-
trix is proposed to predict the Griffiths phase analyti-
cally. Lifshitz tails have been related to the Griffiths
singularity in the equilibrium systems [27]. For synchro-
nization and spreading dynamics on networks, simula-
tion and Quenched Mean Field approximation indicate
a connection between the the Lifshitz tail and the slow
dynamics [11, 28, 29]. In this study, the tail distribution
of the Laplacian eigenvalues is presented to test how well
it predicts the Griffiths phase in the SIS model.

This paper is organized as follows: Sec. II describes the
structural properties of hierarchical modular networks,
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Figure 1: Depiction of the Hanoi network of generation
g = 6. The network features a regular geometric
structure, in the form of a one dimensional backbone,
and a distinct set of recursive small-world links. The
node degree is uniformly 3.

on which the SIS model and its critical behavior are stud-
ied; Sec.III reviews the SIS model and the spectral anal-
ysis on the adjacency matrix and the Laplacian matrix,
and the analytical tools are applied to all the networks
considered in this work; Sec.IV presents the numerical re-
sults for the SIS model evolving on the networks; Sec.V
concludes by highlighting the significance of hierarchical
level-dependent inter-module wiring probabilities on the
emergence of the Griffiths phase, and discussing the es-
sential structural characteristics for the Griffiths phase.

II. NETWORK STRUCTURE

The Hanoi networks [16, 18, 22, 23] are based on a
simple geometric backbone, a one-dimensional line of n =
2g nodes. Each node is at least connected to its nearest
neighbor left and right on the backbone. To construct
the hierarchy to g-th generation, consider parameterizing
any node x < n (except for zero) uniquely in terms of two
integers (i, j), i ≥ 1 and 1 ≤ j ≤ 2g−i, via

x = 2i−1 (2j − 1) . (1)

Here, i denotes the level of hierarchy whereas j la-
bels consecutive nodes within each hierarchy. Such a
parametrization raises a natural pattern for long-range
small-world edges that are formed by the neighbors x =
2i−1(4j − 3) and y = 2i−1(4j − 1) for 1 ≤ j ≤ 2g−i−1, as
shown in Fig.(1). Eventually, this procedure constructs
a finite dimensional hierarchical network with a uniform
finite node degree 3, and a diameter of ∼

√
n, which is

denoted as HN3 [16, 18, 22].
To construct a hierarchical structure that models the

modular property of real-world brain networks, each sin-
gle node x in HN3 is replaced by a fully-connected clique

that contains a finite number m of nodes, thus form-
ing a network with size n × m. Maintaining the struc-
tural properties of HN3, the self-similar structure, and
the small-world connections, I propose two connectivity
patterns between modules in the same hierarchy. In the
first paradigm, the single edge in the original HN3 is now
formed by two randomly chosen nodes in different cliques,
which I denote as HMN1. The second paradigm is in-
spired by previous hierarchical modular models [11, 12].
To distinguish it from HMN1, I denote it as HMN2. Pre-
vious models share common features, hierarchical con-
struction of modules and level-dependent wiring proba-
bilities. Modules are grouped to form larger modules in
the next level. They are connected in either a stochastic
way with a level-dependent probability pi or a determin-
istic way with a level-dependent number of edges.

Since an infinite dimensional network is predicted not
to support the Griffiths phase [11], to maintain a finite
fractal dimension, the number of inter-module connec-
tions is stable across hierarchical levels. In this work,
I use the stochastic scheme to construct HMN2. As the
size of modules increases as level, the inter-module wiring
probability decreases. In HMN2, for the first hierarchy,
modules in this level are cliques themselves. Starting
from the second hierarchy, the clique labeled as 2(2j−1)
is grouped with the neighbor clique 2(2j − 1) − 1 and
2(2j − 1) + 1 forming a module. For the third hierarchy,
the clique labeled as 22(2j−1) is grouped with three left
neighbor cliques up to the clique 22(2j−1)−3 and three
right neighbor cliques up to the clique 22(2j − 1) + 3.
Repeating this procedure g generations, the size of mod-
ule of i-th generation is m(2i − 1). The number of all
possible stochastic connections between two modules is
m2
(
4i − 2i+1 + 1

)
. Thus, to ensure at least one edge be-

tween them to exist, the level-dependent probability pi
is bounded by 1/

(
m2
(
4i − 2i+1 + 1

))
.

III. SUSCEPTIBLE-INFECTED-SUSCEPTIBLE
MODEL AND THE SPECTRAL ANALYSIS

Certain fundamental dynamical models, the
Susceptible-Infected-Susceptible (SIS) model and
the Contact Process (CP), have been used to model
the activity propagation on brain networks [11, 12].
Previous studies focus on the emergence of the Griffiths
phase on general complex networks using these simplified
models. Quenched disorder, either intrinsic to nodes or
topological, has been shown to smear the phase transi-
tion at critical points and generate the Griffiths phase.
The essential disorder may stem from a node-dependent
propagation rate [30, 31]. Recent results also present
evidence that the Griffiths phase emerges due to the
quenched disorder on the edges, such as a correlated
weight pattern in tree networks [32] and exponentially
suppressed weight scheme in random networks [25].

Special rare regions (RRs) emerge in the dynamical
process evolving on networks with quenched disorder.
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Statistically, the active state lingers in these rare re-
gions for a typical time that grows exponentially with
their sizes, and eventually ends up in the absorbing state
[11, 33]. Exponential size distribution of rare regions in-
duces power-law decays with continuously varying expo-
nents, i.e. the Griffiths phase. Not only in the spread-
ing dynamics on networks, rare regions has also been
shown to dramatically change the properties of classical
phase transition in quenched disordered systems, such as
randomly diluted Ising model or Ising model with pla-
nar defects, and quantum phase transitions in itinerant
magnets with Heisenberg spin symmetry, leading to an
essential singularity, the Griffiths singularity [34, 35].

In absence of the quenched disorder, the Griffiths phase
can also be a consequence of the structural heterogene-
ity of finite dimensional networks that is expected to
have a similar role as the quenched disorder [11, 30].
The Quenched Mean-Field (QMF) approximation ap-
plies a spectral analysis on the network adjacency ma-
trix that analytically explains emerging rare regions and
the Griffiths phase on networks with the quenched disor-
der [24, 25]. This analytical procedure successfully con-
firms the Griffiths phase on finite dimensional hierarchi-
cal modular networks in previous work [11]. The spec-
tral analysis on the network Laplacian matrix provides
another approach to predict the Griffiths phase, which
is confirmed in [11, 29]. In this section, I will focus on
the SIS model and apply the spectral analysis on all the
relevant finite dimensional structures.

A. SIS Model and the Simulation

In SIS model, each node in networks is described by
a binary state, active (σ = 1) or inactive (σ = 0). An
active node is deactivated with a unit rate; otherwise, it
propagates the active state to its inactive neighbors with
a rate λ. The evolution equation for the probability ρx (t)
that node x is active at time t is

d

dt
ρx (t) = −ρx (t) + λ [1− ρx (t)]

N∑
y=1

Axyρy (t) , (2)

in which A is the network adjacency matrix. Axy is 1 if
node x and y are connected by an edge; otherwise, it is
0. The Laplacian matrix of a graph is defined with the
adjacency matrix as

Lxy = δxy
∑
z

Azy −Axy, (3)

where Lxy is equal to −Axy when x 6= y, and Lxx is
equal to

∑
y 6=xAxy, i.e. the degree of node x. Denote

eigenvalues and eigenvectors of the adjacency matrix A
and the Laplacian matrix L respectively as ΛA, fA

(
ΛA
)

and ΛL, fL
(
ΛL
)
.

I here briefly introduce the method used to perform
the simulation for the SIS model. The large-scale nu-
merical simulation method for the SIS model developed

in [36] determines the critical propagation rate λc effi-
ciently for various networks. This algorithm considers
the SIS model in continuous time. At each time step, one
randomly chosen active node deactives with the prob-
ability Ni/ (Ni + λNn) where Ni is the number of ac-
tive nodes at time t, and Nn is the number of edges
emanating from them. With complementary probability
λNn/ (Ni + λNn), the active state is transmitted to one
inactive neighbor of the randomly selected node. Time
is incremented by 4t = 1/ (Ni + λNn). This process is
iterated after updating the system.

B. The Spectral Analysis for SIS Model

In this subsection, I review the derivation of the spec-
tral analysis on the adjacency matrix and the Laplacian
matrix, and apply it to all the relevant networks. Con-
sidering the adjacency matrix, the criterion for the local-
ization of steady active state on networks is based on the
evaluation of the inverse participation ratio (IPR) of the
principle eigenvector corresponding to the largest eigen-
value. Following the notations in [24], eigenvalues of the
adjacency matrix are ordered as ΛA1 ≥ ΛA2 ≥ · · · ≥ ΛAN .
The probabilities ρx for each node at the steady state can
be written as a linear superposition of the N orthogonal
eigenvectors [24],

ρx =

N∑
i=1

c
(
ΛAi
)
fAx
(
ΛAi
)
. (4)

If the largest eigenvalue ΛA1 is significantly larger than all
the others, the QMF approximation predicts the critical
point λc as 1/ΛA1 , and the steady state probability as

ρx ∼ c
(
ΛA1
)
fAx
(
ΛA1
)
. (5)

The order parameter ρ (t) is defined as the average
1
N

∑N
x=1 ρx (t) over all the nodes. At the critical λc, the

order parameter ρ at the steady state can be expanded
as,

ρ ∼ a14+ a242 + . . . , (6)

in which 4 = λΛ1 − 1� 1 with the coefficients

ai =

∑N
x=1 f

A
x

(
ΛAi
)

N
∑N
x=1

[
fAx
(
ΛAi
)]3 . (7)

With the dominant largest eigenvalue and the principle
eigenvector, the order parameter ρ can be approximated
with ρ ∼ a14. In the limit N → ∞, for a localized
principle eigenvector fA

(
ΛA1
)
, the components fAx

(
ΛA1
)

are of the order of O(1) only at few nodes, and then
a1 ∼ O(1/N) and ρ ∼ O(1/N). Thus, the active state is
localized on the a few nodes of the network. On the other
hand, for a delocalized principle eigenvector fA

(
ΛA1
)
, we

usually have fAx
(
ΛA1
)
∼ O( 1√

N
), and then a1 ∼ const

and ρ ∼ const. The active state extends over a finite
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Figure 2: (a) IPR vs m for network configurations of
HMN1 with different maximum generation g. The red
squares are values of IPR for g = 10; the black circles
are values of IPR for g = 11; the blue diamonds are
values of IPR for g = 12. Each data point averages
values of IPR over 100 independent realizations of
HMN1 configuration. (b) the localized eigenvectors
corresponding to five largest eigenvalues of the
adjacency matrix of one graph realization of HMN1
configuration with g = 11,m = 16.

fraction of nodes of the network. The localization of
eigenvectors is quantified by their inverse participation
ratio (IPR) (shown in [24]),

IPR (Λ) =

N∑
x=1

[fx (Λ)]
4
. (8)

A finite IPR value of the principle eigenvector corre-
sponds to a localized eigenvector, while a IPR approach-
ing to zero corresponds to a delocalized principle eigen-
vector. I apply the concept of IPR on all the relevant
networks to examine whether a localized principle eigen-
vector exists, which may suggest the the emergence of

rare regions and the Griffiths phase in the QMF approx-
imation [11, 12].

As shown in Fig.(2a), the IPR of the principle eigenvec-
tor increases with clique size m towards to a finite value
for different maximum generation g of HMN1. It sug-
gests the principle eigenvectors for HMN1 configurations
are localized. Additionally, localized eigenvectors corre-
sponding to largest eigenvalues are also found, shown in
Fig.(2b). For HMN2, I focus on level-dependent inter-
module wiring probabilities, pi = 4−(i+1) and pi = 4−i

in this work. The backbone as well as the first level inter-
module wiring probability is fixed at 1/4, where the mod-
ules are the basic cliques described in Sec.II. Values of
IPR are shown in Fig.(3a). The largest value comes from
the network configuration that the single clique contains
2 nodes, and the probability is pi = 4−(i+1). In this
case, the network is statistically almost fragmented. Nu-
merical results in Sec.IV indeed show the emergence of
the Griffiths phase as a trivial consequence of the net-
work disconnectedness. To examine the Griffiths phase
on a connected network with a finite fractal dimension,
the network configuration of m = 3 and pi = 4−(i+1) is
also chosen for the numerical simulation. For stochasti-
cally constructed HMN2, as the clique size m or level-
dependent probability increases while keeping the other
factor fixed, modules becomes more and more connected
with other modules in the same level, and the value of
IPR decreases, shown in Fig.(3a). The regime over the
parameter m and the level-dependent pi that possibly
supports the Griffiths phase is narrow. It is not surpris-
ing to see that the localized principle eigenvector exists
for network configurations of HMN2 with a finite value
of IPR. In Fig.(3b) and Fig.(3c), I illustrate the local-
ized eigenvectors corresponding to large eigenvalues in
two network configurations.

As a second approach of the spectral analysis to further
confirm the Griffiths phase, I study the spectral density
of the network Laplacian at the lower edge, the Lifshitz
tail. The Laplacian matrix is positive semidefinite, i.e.
ΛLi ≥ 0 and ΛL1 = 0, following the notations in [29]. The
smallest nonzero ΛL2 is defined as the spectral gap. Near
the critical point, in the inactive phase, the evolution
equation of the SIS model Eq.(2) can be approximated
as

d

dt
ρx (t) = −ρx (t) + λ

N∑
y=1

Axyρy (t) , (9)

which can be rewritten using the Laplacian matrix as

d

dt
ρx (t) =

(
λδxy

N∑
z=1

Ayz − 1

)
ρx (t)− λ

N∑
y=1

Lxyρy (t) .

(10)

A linear stability analysis is performed [29], similar to the
synchronization process [37]. The normal modes of the
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Figure 3: (a) IPR vs m for network configurations of
HMN2 with different g. The red squares are values of
the IPR with g = 10; the black circles are IPRs for
g = 11. The hierarchical level-dependent inter-module
probability is pi = 4−(i+1). Compared to them, the blue
diamonds are IPRs for g = 10 with a level-dependent
probability pi = 4−i. Each data point averages IPRs
over 100 independent realizations of HMN2
configuration. (b): localized eigenvectors corresponding
to five largest eigenvalues of the adjacency matrix of
one graph realization of HMN2 configuration with
g = 14,m = 2, pi = 4−(i+1); (c): localized eigenvectors
corresponding to five largest eigenvalues of the
adjacency matrix of one graph realization of HMN2
with g = 14,m = 3, pi = 4−(i+1).

perturbations above the absorbing state can be written,

d

dt
ρx (t) = −λ

∑
y

Lxyρy (t) . (11)

Using the Laplacian spectrum, ρx (t) can be expressed as
the expansion with the Laplacian eigenvalues and eigen-
vectors,

ρx (t) =
∑
iy

e−λΛL
i tfLx

(
ΛLi
)
fLy
(
ΛLi
)
ρy (0) , (12)

and the total density is determined by the lowest eigen-
values of the spectrum,

ρ (t) ∼
N∑
i=2

e−λΛL
i t. (13)

In the continuum limit,

ρ (t) ∼
∫ ΛL

c

ΛL
2

dΛP (Λ) e−λΛt, (14)

in which ΛLc is the experimentally determined end of tail
value. A power-law distribution P (Λ) of the lower edge
of the Laplacian spectrum suggests the Griffiths phase
behavior above the absorbing state [29].

ρ (t) ∼
∫ Λc

Λ2

dΛΛae−λΛt, (15)

∼ t−λ(a+1), (16)

For comparison I calculated the Lifshitz tails for HMN1
and HMN2, shown in Fig.(4). In the plot, the probabil-
ity distribution P (Λ) is calculated with the bin size δΛ =
0.0001 over 100 independent graph realizations. The Lif-
shitz tail for HMN2 configuration with g = 13,m =
2, pi = 4−(i+1), and with g = 12,m = 3, pi = 4−(i+1),
are fitted with power laws as,

P (Λ) ∼ Λ0.6828···, (17)

and

P (Λ) ∼ Λ0.8226···, (18)

while the Lifshitz tail for HMN1 slightly deviates from
a power law, suggesting the lack of the Griffiths phase
according to [29].

IV. SIMULATION RESULTS FOR THE SIS
MODEL ON HMN1 AND HMN2

In this section, I present results from numerical study
of the SIS model on all the network configurations of
HMN1 and HMN2 using the simulation method intro-
duced in Sec.III A. The network is initialized as a fully-
active graph. The system is updated each step until the
maximum time tmax

(
106
)
is reached or in case of activ-

ity extinction. Simulations for each propagation rate λ
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Figure 4: Lifshitz tails for HMN1 and HMN2: The red
circles are tail distribution for HMN1 configuration with
g = 11,m = 8; the black squares are tail distribution for
HMN2 configuration with g = 13,m = 2, pi = 4−(i+1),
fitted with a power law P (Λ) ∼ Λ0.6828···; the blue
diamonds are tail distribution for HMN2 configuration
with g = 12,m = 3, pi = 4−(i+1), fitted with
P (Λ) ∼ Λ0.8226···.

are repeated on 1000 ∼ 5000 independent network re-
alizations. The order parameter ρ (t) for each λ is the
average of all the runs. I also derive the effective de-
cay exponent by fitting critical power laws ρ (t) ∼ t−αeff

with the efficient exponent defined as ([12, 25])

αeff = − ln[ρ(t)/ρ(t′)]
ln(t/t′) . (19)

Fig.(5) and Fig.(6) present the simulation results for
network configurations of HMN1 with g = 11,m = 8
and g = 11,m = 16, and fit with the effective decay
exponent at the critical point. It shows that the Grif-
fiths phase is absent in HMN1, and we see a trivial phase
transition at a single critical point. For network config-
uration of HMN2 with m = 2 and pi = 4−(i+1), the size-
independent Griffiths phase emerges, shown in Fig.(7).
However, the Griffiths phase is a trivial consequence of
the disconnectedness of HMN2 as discussed in Sec.III B.
For network configurations of HMN2 that is connected,
I choose the case of m = 3, pi = 4−(i+1) at which the
corresponding value of IPR is sufficiently large. Since
inter-module connections are established stochastically,
there is a chance that all the possible inter-module edges
fails to be connected. To avoid this case, at least one
inter-module connection is enforced to exist by repeating
the construction of graphs in the simulation. Numerical
results for a connected HMN2 is presented in Fig.(8). We
see a nearly size-independent power laws in a stretched
regime of λ. Comparing Fig.(7) with Fig.(8), as m in-
creases while keeping pi fixed and vice versa, the regime
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Figure 5: (a): ρ vs t for network configuration of HMN1
with g = 11,m = 8. Lines from bottom to top are for
λ = 0.1650, 0.1651, 0.1652, 0.1653. (b): log (ρ) versus
log (t) , the black straight line is the fitted curve with
ρ ∼ t−0.2849.... The critical propagation rate is
λc ≈ 0.1652

in the parameter space of λ for the Griffiths phase is ex-
pected to become narrow until it disappears when HMN2
becomes highly connected.

As introduced in Sec.I, one significant advantage of
biological systems operating at criticality is the diverging
reaction to highly diverse stimuli. From the perspective
of statistical mechanics, this is caused by the divergence
of susceptibility at criticality. To measure the divergence
of response in the Griffiths phase, here I use the concept
of dynamic susceptibility that is applied to gauge the
overall response to a continuous localized stimulus in [11].
This dynamic susceptibility is defined as,

Σ (λ) = N [ρf (λ)− ρs (λ)] , (20)

where ρs (λ) is the stationary density in the absence of
stimuli and ρf (λ) is the steady-state density reached
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Figure 6: (a): ρ vs t for network configuration of HMN1
with g = 11,m = 16. Lines from bottom to top are for
λ = 0.07475, 0.07480, 0.07485, 0.0749. (b): log (ρ) versus
log (t) , the black straight line is the fitted curve with
ρ ∼ t−0.3127.... The critical propagation rate is
λc ≈ 0.07485.

when one single node is constrained to remain active.
As shown in Fig.(9), Σ becomes large in the region of the
Griffiths phase, and more importantly it grows with the
network size N that implies a divergent response over an
extended region.

V. CONCLUSION

The Griffiths phase induced purely by the structural
disorder suggests an alternative self-organizing mecha-
nism for brain function. Brain networks are shown to
have strong modularity, and densely connected modules
are organized in a hierarchical pattern. Another impor-
tant feature found empirically is the small-world topology
that ensures the efficient information transfer between

(a)

(b)

Figure 7: (a): ρ vs t for network configurations of
HMN2 with g = 13,m = 2 and with g = 14,m = 2.
Lines from bottom to top are for
λ = 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53. (b):
log (ρ) versus log (t), the black straight lines are the
fitted curves with ρ ∼ t−0.9094..., ρ ∼ t−0.6989...,
ρ ∼ t−0.5356..., ρ ∼ t−0.3962... and ρ ∼ t−0.3054... from
bottom to top for λ = 0.49, 0.50, 0.51, 0.52, 0.53

modules. To solve the the conundrum between small-
world topology and large-world architecture of brain net-
works, incorporating progressively weaker inter-module
connections while maintaining well defined modules is
proposed as a solution [38]. In this work, I construct
two classes of synthetic hierarchical modular networks
that incorporate weak inter-module connections in dis-
tinguished ways. The first model HMN1 builds the hier-
archical small-world connections into the planar modular
networks. The second model HMN2 organizes modules
into hierarchies, and the inter-module wiring probability
is level-dependent. Both of them possess a self-similar
structure and small-world long range connections, based
on the 3-regular Hanoi network [23].
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Figure 8: (a): ρ vs t for network configurations of
HMN2 with g = 13,m = 3 and with g = 12,m = 3.
Lines from bottom to top are for propagation rates
λ = 0.258, 0.259, 0.260, 0.261, 0.262. (b): log (ρ) versus
log (t), the black straight lines from bottom to top are
the fitted curves with ρ ∼ t−0.5339..., ρ ∼ t−0.4325...,
ρ ∼ t−0.3605... for λ = 0.260, 0.261, 0.262

I study the Griffiths phase by evolving the fundamental
SIS model on the HMNs designed. As an further explo-
ration into the Griffiths phase caused by the structural
heterogeneity of networks, I present numerical results for
two classes of networks. The results suggest the essential
role of level dependent inter-module wiring probability
on the emergence of the Griffiths phase. The first class
of hierarchical networks, HMN1, are not able to support
the Griffiths phase, although they satisfy the structural
criteria, such as the finite fractal dimension, the modu-
lar structure, the hierarchical heterogeneity. The second
class of hierarchical networks, HMN2, are constructed to
possess a hierarchical pattern in the inter-module wiring
probabilities, which therefore require a delicate tuning to
maintain a connected, finite dimensional network. The

0.258 0.259 0.26 0.261 0.262 0.263 0.264 0.265

propagation rate 
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Figure 9: : Dynamic susceptibility Σ, measured for
network configurations of HMN2 with g = 11,m = 3
(red diamonds), g = 12,m = 3 (blue circles) and
g = 13,m = 3 (black squares) with the pi = 4−(i+1).
The overall response increases significantly near and in
the Griffiths phase (from λ = 0.260 to λ = 0.262), and
decreases away from the critical region.

hierarchical pattern of inter-module connections results
in more heterogeneous networks of HMN2, while network
configurations of HMN1 are more homogenous. This can
be shown by considering the Lifshitz tails for HMN1 and
HMN2 in Fig.(4). The Lifshitz tail of HMN1 deviates
from that of HMN2, and compared to HMn2, the spec-
trum of HMN1 is closer to the original network HN3 [39].
Although HN3 possesses a hierarchical structure, it is not
sufficiently disordered to induce the Griffiths phase. The
difference between hierarchical patterns of HMN1 and
HMN2 significantly affects the phase transition and ex-
istence of the Griffiths phase.

As a complement to the computational efforts, the
spectral analysis proposed in the Quenched Mean Field
approximation suggests that a finite IPR of the principle
eigenvector of the adjacency matrix can be considered
to indicate the localization of activity that may result
in the emergence of rare regions and the Griffiths phase
under certain circumstances. Although all the network
configurations of HMN1 prove to have a finite IPR and
localized eigenvectors corresponding to the largest eigen-
values, only when the structural disorder of inter-module
connections is sufficient as in HMN2, the Griffiths phase
appears. As a counter example to previous finite dimen-
sional models with localized principle eigenvectors that
support the Griffiths phase [11, 12], a class of finite di-
mensional networks with a localized principle eigenvector
is found where the Griffiths phase is absent. This raises
questions on a more generalized theoretical analysis on
the network adjacency matrix that applies to all the net-
works considered previously and currently. Besides the
spectral analysis on the adjacency matrix, the Lifshitz
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tail of Laplacian spectrum presents a power law probabil-
ity distribution at the lower edge of spectrum of HMN2
networks, while the tail distribution in HMN1 deviates
from a power law. Numerical results confirm the prop-
erty of phase transition may be related to this difference

between Lifshitz tails of HMN1 and HMN2.
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