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To understand, predict, and control complex networked systems, a prerequisite is to reconstruct the network

structure from observable data. Despite recent progress in network reconstruction, binary-state dynamics that

are ubiquitous in nature, technology and society still present an outstanding challenge in this field. Here we

offer a framework for reconstructing complex networks with binary-state dynamics by developing a universal

data-based linearization approach that is applicable to systems with linear, nonlinear, discontinuous, or stochas-

tic dynamics governed by monotonic functions. The linearization procedure enables us to convert the network

reconstruction into a sparse signal reconstruction problem that can be resolved through convex optimization.

We demonstrate generally high reconstruction accuracy for a number of complex networks associated with dis-

tinct binary-state dynamics from using binary data contaminated by noise and missing data. Our framework

is completely data driven, efficient and robust, and does not require any a priori knowledge about the detailed

dynamical process on the network. The framework represents a general paradigm for reconstructing, under-

standing, and exploiting complex networked systems with binary-state dynamics.

I. INTRODUCTION

Complex networked systems consisting of units with

binary-state dynamics are common in nature, technology, and

society [1]. In such a system, each unit can be in one of the

two possible states, e.g., being active or inactive in neuronal

and gene regulatory networks [2], cooperation or defection

in networks hosting evolutionary game dynamics [3], being

susceptible or infected in epidemic spreading on social and

technological networks [4], two competing opinions in social

communities [5], etc. The interactions among the units are

complex and a state change can be triggered either determin-

istically (e.g., depending on the states of their neighbors) or

randomly. Indeed, deterministic and stochastic state changes

can account for a variety of emergent phenomena, such as

the outbreak of epidemic spreading [6], cooperation among

selfish individuals [7], oscillations in biological systems [8],

power blackout [9], financial crisis [10], and phase transitions

in natural systems [11]. A variety of models have been in-

troduced to gain insights into binary-state dynamics on com-

plex networks [12], such as the voter models for competition

of two opinions [13], stochastic propagation models for epi-

demic spreading [14], models of rumor diffusion and adoption

of new technologies [15], cascading failure models [16], Ising
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spin models for ferromagnetic phase transition [17], and evo-

lutionary games for cooperation and altruism [18]. A general

theoretical approach to dealing with networks hosting binary

state dynamics was developed recently [19] based on pair ap-

proximation and master equations, providing a good under-

standing of the effect of the network structure on the emergent

phenomena.

In this paper, we address the inverse problem of binary-

state dynamics on complex networks, i.e., the problem of re-

constructing the network structure and binary dynamics from

data. Deciphering the network structure from data has always

been a fundamental problem in complexity science, as the

structure can determine the type of collective dynamics on the

network [20]. More generally, for a complex networked sys-

tem, reductionism is not effective and it is necessary to recon-

struct and study the system as a whole [21]. The importance

of network reconstruction has been increasingly recognized

and effective methodologies have been developed [22–34].

Of particular relevance to our work is spreading dynamics on

complex networks, where the available data are binary: a node

is either infected or healthy. In such cases, a recent work [33]

demonstrated that the propagation network structure can be

reconstructed and the sources of spreading can be detected

by exploiting compressive sensing [35–40]. However, for bi-

nary state network dynamics, a general reconstruction frame-

work was lacking (prior to the present work). The problem of
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reconstructing complex networks with binary-state dynamics

is extremely challenging, for the following reasons. (i) The

switching probability of a node depends on the states of its

neighbors according to a variety of functions for different sys-

tems, which can be linear, nonlinear, piecewise, or stochastic.

If the function that governs the switching probability is un-

known, a tremendous difficulty would arise in obtaining a so-

lution of the reconstruction problem. (ii) Structural informa-

tion is often hidden in the binary states of the nodes in an un-

known manner and the dimension of the solution space can be

extremely high, rendering impractical (computationally pro-

hibitive) brute-force enumeration of all possible network con-

figurations. (iii) The presence of measurement noise, missing

data, and stochastic effects in the switching probability make

the reconstruction task even more challenging, calling for the

development of effective methods that are robust against in-

ternal and external random effects.

To meet the challenges, we develop a general and robust

framework for reconstructing complex networks based solely

on the binary states of the nodes without any knowledge about

the switching functions. Our idea is centered around develop-

ing a general method to linearize the switching functions from

binary data. The data-based linearization method is appli-

cable to linear, nonlinear, piecewise, or stochastic switching

functions. The method allows us to convert the network re-

construction problem into a sparse signal reconstruction prob-

lem for local structures associated with each node. Exploit-

ing the natural sparsity of complex networks, we employ

the lasso [41], an L1 constrained fitting method for statistics

and data mining, to identify the neighbors of each node in

the network from sparse binary data contaminated by noise.

We establish the underlying mechanism that justifies the lin-

earization procedure by conducting tests using a number of

linear, nonlinear and piecewise binary-state dynamics on a

large number of model and real complex networks. We find

universally high reconstruction accuracy even for small data

amount with noise. Because of its high accuracy, efficiency

and robustness against noise and missing data, our framework

is promising as a general solution to the inverse problem of

network reconstruction from binary-state time series, which

is key to articulating effective strategies to control complex

networks with binary state dynamics using, e.g., the recently

developed network controllability frameworks [42–47]. The

data-based linearization method is also useful for dealing with

general nonlinear systems with a wide range of applications.

II. BINARY-STATE DYNAMICS

We consider a large number of representative binary state

processes on complex networks, which model a plethora of

physical, social and biological phenomena [19]. In such a dy-

namical process, the state of a node can be 0 (inactive) or 1

(active). In general, the process can be characterized by two

switching functions, F (m, k) and R(m, k), which determine

the probabilities for a node to change its state from 0 to 1 and

vice versa, respectively. The variables in these functions, k

and m, are the degree of the node and the number of active

neighbors of the node, respectively. The switching functions

can be linear, nonlinear, piecewise, bounded and stochastic

for characterizing and generating all kinds of binary-sate dy-

namical processes occurring on complex networks. Despite

the difference among the switching functions, the feature that

a node’s switching probability depends on its degree and its

number of active neighbors is generic. Table I lists the switch-

ing functions of different models, and the brief descriptions of

each model can be found in Appendix.

TABLE I. Switching functions for various binary state dynami-

cal processes on complex networks. The function F (m, k) is the

probability that a node switches its state from 0 to 1 while R(m,k)

represents the probability of the reverse process, where k is the de-

gree of the node, m is the number of neighbors of this node in the

active state 1. The models and the other parameters are described in

Methods. The parameter values used in the simulations are listed in

Supplementary Table S1 and Supplementary Material [48] Sec. 1.

Model F (m, k) R(m, k)

Voter [13] m
k

k−m
k

Kirman [49] c1 + dm c2 + d(k − m)

Ising Glauber [17, 50]
1

1 + e
β
k

(k−2m)

e
β
k

(k−2m)

1 + e
β
k

(k−2m)

SIS [14] 1 − (1 − λ)m µ

Game [3]
1

α + e
β
k

[(a−c)(k−m)+(b−d)m]

1

α + e
β
k

[(c−a)(k−m)+(d−b)m]

Language [51] s(m
k
)α (1 − s)( k−m

k
)α

Threshold [52]







0 if m 6 Mk

1 if m > Mk

0

Majority vote [53]



















Q if m < k/2

1/2 if m = k/2

1 − Q if m > k/2



















1 − Q if m < k/2

1/2 if m = k/2

Q if m > k/2

III. RECONSTRUCTION METHOD

Our goal is to articulate a general framework to reconstruct

the network structure from binary states of nodes without



3

knowing a priori the specific switching functions. A key step

is to develop a universal procedure to obtain the linearization

of the switching functions from binary data. We demonstrate

that this can be accomplished by taking advantage of certain

common features of the binary state dynamics.

A. Data based linearization of switching functions

To proceed, we note that the number of active neighbors at

time t can be expressed as

mi(t) =
N
∑

j=1,j 6=i

aijsj(t), (1)

where aij = 1 if nodes i and j are connected and aij = 0

otherwise, and sj(t) denotes the state of node j at time step

t. In general, the switching probability P 01
i (t) for node i to

change its state from 0 to 1 at time step t can be written as

P 01
i (t) = F (mi(t), ki) = F





N
∑

j=1,j 6=i

aijsj(t), ki



 , (2)

where F is a monotonic function characterizing different dy-

namical models, e.g., those listed in Table I. In Eq. (2), all the

matrix elements aij (i, j = 1, . . . , N ) that are to be inferred

from data characterize the network structure. In general this is

a difficult problem, because in Eq. (2), only nodal state sj(t)

is measurable, whereas neither of the quantities ki and P 01
i (t)

nor the form of F is known. In fact, not knowing the function

F is the main difficulty in reconstructing the adjacency ma-

trix {aij}. To overcome this difficulty, we propose a merging

process to linearize F , i.e.,

F ∼ ci ·

N
∑

j=1,j 6=i

aijsj(t) + di, (3)

where ci and di are constants associated with node i. Insofar

as the linearization is realized, we can solve aij . The idea of

linearization is first proposed and used in Ref. [33], but the

mathematical form of F is assumed to be known in that case.

It is worth noting that the linearization approach is highly non-

trivial and is fundamentally different from that in the standard

canonical nonlinear analysis because, in our case, the mathe-

matical form of F is not available, which can be a nonlinear,

discrete and piecewise function.

B. Procedure of dealing with binary-state data

We present the procedure of dealing with binary-state data.

The merging based linearization process enables the proba-

bility P 01
i (t) to be estimated according to the law of large

numbers, from which the solution of aij can be obtained. In

particular, as shown in Fig. 1(a), for an arbitrary node i, we

first identify all the time steps with si(t) = 0 as information

about the switching probability P 01
i (t) is contained only in

the flipping behavior from state 0. To accurately estimate the

value of P 01
i , we need to collect sufficient time strings which

has the same state as each other. However, we almost cannot

find enough such time strings for aggregation because of the

dynamical stochasticity. Thus we relaxed the criterion to find-

ing sufficient similar time strings. In each set of similar time

strings, we first pick a base string s−i(t̂), and then collect time

strings similar to it. Then, the key process comes to select-

ing base strings that optimize the performance of reconstruc-

tion. Figure 1(b) shows our method of selecting the optimal

base strings solely based on recorded data. Specifically, we

first construct a network whose vertices represent strings com-

posed of sj(t)(j 6= i) at different time steps when si(t) = 0,

and edges are weighted by the normalized pairwise Hamming

distances among the strings. Then, We eliminate edges whose

weight is smaller than a threshold, say ∆. Setting another

threshold σ, we extract a subnetwork where only the top σ

proportion of vertices with largest degree are preserved, while

other vertices and their edges are removed. In this way, all

remaining strings have a sufficient number of similar strings.

Finally, we pick out M vertices with smallest degrees to en-

sure that the selected base strings are sufficiently different,

where M is the number of equations in Eq. (16). The pro-

cess of selecting base strings ensures us both good estimation

for P 01
i and dissimilarity among the averaged neighborhood

states. For each chosen base string, we use the threshold ∆ in

the normalized Hamming distance between strings to select a

set of subordinate strings that belong to each base string, as

shown in Fig. 1(c). A subordinate string is a string whose nor-

malized Hamming distance to the base string is less than the

selected threshold ∆. Using the average of sj(t) to represent

the state of node j and the average of si(t+1) to estimate the

switching probability P 01
i (t) of node i according to the law

of large numbers, we obtain P 01
i (t) ≈ 〈si(t̂ + 1)〉, where t̂

denotes the time of the base string (see Fig. 1(d)).

The whole process leads to the linearization of F with the

following data-based relationship

〈si(t̂+ 1)〉 ≈ ci ·

N
∑

j=1,j 6=i

aij〈sj(t̂)〉+ di, (4)

where 〈·〉 is the average over all time t of the subordinate

strings within t̂. The constant parameter ki is incorporated

into the linear coefficient ci and the intercept di. It is not
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FIG. 1. Schematic illustration of data based linearization from a merging process. (a) The original binary-state time series, where the

dark blue squares denote the 1 state and the white squares denote the 0 state. The variable s−i(t) consists of sj(t) for all j 6= i. Only strings

with si(t) = 0 (highlighted by the green frames) contain useful information for reconstruction. We identify the time steps with si(t) = 0 and

use si(t + 1). (b) Method of choosing bases. We first construct a network where the vertices denote strings of s−i(t) with si(t) = 0 (green

squares) and the edges are weighted by the normalized Hamming distance H between the strings. We then eliminate the edges with weight

smaller than the threshold ∆. Setting another threshold σ, we obtain the top σ percentage vertices with large degrees (yellow squares) and

remove the other vertices together with their edges. Finally, we pick out the vertices with smaller degree (red squares) according to the number

of base strings needed for reconstruction. (c) Selection of subordinate strings from a base. We take t1 as a base t̂1 and calculate H between

s−i(t1) and other strings s−i(t) so as to sort out the time steps satisfying H [s−i(t1), s−i(·)] < ∆ in this set. (d) Establishing average node

states. We calculate the average value
〈

s−i(t̂)
〉

to represent the state of the data set subject to the base, and the average value
〈

si(t̂+ 1)
〉

to

linearize the switching probability P 01
i (t) [Eqs. (4)]. The average values are shown in blue. Similarly, we obtain a sequence of t̂M and the

associated average values for reconstructing network structure by employing the lasso to solve Yi = Φi ×Xi (see Methods for details).

necessary to estimate the quantities ci, aij and di in Eq. (4)

separately - it is only necessary to infer value of the product

ci × aij . In particular, if i and j are not connected, we have

ci × aij = 0, but a nonzero value of ci × aij means that there

is a link between the two nodes. As we will show, the value

of di can be obtained but this quantity plays little role in the

reconstruction.

Figure 2 shows some representative examples to validate

the linearization procedure. Four types of dynamics, including

two with continuous and nonlinear switching functions and

two with discontinuous and piecewise functions, are tested.

We see that the switching functions F for different parame-

ter values are linearized, enabling the network structure in the

linearized system (4) to be reconstructed by distinguishing be-

tween zero and nonzero values of the reconstructed product

ci × aij . As compared to the original function F , the range

of m in the linearized function typically shrinks considerably

as a result of the merging process, as shown in Figs. 2(a) and

2(b). For the discrete piecewise functions in Figs. 2(c) and

2(d), approximately linear functions arise for different param-

eter values. This is particularly striking, because even given

a switching function, it is still difficult to linearize a piece-

wise function. We have achieve a data-based linearization of

nonlinear and piecewise functions without any knowledge a

priori.

C. Theoretical validation of data-based linearization

We provide an analysis for the completely data-based lin-

earization that gives rise to the general relationship (Eq. (4))

from general binary-state dynamics characterized by the

switching probability (Eq. (2)),

For nodes with only one neighbor, the linear relationship (4)

can be rigorously proved. In this scenario, the number of ac-

tive neighbors is either 0 or 1. Let Pt̂(1) denote the proportion

of strings with single active neighbors in the set of base t̂, and

denote the proportion of strings with null active neighbors as

1 − Pt̂(1). Let the switching probability of null active neigh-

bors and single active neighbors be f(0) and f(1). Then we
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FIG. 2. Data based linearization procedure for nonlinear and piecewise binary-state dynamics. Linearization of the switching probability

function F (m,k) for (a) Ising model, (b) evolutionary game model, (c) threshold model, and (d) majority model. The grey lines represent

Eq. (2) with the function F (m, k) from the different models, where k is the node’s degree and m is the number of active neighbors. Data points

are the result of the linearization procedure from time series, which corresponds to Eq. (4). For the linearized function, m is obtained from
∑N

j=1,j 6=i
aij〈sj(t̂)〉 and the value of the function is obtained via

〈

si(t̂+ 1)
〉

. For the data points, each color represents a set of subordinate

strings whose base string has m active neighbors. The colors demonstrate that bases with different m values are needed to produce a linear

function with a sufficient range of m for reconstruction, which justifies the base selection based on the normalized Hamming distance in Fig. 1.

For both nonlinear and piecewise switching functions, a linearized function in the form of Eq. (4) can be generated based entirely on data,

which is the key to reconstruction. The data points are obtained from an ER random network of N = 100 nodes and average degree 〈k〉 = 6.

have

〈si(t̂+ 1)〉 ≈ 〈P 01
i (t)〉 = f(0) [1− Pt̂(1)] + f(1)Pt̂(1)

= [f(1)− f(0)]Pt̂(1) + f(0) (5)

and

N
∑

j=1,j 6=i

aij〈sj(t̂)〉 = Pt̂(1). (6)

Inserting Eq. (6) into Eq. (5), we have

〈si(t̂+ 1)〉 ≈ [f(1)− f(0)]
N
∑

j=1,j 6=i

aij〈sj(t̂)〉+ f(0), (7)

which is a linear form that is subject to Eq. (4), because both

[f(1)− f(0)] and f(0) are constants and they are determined

by the specific binary-state dynamics.

Figures 3(a, b) shows two representative examples of re-

constructing the local structure of a node with one neighbor

for the evolutionary game model and the threshold model. We

see explicitly linear relationship for both models. With respect

to different number of active neighbors in the original bases,

two sets of groups are classified.

For nodes with more than one neighbor, the linear relation-

ship can be justified and predicted based on binomial distribu-

tion and Taylor linear approximation. For an arbitrary node,

say, node i with k neighbors, we will substantiate the linear

relationship between 〈si(t̂ + 1)〉 and
∑N

j=1,j 6=i aij〈sj(t̂)〉 re-

sulting from the data-based linearization, where

〈si(t̂+ 1)〉 ≈ 〈P 01
i (t)〉 =

ki
∑

m=0

F (m, ki)Pt̂(m), (8)

and

N
∑

j=1,j 6=i

aij〈sj(t̂)〉 =

ki
∑

m=0

mPt̂(m), (9)
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FIG. 3. Theoretical analysis of the data-based linearization. (a, b)Linearization of switching function for nodes with a single neighbor

for the game model (a) and the threshold model (b). The grey solid curves are the original switching functions, data points are the results

of data-based linearization (Eq, (4)), and the dashed lines are theoretical predictions from Eq. (7). The color of data points represents two

sets of subordinate strings whose base string has no active neighbors (m = 0) or has a single active neighbors (m = 1).For both nonlinear

and piecewise switching functions, the theoretical predictions are in exact agreement with data-based linearization, because for ki = 1 the

linearization is rigorous without any approximation. (c, d) The distribution of active neighbors m in subordinate strings subject to each

base string and binomial distributions for reconstructing node i with ki = 3 for the game model (c) and ki = 6 for the majority model (d),

respectively. Each color of curves represents a set of subordinate strings whose base string has m active neighbors. The distribution can be well

described by binomial distributions under different success probability in each trial, as exemplified by black curves. There is a good agreement

between the distribution of active neighbors in subordinate strings and binomial distributions. (e, f) The original switching function and the

linearized function with theoretical prediction based on binomial distribution for the game model (e) and the majority model (f), respectively.

The color of data points represents different sets of subordinate strings whose base string has different number of active neighbors m (the

same meaning as in (c), (d)). The grey curves are the original switching function in the binary-state dynamics. The black dashed lines are

the theoretical prediction of the linear relationship through Eq. (15) based on binomial distribution and Taylor linear approximation. The

theoretical predictions are in good agreement with numerical results.

where Pt̂(m) represents the proportion of strings with m ac-

tive neighbors among all strings that belong to the set of base

t̂. The key to validating the linear relationship lies in the dis-

tribution that Pt̂(m) obeys.

Regarding the effect of the merging process as shown in

Fig. 1, we hypothesize that Pt̂(m) follows binomial distribu-

tions with different success probability pt̂. We denote the pro-

portion of state 0 in data to be p0. If the strings are randomly

chosen for each set of a base, Pt̂(m) exactly obeys binomial

distribution with success probability p0. However, due to the

process of selecting strings that are similar to each set of a

base, the distribution will be biased toward the number of ac-

tive neighbors in the base. Despite the original complex in-

fluence of the base and string selections based on Hamming

distance, their effects can be simply regarded as selecting a

group of strings with similar proportion of state 0 since we ac-

tually do not know which the node’s neighbors are. This pro-

cess leads to the success probability that depends on the base

string. Figs. 3(c, d) shows the comparison between the actual

distribution of Pt̂(m) obtained from numerical simulations

and the binomial distributions with different success proba-

bility in each trial in the game and majority model, where the

success probability in each trial approximately range from 0.4

to 0.6 because p0 ≈ 0.5 in the data. We see that Pt̂(m) can

be well approximated by binomial distributions with different

parameter values, which indeed validates our binomial distri-

bution hypothesis.

Based on the binomial distribution hypothesis, we have

Pt̂(m) = Cm
ki
pt̂

m(1− pt̂)
ki−m. (10)
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Inserting Eq. (10) into Eq. (8) yields

〈si(t̂+ 1)〉 ≈

ki
∑

m=0

F (m, ki)C
m
ki
pt̂

m(1− pt̂)
ki−m

=

ki
∑

m=0

Cm
ki

m
∑

l=0

[

(−1)m−lCl
mF (l, ki)

]

pt̂
m
. (11)

The fact that pt̂ fluctuates around p0 allows us to apply the

Taylor series expansion around p0 to Eq. (11), leading to

〈si(t̂+ 1)〉 ≈

ki
∑

m=0

Cm
ki

m
∑

l=0

[

(−1)m−lCl
mF (l, ki)

]

p
m
0

+

ki
∑

m=0

Cm
ki

m
∑

l=0

[

(−1)m−lCl
mF (l, ki)

]

mp
m−1

0 (pt̂ − p0)

+ O(pt̂ − p0). (12)

Omitting the high-order term O(pt̂ − p0), we have

〈si(t̂+ 1)〉 ≈

ki
∑

m=0

Cm
ki

m
∑

l=0

[

(−1)m−lCl
mF (l, ki)

]

(1−m)pm0

+

ki
∑

m=0

Cm
ki

m
∑

l=0

[

(−1)m−lCl
mF (l, ki)

]

mp
m−1

0 pt̂.

(13)

On the other hand, substitute Eq. (10) into Eq. (9) yields

N
∑

j=1,j 6=i

aij〈sj(t̂)〉 =

ki
∑

m=0

mCm
ki
pt̂

m(1 − pt̂)
ki−m

= kipt̂. (14)

Combining Eq. (13) and Eq. (14), we have

〈si(t̂+ 1)〉 ≈

ki
∑

m=0

Cm
ki

m
∑

l=0

[

(−1)m−lCl
mF (l, ki)

]

(1−m)pm0

+

{

1

ki

ki
∑

m=0

Cm
ki

m
∑

l=0

[

(−1)m−lCl
mF (l, ki)

]

mp
m−1

0

}

×
N
∑

j=1,j 6=i

aij〈sj(t̂)〉. (15)

Note that all variables in the first term on the right hand side

of Eq. (15) are only determined by the binary-state dynamics

and the node degree of i. Hence, the first term corresponding

to di is a constant with respect to node state si. In analogy, all

variables in the coefficient of the second term are determined

by the binary-state dynamics and the node degree of i as well,

indicating the coefficient is a constant corresponding to ci in

Eq. (4). Taken together, we theoretically justified that Eq. (15)

is approximately a linear equation in the form of Eq. (4).

Figures 3(e, f) shows the relationship between 〈si(t̂ + 1)〉

and
∑N

j=1,j 6=i aij〈sj(t̂)〉 (namely 〈m〉) of each set of bases

and the linear relationship calculated by using Eq. (15) for the

game model and the majority model with nonlinear and piece-

wise switching dynamics. We see that the theoretical predic-

tions are in good agreement with the results from the merging

process for linearization, which strongly validates the data-

based linearization for general binary-state dynamics.

It is noteworthy that the key to the success of the data-

based linearization lies in selecting similar strings subject to

a base and the average over each set of bases. The selec-

tion of similar strings accounts for the binomial distribution

of active neighbors in a set, and different bases induces differ-

ent success probability in each trial. Then the average of the

binomial distributions leads to the relatively small range of

〈m〉 compared to the original range in the switching function,

allowing us to use Taylor linear approximation. Moreover,

high-order terms in the Taylor series expansion contribute lit-

tle to the binomial distribution, which justifies the low-order

approximation. Based on the linear relationship, the recon-

struction of local structure can be realized by employing the

lasso without requiring the linear coefficients and intercept. In

other words, the data-based linearization is general valid for

arbitrary binary-state dynamics without any knowledge of the

switching function.

D. Reconstruction of local structure based on the lasso

The linear relationaship, Eq. (4) allows us to ascertain the

neighbors of any node i from M different values of the base

time, e.g., t̂1, · · · , t̂M , and their subordinate times. In particu-

lar, with respect to t̂1, · · · , t̂M , Eq. (4) can be expressed in the

matrix form Yi = Φi ×Xi as Eq. (16) , where the vector Xi

is to be solved for obtaining the neighbors of i, and the vector

Yi and the matrix Φi can be constructed entirely from binary

time series without requiring any other information.
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. (16)

The natural sparsity of complex networks ensures that, on

average, the number of neighbors for a node is much smaller

than the network size N , implying that Xi is typically sparse

with most of its elements being zero and the number of

nonzero elements is in fact the node degree ki with ki ≪ N .

We can then exploit the sparsity to reconstruct Xi by employ-

ing the lasso [41], a convex optimization method for sparse

signal reconstruction. The lasso incorporating an L1-norm

and an error control term is efficient and robust, enabling a

reliable reconstruction of the local network structure as repre-

sented by Xi from a small amount of data. In particular, the

problem is to optimize

min
Xi

{ 1

2M
‖ΦiXi −Yi‖

2
2 + λ‖Xi‖1

}

, (17)

where ‖Xi‖1 =
∑N

j=1,j 6=i |xij | is the L1 norm of Xi assur-

ing the sparsity of the solution, and the least squares term

‖ΦiXi − Yi‖
2
2 guarantees the robustness of the solution

against noise in data. In Eq. (17), λ is a nonnegative regular-

ization parameter that affects the reconstruction performance

in terms of the sparsity of the network, which can be deter-

mined by a cross-validation method [62]. An advantage of

using the lasso is that M , i.e., the number of bases needed,

can be much less than the length of Xi. For each base of

each node, the strings included can be collected and calculated

from only one set of data sample in the time series, ensuring

the sparse data requirement.

After the vector Xi has been reconstructed, the direct

neighbors of node i are simply those associated with nonzero

elements in Xi. In the same manner, we can uncover the

neighborhoods of all other nodes, so that the full structure of

the network can be obtained by matching the neighbors of all

nodes.

IV. RECONSTRUCTION PERFORMANCE

A. Measurement indices

To quantify the performance of our reconstruction method,

we introduce two standard measurement indices, the Area Un-

der the Receiver Operating Characteristic curve (AUROC) and

the Area Under the Precision-Recall curve (AUPR). True

positive rate (TPR, RTP), false positive rate (FPR, RFP),

Precision(Θprecision) and Recall(Θrecall) that are used to cal-

culate AUROC and AUPR are defined as follows:

RTP(l) =
NTP(l)

NP
, (18)

where l is the cutoff in the edge list, NTP(l) is the number of

true positives in the top l predictions in the edge list, and NP

is the number of positives in the gold standard.

RFP(l) =
NFP(l)

NN
, (19)

where NFP(l) is the number of false positive in the top l pre-

dictions in the edge list, and NN is the number of negatives in

the gold standard.

Θprecision(l) =
NTP(l)

NTP(l) +NFP(l)
=

NTP(l)

l
, (20)

Θrecall(l) =
NTP(l)

NP
, (21)

where Θrecall(l), which is called sensitivity, is equivalent to

RTP(l). By varying l from 0 to N , two sequences of points

(RTP(l), RFP(l)) and (Θrecall(l),Θprecision(l)) are measured

respectively, and the receiver operating characteristic curve

and the precision-recall curve are obtained, as shown in

Fig. 3(d) and (f). The area under the two curves, denoted

as AUROC and AUPR repectively, repensent the reconstruc-

tion performance: AUROC(AUPR) ranges from AUROC =

0.5(AUPR = NP/2N ) for random guessing to AUROC =

1(AUPR = 1) for perfect reconstructibility.
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Because the links of each node are actually identified sep-

arately, the AUROC and AUPR are calculated for each node,

and we use the mean index values over all the nodes to charac-

terize the reconstruction performance for the whole network.

B. Reconstruction performance affected by network structure

and amount of data

We test our method by implementing different dynamical

processes on Erdös-Rényi random (ER) [54](circle), scale-

free (SF) [55](square), small-world (SW) [56](diamond), and

empirical networks. For network reconstruction, knowledge

about the switching dynamics and network details is not nec-

essary - only the states of the nodes at different time steps need

to be recorded. See Sec. 1 in Supplementary Materials [48] for

computational details.

Figure 4 illustrates the reconstruction performance, where

Fig. 4(a) shows the element values xij in the reconstructed

neighboring vector Xi of all nodes for SW and SF networks

with the voter model. nt̂ is defined as the number of used base

strings normalized by network size N . We note that the val-

ues of xij corresponding to actual links are markedly and dis-

tinctly greater than those of null connections. Setting a cut-off

value in the gap between the two groups of points in Fig. 4(a),

we can separate the actual links from the null connections, en-

abling a reconstruction of the whole SW network. For the SF

network, it is difficult to fully reconstruct the neighbors of the

hub nodes, for the following two reasons: (i) in general the

linearization procedure works better for small node degree,

as shown in Fig. 2; (ii) the lasso based reconstruction requires

smaller data amount and offers better accuracy for sparser vec-

tor Xi associated with small degree nodes. However, for an

SF network, a vast majority of the nodes in an SF network

are not hubs, which can be precisely reconstructed. The re-

constructed SW and SF networks are shown in Figs. 4(b) and

4(c), respectively.

To assess how the number of base strings t̂ affects the recon-

struction accuracy, we define nt̂ to be the number of t̂ divided

by the network size N to quantify the relative amount of the

base strings. As shown in Figs. 4(d-g), the receiver operat-

ing characteristic (ROC) and the precision-recall (PR) curves

show better performance as nt̂ is increased for both SW and

SF networks, implying that high accuracy can be achieved for

reasonably large values of nt̂. Fig. 5 shows the AUROC and

AUPR measures as a function of nt̂ for different dynamical

models on ER, SW and SF networks. Due to the advantage

of the lasso for sparse vectors, nearly perfect reconstruction is

achieved after nt̂ exceeds a relatively small critical value, e.g.,

0.4.

It is also important to assess how the length of the binary

time series affects the reconstruction accuracy and efficiency.

We have calculated the AUROC andAUPR measures as a func-

tion of the relative time-series length nt (defined as the total

length of time series divided by N ) for various dynamical pro-

cesses on ER, SF and SW networks. Figure 6 shows the recon-

struction performance for Voter, Ising and Majority models in

combination with different types of networks. We find that

AUROC and AUPR rapidly increases as nt increases. After

nt exceeds a relatively small value, nearly full reconstruction

can be achieved, which provides additional evidence for the

high efficiency of our reconstruction method(see Supplemen-

tary Material [48] Sec. 2 for full results of performance for all

models versus nt). In general, high reconstruction accuracy

can be achieved for relatively short time series. We system-

atically test our method on a variety of model and real net-

works in combination with eight binary-state dynamics (Ta-

ble II) and find high values of AUROC and AUPR for all cases.

We explore the effects of network properties such as the

average degree 〈k〉 and the size N on reconstruction perfor-

mance. As shown in Fig. 7. The reconstruction accuracy de-

creases as 〈k〉 increases. The main reason for this result is that

the low-order approximation in the data-based linearization is

better for smaller node degree. Moreover, with the increase

of 〈k〉, the vector Xi to be reconstructed will become denser.

Note that it usually requires larger amounts of data to recon-

struct a denser signal by using the lasso according to the com-

pressive sensing theory. Thus, in general a network with larger

〈k〉 will be more difficult to be reconstructed. Fig. 8 shows

the minimum relative length of time series nmin
t to acquire at

least 0.95 AUROC and AUPR simultaneously as a function of

network size N . We see that nmin
t decreases as N increases,

which is because of network sparsity as well. In general, for

the same average node degree 〈k〉, a network with larger size

will be sparser, leading to a sparser vector Xi. According

to the compressive sensing theory, less data are required for

reconstructing a sparser Xi, accounting for the decrease of

nmin
t with the increase of N . These results indicate that our

reconstruction method is scalable and of practical importance

for dealing with large real networked systems.

C. Robustness of reconstruction against noise and missing

data

In real applications, time series are often contaminated by

noise and the data from certain nodes may be lost or inaccessi-

ble. To address these practical issues, we test the robustness of



10

FIG. 4. Reconstruction performance. (a) Reconstructed values of the neighboring vector Xi for all nodes in SW and SF networks with the

voter model, where N = 100, 〈k〉 = 6, nt̂ = 0.8 and the length of time series used is 1.5× 104. The red dashed line represents the threshold

for determining whether a reconstructed value is regarded as representing an actual link (a value larger than the threshold) or a null link (a

value smaller than the threshold). The correctly reconstructed links (true positive), falsely reconstructed links (false positive), and missing

links (false negative) are represented by the dark blue, red and light blue points, respectively, while the yellow points indicate the true negative

links. (b, c) Visualization of the reconstructed SW and SF networks, respectively. The color legends of the reconstructed links are the same as

those in a. There are more missing links (false negative) in the SF network than in the ER network. (d, e) ROC curves of reconstructed values

for SW and SF networks for different values of nt̂. (f, g) PR curves of the reconstructed values for SW and SF networks for different values of

nt̂.

TABLE II. AUROC and AUPR measures for various dynamics on a variety of model and empirical networks. The parameter values in

the dynamical models are listed in Supplementary Table S1. The size and mean degree of ER(circle), SF(square) and SW(diamond) networks

are N = 500 and 〈k〉 = 6, and the length of time series used is 6× 104. The length of time series used for empirical networks is 1.5× 104.

AUROC/AUPR Voter Kirman Ising SIS Game Language Threshold Majority

ER 1.000/0.983 0.999/0.954 1.000/0.982 0.997/0.960 0.999/0.981 0.995/0.934 1.000/0.988 1.000/0.986

SF 0.992/0.959 0.985/0.920 0.998/0.976 0.984/0.924 0.988/0.951 0.986/0.925 0.986/0.985 0.999/0.980

SW 1.000/0.988 1.000/0.982 1.000/0.988 1.000/0.988 1.000/0.988 1.000/0.986 0.994/0.979 1.000/0.987

Dolphins 1.000/0.916 0.997/0.908 0.999/0.911 0.978/0.867 0.993/0.900 0.985/0.870 0.991/0.890 1.000/0.913

Football 0.999/0.884 1.000/0.898 0.999/0.899 0.999/0.884 0.996/0.882 0.992/0.859 0.918/0.637 0.999/0.896

Karate 0.997/0.856 0.969/0.838 0.981/0.836 0.954/0.823 0.984/0.839 0.960/0.803 0.971/0.810 0.996/0.847

Leader 1.000/0.838 0.991/0.912 0.991/0.823 0.968/0.789 0.990/0.818 0.966/0.780 0.970/0.760 0.998/0.832

Polbooks 0.999/0.912 0.991/0.829 0.998/0.908 0.932/0.779 0.986/0.888 0.978/0.857 0.971/0.858 0.999/0.913

Prison 1.000/0.936 0.999/0.896 1.000/0.935 0.992/0.915 0.981/0.909 0.991/0.909 0.999/0.931 1.000/0.935

Santa Fe 0.998/0.967 0.990/0.933 1.000/0.969 0.982/0.937 0.997/0.965 0.996/0.959 0.994/0.961 1.000/0.970

our method. Specifically, we instill noise into the time series

by randomly flipping a fraction nf of binary states and assume

a fraction nm of nodes are inaccessible. The results are shown

in Table III, where voter, game, and majority models are used

as examples of linear, nonlinear and piecewise dynamics, re-

spectively. Strikingly, we obtain high values of AUROC and

AUPR even in presence of 10% measurement noise or 30% in-

accessible nodes, providing strong evidence for the robustness

of our framework against noise and missing data. More de-

tailed characterization associated with the results in Table III,

i.e., AUROC and AUPR as functions of nf and nm, are pro-

vided in Supplementary [48] Sec. 3.
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TABLE III. Robustness of reconstruction against noise and missing data. AUROC and AUPR measures for voter, game, and majority

models on ER, SF and SW networks for measurement noise nf = 10% and the fraction of inaccessible nodes nm = 30%. The network size

is N = 500 and the mean degree is 〈k〉 = 6. The length of the time series used is 6 × 104. Details of the parameter values in the dynamical

models are listed in Supplementary Table S1.

nf = 10% nm = 30%

AUROC/AUPR Voter Game Majority Voter Game Majority

ER 0.995/0.938 0.955/0.707 0.991/0.864 1.000/0.985 0.999/0.983 1.000/0.988

SF 0.983/0.903 0.954/0.800 0.990/0.894 0.995/0.968 0.991/0.957 0.995/0.984

SW 1.000/0.984 0.976/0.741 0.994/0.874 1.000/0.988 1.000/0.988 1.000/0.988
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FIG. 5. Reconstruction performance with respect to the number

of base strings. (a,b,c) AUROC and (d,e,f) AUPR as functions of the

normalized number of base strings nt̂ for the voter, game and major-

ity model on ER (circle), SF (square) and SW (diamond) networks.

The network size N = 100 and 〈k〉 = 6. The length of time series

is 1.5 × 104. Other parameter values of binary-state dynamics are

shown in Supplementary Table S1.
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FIG. 6. Reconstruction performance with respect to the length of

time series. (a-c) AUROC and (d-f)AUPR as functions of the relative

length of time series nt for the voter, ising and majority model on

ER(circle), SF(square) and SW(diamond) networks. The network

size N = 500 and 〈k〉 = 6. Other parameter values of binary-state

dynamics are shown in Supplementary Table S1.
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FIG. 7. Reconstruction performance affected by average node

degree. (a,b,c) AUROC and (d,e,f) AUPR as functions of the av-

erage node degree 〈k〉 for the voter, game and majority model on

ER(circle), SF(square) and SW(diamond) networks. The network

size N = 500 and relative length of time series nt = 100. Other pa-

rameter values of binary-state dynamics are shown in Supplementary

Table S1.
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The minimum relative length nmin
t to acquire at least 0.95 AUROC

and AUPR simultaneously as a function of network size N for the

voter(red circle), Ising(green square) and majority model(blue dia-

mond) on (a) ER, (b) SF and (c) SW networks. The mean degree of

networks is 6. Other parameter values of binary-state dynamics are

shown in Supplementary Table S1.
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V. DISCUSSION

Reconstructing the topological structure and dynamics of

complex systems from data is a central issue in both network

science and engineering community [22, 24, 25, 27, 28, 32,

58, 59]. A framework [29, 60, 61] of network reconstruc-

tion is based on compressive sensing [35–40], a sparse signal

recovery method developed in applied mathematics and engi-

neering signal processing. A recent work [33] also demon-

strated that compressive sensing can be exploited for network

reconstruction in situations where the available time series are

polarized (binary), e.g., virus spreading and information dif-

fusion in social and computer networks. While the structure

of the virus propagation network and the spreading sources

can be obtained, the method is unable to predict the network

dynamical systems that generate the binary data.

The contribution of this paper is a general framework to

solve the challenging problem of reconstructing complex net-

works hosting binary-state dynamics, based only on time se-

ries without any knowledge of the network structure and the

switching functions that generate the binary data. The key to

our success is the formulation of a universal data-based lin-

earization method, which is powerful for reconstructing the

neighborhood of nodes for any type of nodal dynamics: linear,

nonlinear, discontinuous, or stochastic. The natural sparsity

of real complex networks allows us to address the local recon-

struction as a sparse signal reconstruction problem that can be

solved by employing the lasso, a convex optimization method,

from small amounts of binary data. The optimization is robust

against measurement noise and missing data. Once the neigh-

borhoods of all nodes have been reconstructed, the whole net-

work can be mapped out by assembling all the local structures

and making adjustments to ensure consistency. We have val-

idated our framework using a variety of binary-state dynami-

cal models on a number of model and real complex networks.

High reconstruction accuracy has been obtained for all cases,

even for relatively small amounts of binary data contaminated

by noise and when partial data are lost. These results suggest

the practical applicability of our framework. In practical ap-

plications, instead of evaluating AUROC and AUPR, we often

need to distinguish the true links from the non-links based on

the reconstructed values of X. To accomplish this goal, we

can generate a histogram from all the elements of X and find

a appropriate cutting threshold between the two peaks repre-

senting links and non-links.

While our framework potentially offers a general, com-

pletely data driven approach to reconstructing binary dynami-

cal processes on complex networks, there are still challenges.

For example, our framework can deal with various types of

switching functions underlying the binary-state dynamics, but

in its present form the framework is not applicable to non-

monotonic functions or non-Markovian type of dynamics. Es-

pecially, when the switching functions are not monotonic, the

data-based linearization would fail due to the violation of the

one-to-one correspondence between the switching probability

and the number of active neighbors. For non-Markovian dy-

namics, the merging procedure inherent in our method would

fail. To predict the interaction strength among nodes presents

another challenge, especially where noise is present and there

is missing data. The results reported in this paper suggest

strongly that our present framework can serve as a starting

point to meet the challenges, eventually leading to a complete

and universally applicable solution to the inverse problem of

binary network structure and dynamics.

[1] Barrat, A., Barthelemy, M. & Vespignani, A. Dynamical

Processes on Complex Networks (Cambridge University Press,

2008).

[2] Kumar, A., Rotter, S. & Aertsen, A. Spiking activity propaga-

tion in neuronal networks: reconciling different perspectives on

neural coding. Nature Rev. Neuro. 11, 615–627 (2010).
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Appendix A: Description of used Binary-state Dynamics

The voter model [13] assumes that a node randomly

chooses and then adopts one of its neighbors’ state at each

time step. The total number of neighbors is its degree k, of

which m are active, i.e., they are in state 1. The probabilities

that the node will become active and inactive are m/k and

(k −m)/k, respectively. In the majority-voter model [53], a

node tends to align with the majority state of its neighbors,

and the probability of misalignment is Q.

In the Kirman’s ant colony model [49], a node switches

from state 0 to 1 with the probability Fk,m = c1 + dm (with

m being the number of active neighbors) and the rate of tran-

sition from 1 to 0 is Rk,m = c2 + d(k − m), where the pa-

rameters c1 and c2 quantify the individual action that is inde-

pendent of the states of the neighbors and d characterizes the

action of copying from neighbors’ state.

The Ising model [17] is a classic paradigm to study ferro-

magnetism at the microscopic level of spins. In the model,

a node can assume either one of the two states: spin-up or

spin-down. Switching in the state occurs with the probabil-

ity determined by minimizing the energy (Hamiltonian) of the

system. In our study, we chose the transition rates according

to the Glauber dynamics [50], as shown in Table I, where the

parameter β quantifies the combining effect of temperature

and the ferromagnetic-interaction parameter.

The SIS model [14] describes the epidemic process of dis-

ease spreading with infection and recovery. Each suscepti-

ble individual contracts the disease from each of its infected

neighbors at the rate λ, so at each time step a susceptible node

with m infected neighbors has the probability (1− λ)m of re-

maining susceptible. The infection rate is then 1− (1 − λ)m.

The recovery rate of an infected node is µ at each time step.

The game model [3] originates from the evolutionary game

theory. In a network, each node is a player, and the two states

means that the player can take on two different strategies. A

player plays with each of his/her neighbors using one chosen

strategy at each time step. The profit of a rational player i,

when playing with a neighbor j, is characterized by the pay-

off matrix

s1 s2

s1
s2

(

a

c

b

d

)

where a, b, c and d are parameters.

Different games can be generated by adjusting a, b, c and b.

The payoff of a player is the sum of profit from playing game

with all its neighbors. A player switches the strategy with a

probability that depends on the payoff it may gain in the next

round under the current circumstance by switching its strat-

egy, as illustrated in Table I, where the parameter α qualifies

the willingness for an individual to change its strategy accord-

ing to those of its neighbors, and β is associated with the effect

of the expected payoff.

For the language model [51], the two states denote two dif-

ferent language choices of a person. Transition from the pri-

mary language to the secondary occurs with the probability

that is proportional to the fraction of speakers in the neigh-

bors with the power α, multiplied by the parameter s (or 1−s)

according to the respective language.

The threshold model [52] is a deterministic model, where

for each node a certain threshold Mk is set which can be, for

example, a function of the node’s degree. At each time step, a

node becomes active if the number m of its active neighbors

exceeds the threshold Mk, and no recovery transformation is

permitted.
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