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Abstract 

The synchronization tendencies of networks of oscillators have been studied intensely. We 
assume a network of all-to-all pulse-coupled oscillators in which the effect of a pulse is 
independent of the number of oscillators that simultaneously emit a pulse and the normalized 
delay (the phase resetting) is a monotonically increasing function of oscillator phase with the 
slope everywhere less than one and a value greater than 2 1ϕ − , whereϕ is the normalized 
phase. Order switching cannot occur; the only possible solutions are globally attracting 
synchrony and cluster solutions with a fixed firing order. For small conduction delays, we prove 
the former stable and all other possible attractors nonexistent due to the destabilizing 
discontinuity of the phase resetting at a phase of 0. 

PACS  

05.45.Xt  Synchronization; coupled oscillators 

87.19.lj   Neuronal network dynamics 

87.19.lm  Synchronization in the nervous system 

I. INTRODUCTION 

The synchronization tendencies of networks of oscillators have been studied intensely in the 
context of fireflies [1], cardiac cells [2–4], Josephson junctions [5], laser arrays [6], chemical 
oscillators [7], hybrid dynamical systems  [8], pulse-coupled sensor networks [9], neural 
networks  [10], and neutrino flavor oscillations [11]. There are three general approaches to 
studying synchronization of oscillators [12]: one can assume a form for the oscillator and for the 
nature of the coupling and derive results for that particular system, or one can use phase 
resetting theory with the assumption that the coupling is weak, or phase resetting theory with 
the assumption that the coupling is pulsatile. We make the assumption of pulsatile coupling. We 
reduce each node in the network to a single variable, its phaseϕ , and use network interactions 
consisting of instantaneous phase resetting by the other nodes. Our results generalize to any 
physical system under the same assumptions of pulse coupled phase oscillators  [1,13–17]. 
Systems with conduction delays [18,19] are of particular interest in neurobiology and other 
applications such as laser arrays, electronic circuits, microwave devices and communications 
satellites. In some cases, conduction delays can stabilize synchrony  [20–22]. We use phase 
resetting theory  [23–25]  and stability results based on event driven maps to prove that in a 
network of pulse coupled phase oscillators with a small conduction delay δ , inhibition can be 



2 
 

globally synchronizing. The phase of each oscillator increases monotonically at a fixed rate until 
an input is received, then the phase is instantaneously increased (an advance) or decreased (a 
delay). This constitutes the hybrid continuous/discrete system: 
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j N j i
i

i j
j

d f t t
dt
ϕ ϕ δ δ

= − ≠

=
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An oscillator emits a pulse when its phase iϕ  reaches 1, and then its phase is reset to zero.    
The argument of the Dirac delta function reflects the emission of a pulse by the jth oscillator at 
times tj when the phase jϕ  reaches 1, and then the receipt of the pulse by oscillator i after a 

conduction delay equal to the quantityδ . When an oscillator receives a pulsatile input, the 
timing of the next emitted pulse can be advanced or delayed depending upon of the phase at 
which it is received. For a free-running oscillator, this implies that the cycle period containing the 
input is either lengthened or shortened. The phase resetting curve (PRC or ( )if ϕ ) for a single 
isolated oscillator plots the normalized change in cycle period due to the receipt of a single 
pulse as function of the phase. 

 

Much of the literature on pulse-coupled oscillators implicitly defines a PRC, but does not 
explicitly use the PRC in the derivation of stability results. Hence the application of this literature 
is limited to oscillators with PRCs that match the implicitly defined ones. For example, Peskin [2] 
examined a system of two identical pulse-coupled leaky integrate and fire (LIF) oscillators, 
where for each oscillator i, the time course of the membrane potential is given by 

/ ( )i O idV dt S V tγ= − . LIF oscillators [26] model the action potential simply as a resetting the 

membrane potential from the threshold to a reset potential. The parameter OS  drives repetitive 
firing if it is greater than or equal to the action potential threshold, and γ  is the leak parameter. 
A LIF oscillator maps onto a phase oscillator because every value of the membrane potential in 
a repetitively firing LIF model is associated with a unique oscillatory phase within the cycle. 
Peskin assumed a very simple type of excitatory pulse coupling in which a pulse emitted by one 
oscillator increased the membrane potential of the oscillator to which it projects by a fixed 
amount ε or brought the neuron to threshold, whichever was less. This implicitly defines a phase 

resetting curve (dashed curve in Figure 1) 1( ) min[ln(1 ) / A, 1]
O

Af S e φφ γε φ−= − − , where

ln( / )O OA S S γ= − . The minimum is required for ε>0 (excitatory coupling) because the phase 

after a pulse is ( )fφ φ− , and φ  cannot exceed 1. Using the one-to-one mapping between V and
φ , a return map can be derived that gives the phase of one oscillator immediately after its 
partner fires, by assuming an alternating firing pattern then reversing the roles of the two 
oscillators on each iteration of the map. This map has a unique, unstable fixed point that repels 
trajectories toward synchronization at a phase of one, where the coupling term drops out 
because each neuron is already at threshold when its partner fires, hence synchronization is 
globally attracting. Peskin’s result depends critically on the implicitly defined shape of the PRC, 
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specifically 1) the highly stabilizing region of unit slope as φ =1 is approached from the left and 
2) the destabilizing negative slope everywhere else, as explained in  [21].  

Mirollo and Strogatz  [1], generalized these results in two important ways. First, instead of a LIF 
oscillator, any “concave” membrane potential trajectory with / 0dV dt >  and 2 2/ 0d V dt <  was 
allowed. These conditions, coupled with the assumed simple form of the excitatory pulse 
coupling and the assumption that all oscillators are identical, guarantee that, once established, 
the firing order is invariant, and that the PRC has the same general shape as for a LIF. This 
allows for the second major generalization, to a network of N all-to-all pulse coupled oscillators. 
Using similar methodology, they proved that all cluster solutions with fixed firing order are 
unstable, with the very strong result that globally synchrony is globally attracting provided their 
assumptions are met. The equivalence of the maps constructed by Mirollo and Strogatz with 
those based directly on the PRC is shown in  [15].   

In order to apply a map strategy  [27] to networks of identical neurons with inhibitory pulse 
coupling, the phase resetting was redefined (see solid curve in Figure 1) as 

1( ) max[ln(1 ) / A, ]
O

Af S e φφ γε φ−= −  where ln( / )O OA S S γ= −  The maximum is required for ε<0 

(inhibitory coupling) because the phase after a pulse is ( )fφ φ− , and φ  was not allowed to 
drop below 0. They showed that two oscillators coupled by inhibition could stably synchronize in 
the presence of conduction delays whereas excitatory pulse coupling led to a phase lag equal to 
the conduction delay. In a subsequent paper [28], they simulate identical all-to-all inhibitory 
pulse-coupled Hodgkin Huxley neurons with alpha functions with a delay, and get two to three 
clusters in networks of 50 neurons. It is likely that these clusters would be predicted by the 
methods presented herein. 

No biological networks consist of identical all-to-all coupled networks, but such networks are 
theoretically more tractable, and may provide useful insights that can be applied to sparsely 
connected networks of heterogeneous neurons. Some results have been obtained for sparse 
coupling: for inhibitory pulse coupling with arbitrary coupling, Timme and Wolf  [29] showed that 
synchrony is locally stable provided the synaptic conductances are normalized so that each 
neuron receives the same amount of total inhibitory conductance, that the implicitly defined 
phase resetting curve has the appropriate stabilizing shape, and that there is a path through the 
network that connects every oscillator to every other oscillator. The derivation also included a 
small delay, and, although it is not noted in the study of Timme and Wolf, this small delay is 
required  [20,21,30] in order to avoid the highly destabilizing discontinuity as a phase of one is 
approached from the left (Figure 1, solid trace), as proven in this study for networks of N 
neurons. 

The results in the earlier studies described above, as well as other studies of pulse-coupling 
with conduction delays  [31], are attributed to the assumed “concavity” of the membrane 
potential waveform (but see  [32] for exceptions), and are also highly dependent on the 
nonphysiological form assumed for the pulse coupling. The coupling assumption that the phase 
resetting is dependent only upon the instantaneous value of the membrane potential in the 
specific way assumed by the authors is not valid in general ( [33–35]). Physiological PRCs can 
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take forms other than those shown in Fig. 1, for example they can be sinusoidal for weak 
coupling near a Hopf bifurcation [34]. Therefore, the most general strategy is to use the phase 
resetting curve directly as we do in this study, rather than implicitly as in previous studies.  

We use an equivalent mapping strategy but constrain the PRC rather than the dynamics of the 
membrane potential. In our sign convention, a positive resetting value implies a delay in the 
timing of the next threshold event. We assume a monotonically increasing PRC with 0<
' ( ) 1if ϕ <  for [0,1)iϕ ∈ to ensure that the firing order, once established, remains constant [13]. 

Therefore, the only possible solutions are globally synchrony and cluster solutions with a fixed 
firing order. Since the phase resetting is monotonically increasing, and the definition of phase is 
circular, there is a discontinuity as a phase of one is approached from the left. This discontinuity 
destabilizes synchrony with zero conduction delay. 

 II. EXISTENCE AND STABILITY CRITERIA FOR CLUSTER SOLUTIONS 

We use a single self-connected oscillator as an analog for each synchronous cluster in a splay 
mode of n clusters, where the self-connection is meant to represent feedback from the cluster in 
which each oscillator is embedded (Fig. 2B1 and B2). Previously a self-connected neuron has 
been used an analog for a coupled neural network  [36]. We then use the response of each 
cluster to input at different phasesϕ within its cycle, the phase resetting curve, to determine 

existence and stability criteria for cluster modes. We define , ( )nf δ ϕ  as the phase resetting curve 

(PRC) of a self-coupled oscillator with feedback conductance from 
N
n

oscillators (
N
n

-1 

oscillators if no autapses are allowed), feedback delay δ  and an input from 
N
n

 oscillators as an 

analog for another cluster in the network to generate the PRC (Figure 2A1). A perturbation 
simulating the input received from another cluster is applied at each interval ts after a 
spontaneous spike, for intervals ranging from zero to the intrinsic period ,nP δ  of the self-

connected oscillator. The interval between the application of the input and the next spike 
emitted is called the recovery interval tr. The sum of ts and tr on any given cycle for any given 
oscillator is equal to the perturbed cycle period (see Figure 2A2), so we define the phase 
resetting as , , ,( ) ( ) /n n nf ts tr P Pδ δ δϕ = + − . We assume a n-cluster mode in a network of N 

identical oscillators with equal time lags between spikes and delays short enough that no spikes 
occur in the interval between when a spike is emitted by one cluster and received by the 
other(s) (see Figure 2C). For a firing pattern in a fully connected network (Figure 2C), we 
redefine the intervals in the network in terms of the phase resetting measured for isolated 
clusters under the assumption the phase resetting is the same in the closed loop network as in 
the open loop PRC in Figure 2A1: 

, 1nts P δϕ=  ; , 1 ,{ ( )}i n i i n iti P fδ δϕ ϕ ϕ+= − +   for 1<i<n-1; , 1 , 1{1 ( )}n n n ntr P fδ δϕ ϕ− −= − + , where iϕ is 

the phase immediately each pulse before a pulse and , ( )i n if δϕ ϕ−  is the phase immediately 

afterwards. Moreover, we can define the following algebraic relationships between the intervals 
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and the delays because each of the following quantities is equal to the time lag tl interval 
between spikes in successive clusters (see Figure 2B); 

its ti trδ δ− = = +   

The sum of the time lags (tl), as well as the sum of the stimulus intervals (ts), is equal to the 
network period, which is determined by summing all the resetting received during a cycle, 
multiplying by the intrinsic period Pn,δ , then adding it to the intrinsic period as follows:  

1 1 1 1

, , ,
1 1 1 1

( ) 1 ( )
n n n n

i i n i n n i
i i i i
tl ts P P fδ δ δϕ δ ϕ

− − − −

= = = =

⎛ ⎞= = − = +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑   

Since we have assumed that all time lags are equal, then each oscillator receives its successive 
inputs at the same phases. Therefore we can write 1nϕ −  in terms of 1ϕ , because ts trδ δ− = +
always gives the phase of the first input in terms of the phase at the last input:

1 1 , 1 ,1 ( ) 2 /n n n nf Pδ δϕ ϕ ϕ δ− −= − + + .  If intermediate phases exist, the phase at which each 

intermediate pulse is received can always be written in terms of the phase at which the previous 
pulse was received, using 1ti ts δ= −  to give 1 2, 2 1 2, 1/ ( )P fδ δϕ δ ϕ ϕ ϕ− = − +  and 1i iti ti −=  to give

1 , 1 1 ,( ) ( )i i n i i i n if fδ δϕ ϕ ϕ ϕ ϕ ϕ− − +− + = − + . Thus all phases can be written in terms of 1nϕ − which 

provides a closed form solution for this phase for each equal time lag n-cluster mode. This 
solution is easily separated into a left-hand side that depends on the phase resetting, and a 

right-hand side that does not. The lefthand side is 
2

, 1 , 1 ,
1

( ) ( 1) ( ) ( )
n

n n n n n i
i

g n f fδ δ δϕ ϕ ϕ
−

− −
=

= − −∑ , 

where the sum is only needed for n>2. The right-hand side is 
,

1
n

nn n
P δ

δϕ − + − . Equations 1-3 

give the solutions for clusters where n=2, 3 and 4 respectively.  

 2, 1 1
2,

( ) 2( ) 1f
Pδ

δ

δϕ ϕ= − −   (1) 

 3, 2 3, 2 3, 2 2
3, 3,

22 ( ) (1 ( ) ) 3( ) 2f f f
P Pδ δ δ

δ δ

δ δϕ ϕ ϕ ϕ− − + + = − −     (2) 

 
4, 3 4, 3 4, 3 4, 3 4, 3

, 4,

4, 3 4, 3 3
4, 4,

2 33 ( ) (1 ( ) ) (2 2 2 ( )

2(1 ( ) )) 4( ) 3

n

f f f f f
P P

f f
P P

δ δ δ δ δ
δ δ

δ δ
δ δ

δ δϕ ϕ ϕ ϕ ϕ

δ δϕ ϕ ϕ

− − + + − + − + −

− + + = − −
  (3) 
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The value of the phase *
1nϕ − , at which the last input within its cycle is received by a cluster is 

given by the intersection at which * *
, , 1,

,

( ) 1
j

j

n j n j
n

ng n n
Pδ

δ

δϕ ϕ− = − + − , see the dashed lines 

labeled n=2, 3 or 4 in Figure 3 where δ =0. Figure 3 uses a linear PRC with a slope of 0.1 to 
illustrate a case in which the delay is zero, and the phase of the last inputs for the n=2, 3 and 4 
cluster modes (open circles) fall on the monotonically rising part of the curve and not in the 
discontinuity as a phase of one is approached from the left. The functions , , 1,( )

jn j n jg δ ϕ −  were 

calculated for a constant PRC (note that it may be weaker for smaller clusters with fewer 
oscillators emitting each pulse). Values of 1i nϕ ϕ −> violate the assumption of the firing pattern 

and were eliminated from the calculation of  , , 1,( )
jn j n jg δ ϕ −  when they occurred. Negative values 

of φ were allowed after a pulse, but not at the time a pulse was received because the PRC is 
undefined in this instance. Moreover, failure of the phase to recover to a positive value between 
inputs would lead to suppression of firing in any case.  

 

A constant firing order is guaranteed for monotonically increasing PRCs with a slope that is 
everywhere less than or equal to one [13]. However, firing patterns with constant order but 
unequal time lags cannot be analyzed by the graphical method in Figure 3, because the entire 
analysis is based on the assumption of equal time lags. In Figure 4, phases ϕ ji  are indexed not 

only by firing order i but also by oscillator j since each oscillator receives inputs at a different set 
of phases. There is no fixed relationship between the phases on successive time lags. If one 
time lag tlj in the unequal time lags case is shorter than the time lag tl in the corresponding 
equal time lag n-cluster mode, then the phase of the stimulus interval defined by that lag must 
be less than the one in the equal intervals case,  ,1 1jϕ ϕ< . The phase of the last input in the 

corresponding equal time lag is given by 1 1 1( ) 1 2 /n n nf Pδϕ ϕ ϕ δ− −− = − + , whereas for the 

shorter unequal time lag it is 1, 1 1, 1 1( ) 1 2 /j n j n j nf P δϕ ϕ ϕ δ+ − + −− = − + . The constraint that 0< ( )f ϕ′

<1, combined with ,1 1jϕ ϕ<  implies that 1, 1 1j n nϕ ϕ+ − −> .  

Next we need to show that there is always one time lag in the unequal time lag mode that is 
shorter than the lags in the equal time lag mode. For n=2, it is clear that no unequal times lags 
modes can exist for a monotonically increasing PRC, because the constraint that both 
oscillators receive the same amount of phase resetting 1 2( ) ( )f fϕ ϕ=  to achieve the same 
network period cannot be satisfied. For n>2, we will first assume that all times lags are indeed 
longer than those in the equal time lags, and prove by contradiction that  this cannot be true.  

The assumption that 1 n, 1 n,/ /j P Pδ δϕ δ ϕ δ− > −  implies that 1 1jϕ ϕ>  and by the same logic used 

above, that 1, 1 1j n nϕ ϕ+ − −<  . The assumption that , 1 , 1 ,( ) ( )j i ji n ji i i n if fδ δϕ ϕ ϕ ϕ ϕ ϕ+ +− + > − +  

implies that , 1 1j i iϕ ϕ+ +>  provided that ,j i iϕ ϕ> . Since 1, 1 1j n nϕ ϕ+ − −<  and 1, 1 1j n nϕ ϕ+ − −>  cannot 
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both be true, a contradiction is reached. Therefore at least one oscillator in the unequal time 
lags mode always receives an input at a larger phase than the phase at which the last input is 
received in the corresponding equal time lags mode. This result has important implications for 
global stability, see below. 

 

III. STABLE SYNCHRONY BUT NO TWO CLUSTER SOLUTION 

We are particularly interested in conditions that guarantee both that global synchrony is stable 
and that the two cluster mode does not exist. Again, we assume 2, ( )f δ ϕ  is positive and 

monotonically increasing for [0, )Dϕ ϕ∈  except for a discontinuity at Dϕ  = 1 causing an 
effectively infinite local negative slope as a phase of 1 is approached from the left, which is 
maximally destabilizing. Local, or asymptotic, stability is analyzed by determining whether a 
perturbation to an oscillatory solution with constant phasic relationships will increase or 
decrease with time. In general, we assume a steady phase locked mode in which oscillator j 
receives inputs from the other n-1 clusters at a phase of *

,i jϕ  where [1, 1]i n∈ −  , and further 

assume that each phase is perturbed by , [k]i jϕΔ  on cycle k. We then construct a discrete linear 

system (map) of how these perturbations evolve in time. A discrete system is unstable if any 
single eigenvalue has an absolute value greater than one. Synchrony with 0δ =  is always 
unstable because according to  [20] and [37] perturbing the synchrony by slightly perturbing the 
firing pattern of half the neurons synchronous cluster to yields the eigenvalue

2,0 2,0(1 (0 ))(1 (1 ))f fλ + −= − −  or 2,0 2,0(1 (0 ))(1 (1 ))f fλ + −= − − , either of which results in instability 

due to an eigenvalue with an effectively infinite absolute value as a phase of one is approached 
from the left. In a synchronous mode with 0δ >  , for small 0δ > each cluster receives the input 

from the other cluster at a phase of 
,

S
nP δ

δ ϕ= , and treating two clusters as two oscillators the 

delay switches the form of the eigenvalue to 2,0
,

1 2 ( )
n

f
P δ

δλ = −  [20]. Thus a PRC slope at the 

input phase of 0 ( ) 1Sf ϕ′< <  guarantees stability of global synchrony, provided the stimulus 

interval is less than the network period, that is, for ,nP δδ < . Phase resetting due to delayed 

feedback from within the same cluster need not be considered in the analysis, because it was 
already incorporated into the oscillator for which the phase resetting is calculated. Now that we 
have established the conditions for which synchrony is stable, we examine criteria for the 
stability of the two cluster mode.  

As described above, the intersection point 2, 1 1
2,

( ) 2( ) 1g
Pδ

δ

δϕ ϕ= − −  determines the phase

*
1 APϕ ϕ=  at which and input is received by each cluster in the antiphase mode. Stability of the 

two cluster mode can be calculated by treating the two clusters as two oscillators, provided 
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synchrony within each cluster is stable  [37], otherwise a more complicated analysis 
applies [38]. Since we are only interested in cases in which synchrony is stable, this caveat is 
not relevant. The two cluster solution is stable if the absolute value of the eigenvalue 

2
2,(1 ( ))APf δλ ϕ= −  is less than one for both zero delays and short delays [16], which implies 

stability for 2,0 ( ) 2APf δ ϕ′< <  and AP Dϕ ϕ< . Note: this stability criterion holds while the 

conduction delay δ  is less than the time lag tl between successive spikes in different neurons 
in Figures 2B and 4, otherwise the assumed pattern of updating the phases in the matrix above 
is invalidated. In brief, the effect of a pulse in one oscillator will take more than one cycle to 
affect the timing of a spike in the same oscillator for longer delays. However, firing patterns in 
which a spike in one oscillator takes more than one cycle to affect the firing of another spike in 
the same oscillator via feedback through the network are in general less stable than those in 
which feedback is received within a single cycle  [20], so in practice the magnitude of the delay 
should not have an upper limit. In any case, we are interested in cases in which the two cluster 
mode does not exist. 

Since we have already constrained ,0 ( ) 1nf δ ϕ′< < , it is clear that in order to destroy the cluster 

mode, we must have AP Dϕ ϕ= . Figure 5 illustrates how to destroy the two cluster mode using 

delays. For example, for a linear PRC, 2, ( ) PRC
f mδ ϕ ϕ=  and 1Dϕ = , and a two cluster mode is 

guaranteed to be stable for 
2,

1
2
PRCm

P δ

δ −< . Conversely, the two cluster mode is guaranteed to 

be nonexistent for 
2,

1 1
2
PRCm

P δ

δ− < < . Figure 5A shows a linear PRC with a slope of 0.85 with a 

stable two cluster mode indicates by the black open circle. If we assume the size of the cluster 
does not affect the PRC, the three and four cluster modes are also stable because the phase at 
which the last input is received in each cycle falls on the monotonically increasing part of the 
PRC. Note that increasing the slope from 0.1 in Figure 3 to 0.85 in Figure 5 greatly reduces the 
range in which the g functions with indices greater than 2 are defined because of the 
requirement than the value of the phase at which the last input is received must be greater than 
the calculated values of the phases at which earlier inputs are received. Adding a normalized 
delay greater than 0.075 shifts the n=2 line to the right by 0.15, the n=3 line by 0.225 and the 
n=4 line by 0.3, causing all these modes to be destabilized. In the next section we will prove that 
for stability to be globally attracting under our assumptions, it is sufficient to show the two-
cluster mode does not exist while global synchrony remains stable.  

 

IV. GLOBALLY ATTRACTING SYNCHRONY 

Here we consider cases in which synchrony is stable but the two cluster mode is does not exist, 
that is, cases for which the PRC is monotonically increasing with 0< ' ( ) 1fδ ϕ < , and 

( ) 2 1fδ ϕ ϕ> −  for [0,1)ϕ ∈  in order to prove that synchrony is globally attracting under certain 
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assumptions. We drop the subscript n on the PRC because we now assume that effect of a 
pulse is independent of the number of oscillators that simultaneously emit a pulse so that

, 1,( ) ( )n nf fδ δϕ ϕ−=   [1,13]. This assumption is exact if the PRC for a single pulse is saturated. 

The assumption that the PRC is independent of cluster size allows the generalization of the 
analysis to include all clusters of unequal size in the analysis for each n. This assumption can 
be weakened as described below. 

For two clusters, 2, 1( )ng δ ϕ −  is simply the PRC parameterized by the internal conduction delay. 

However, as explained above, a more complicated expression applies for larger numbers of 

clusters:  
2

, 1 1 1
1

( ) ( ) { ( ) ( ( )}
n

n n n n i
i

g f f fδ δ δ δϕ ϕ ϕ ϕ
−

− − −
=

= + −∑  (4) 

Note that ( )fδ ϕ  is only defined for 1n iϕ ϕ− >  for i < n-1. From Figures 2B and 4 it is clear the 
phase of the oscillator receiving the last input of its cycle must be the greater than the phase of 
any other oscillator both before and after its last input is received, because in the absence of 
additional inputs, this oscillator fires next. Recall that we assume ( )fδ ϕ  is monotonically 

increasing for [0, )Dϕ ϕ∈  except for a discontinuity at Dϕ ϕ=  , causing an effectively infinite 

local negative slope at Dϕ ϕ= . Then the terms in brackets in Eq. 4 are positive by monotonicity, 

which implies that , 2,( ) ( )ng gδ δϕ ϕ> as illustrated in Figure 3 and 5. Then , ( )ng δ ϕ  also becomes 

discontinuous at Dϕ ϕ= , where 1Dϕ = . For the n=2 case [21], the value of ϕ  at the intersection 

of the line ( 2 1y ϕ= − ) with ( )fδ ϕ (which is also in this case 2,0 ( )g ϕ ) determines the phase of an 

input from the other cluster in an antiphase two-cluster solution with no delay. For the linear 
PRC shown in Fig. 3A, the only intersection is at 1Dϕ = , where the slope is maximally 
destabilizing, so there are no stable two cluster solutions at zero delay. In general, there are no 
stable two cluster solutions if 2 1ϕ −  < 2,0 ( )g ϕ for [0,1)ϕ ∈ . Furthermore, since 1ϕ < , then 

( 1) 0ϕ − < , and ( 1) 2( 1)n ϕ ϕ− < −  as is also clear from the observation that the n=3 and n=4 
lines are always below the n=2 line at every value of ϕ in Figures 3 and 5. Thus 

2,0 ,01 2 1 ( ) ( )nn n g gϕ ϕ ϕ ϕ− + < − < <  for [0,1)ϕ ∈  .  

The above inequality states that an absence of stable two cluster equal time lag solutions 
implies that there are no stable cluster solutions for any n at zero delay. The inequality can be 
extended to finite delays as follows: 

 ( ) 2, ,
, 2,

1 2 1 ( ) ( )n
n

n n g g
P P δ δ

δ δ

δ δϕ ϕ ϕ ϕ
⎛ ⎞ ⎛ ⎞

− − − < − − < <⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 for [0,1)ϕ ∈  ,  

if ,nP δ is equal to 2,P δ , meaning that the effect of a pulse from the other oscillators within the 

same cluster is also independent of the number of oscillators within a cluster. These results hold 
strictly for the delays smaller than the time lags labeled tli in Figs 2B and 4. As explained above, 
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longer delays will not be stabilizing, so again, in practice the magnitude of the delay should not 
have an upper limit. The assumption that , ( )nf δ ϕ is independent of cluster size can be 

weakened to state that the decrease in strength of , ( )nf δ ϕ with cluster size must be smaller than 

the sum of the bracketed terms in (4) for the inequality 2 ( ) ( )ng gϕ ϕ< to hold. 

Moreover, if the equal cluster solutions are do not exist because 1n Dϕ ϕ− = , then unequal modes 
that are perturbations of these modes as shown in Figure 4 cannot exist either because there 
are no possible phases greater than 1. Since 0< ' ( ) 1f ϕ <  for [0,1)iϕ ∈ , global synchrony is 
stable for delays greater than zero. Combining the stability of the synchronous solution with the 
lack of existence of any cluster solution, synchrony is globally attracting for delays above the 
minimum required to destabilize the two cluster mode. Numerical simulations  [39] suggest that 
these results hold for sparsely connected networks unless both the connectivity is very strong 
and the delays are very short, on the order of the jitter induced by sparse connectivity  [40]. 

V. CONCLUSIONS 

We have shown that conduction delays, which are of interest in many fields, can stabilize global 
synchrony in a network of oscillators mediated by inhibition.  Under the assumptions that the 
PRC is independent of cluster size and is monotonically increasing, with 0< ' ( ) 1f ϕ <  and

( ) 2 1f ϕ ϕ> − for [0,1)iϕ ∈ , synchrony is globally attracting for all conduction delays greater 
than zero. Other PRCs can be shown to lead to globally attracting synchrony above a minimum 
delay that is greater than zero. Our results may be of particular interest in biology and 
neuroscience because a linear PRC with a slope near one is characteristic of a nearly constant 
latency to the next spike after a strong inhibition, for example in neurons with Hodgkin’s type 2 
excitability  [41] that exhibit post-inhibitory rebound [42]. Inhibition at chemical synapses does 
not act simply as an injected hyperpolarizing current; instead it depends on the reversal 
potential (Esyn) of the ion carrying the current through the neurotransmitter-gated channels 
Isyn=gsyn(Vpost-Esyn), where Isyn is the current, gsyn is the conductance and is the membrane 
potential of the postsynaptic neuron. Thus for strong inhibition, the membrane potential 
approaches the hyperpolarized value of Esyn and Isyn approaches zero. A strong inhibition may 
completely reset the phase such that the value of the phase after a pulse is approximately 
constant no matter the phase at which the pulse is applied. Therefore the phase resetting 
becomes a linear function of the phase with a slope of one. We are most interested in 
monotonically increasing PRCs whose slope always remains slightly less than one. 

We have focused on using the measured PRC in the context of event-related maps and 
pulsatile coupling. As mentioned in the Introduction, there are other approaches which often 
require knowledge of the equations that characterize the evolution of the dynamical system, so 
they are not generalizable to systems for which the equations are unknown. One such method 
to calculate the stability of synchrony and cluster states uses the evaporation Lyaponov 
exponents [43,44] that characterize the evolution of perturbations in transversal directions. For 
example, Olmi et al  [45] use an event-driven discrete-time map to determine the interspike 
interval of the splay mode, using logic similar logic to ours.  They then utilize Floquet theory and 
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the evaporation exponent to determine the stability of synchrony and splay modes with equal 
time lags. Their analysis implicitly assumes that the effect of an excitatory synaptic current 
simply speeds whereas an inhibition slows the oscillator, and that the magnitude of the phase 
resetting effect is determining by simply integrating the current. Another line of research uses 
the assumption of weak coupling in which the magnitude of the resetting scales linearly with the 
amplitude of the perturbation, which is not a good approximation for strong coupling [37].   For 
example, Pazo and Montbrio [46] focused on pulse-coupled oscillators using a Winfree model 
 [47]based on the concept of an infinitesimal PRC with a sinusoidal shape, which characterizes 
the response of an oscillator that results from a Hopf bifurcation to weak perturbations [34], and 
is associated with Hodgkin’s type 2 excitability [48,49]. They were able to reduce an N 
dimensional system of oscillators with a heterogeneous frequency distribution to only two 
ordinary differential equations. Both studies are elegant, but clearly do not apply to the non-
infinitesimal PRCs with the shapes we study here, nor to the biological instantiation of this type 
of PRC in networks of oscillators with Hodgkin’s type 2 excitability that exhibit post-inhibitory 
rebound in response to strong saturating inhibitory input.  The master stability function [50] 
(MSF) is elegant method that is often applied in physics because it separates the network 
properties from the dynamical properties of individual oscillators. This method also requires one 
to assume a form for the dynamic system, such as a normalized SNIPER bifurcation, Fitzhugh-
Nagumo or Stuart-Landau [51].  Moreover, the derivation of the master stability function 
assumes linear coupling between the state variables of the oscillators; diffusive coupling is an 
example of linear coupling. There are two types of connectivity between neurons: electrical 
synapses and chemical synapses. With an appropriate choice of coupling function, diffusive 
coupling is a good approximation of electrical, but not synaptic, coupling. Electrical coupling is 
not delayed and only exists between neurons within the same brain area.  Chemical synapses 
are better approximated by assuming that the effect of each input is pulsatile. Since coupling 
between neurons in the mammalian nervous system is in general mediated by chemical 
synapses [52],  the PRC-based approach used in this study  provides an alternate approach to 
studying synchronization, and may be most applicable to biological neural networks.  Unlike the 
MSF approach, the method we present is applicable to cluster states that have unequal time 
lags between oscillators. Moreover, since we assume that the PRC in response to a particular 
synaptic perturbation can be measured, our approach does not require knowledge of the 
equations describing the intrinsic oscillatory dynamics, which are very complex for physiological 
neurons [53].  Under the assumption of weakly-coupled oscillators [54–56], the infinitesimal 
PRC ( response to a brief, weak input) is used to characterize the intrinsic dynamics, and the 
synaptic dynamics are considered separately, but here we have combined the two types of 
dynamics by using the PRC in response to the specific synaptic perturbations received in the 
intact network.  

The results presented here complement those using similar methods to analyze pulse-coupled 
systems of oscillators with conduction delays that have examined, under different assumptions 
of PRC shape, the basins of attraction for synchrony  [57], cluster solutions [58], the 
destabilization of synchrony [18] and solutions for no predetermined firing order  [59]. Although 
our results were obtained for all-to-all coupling, they can be generalized to sparsely coupled 
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networks with the caveat that jitter induced by sparse connectivity  [29,40] can increase the 
minimum delay required for global synchrony [39]. 
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FIGURES 

 
Figure 1. PRCs for leaky integrate and fire oscillator.  SO = 1.0 and γ   = 
0.9. These PRC shapes result when an instantaneous change in voltage of 
magnitude epsilon is applied to an oscillator with a monotonically increasing 
concave down membrane potential waveform between threshold crossings 
that result in a reset. Excitatory pulse coupling (dashed lines) and inhibitory 
pulse coupling (solid lines) each have two regions, a linear region where the 
slope is one due to the requirement to keep the phase between zero and 1, 
and a region in which the advance or delay increase with phase.  
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Figure 2. PRC protocol, cluster logic and pulse-coupled firing patterns. 
A1. The PRC is measured by applying a pulse to a self-connected oscillator 
representing a cluster. A2. In a two cluster network each cluster receives an 
input from itself at a delay (which is inside the “black box” used for computing 
the PRC) and an input from an identical cluster.  A3. The logic is similar for 
larger clusters. B. A fixed firing pattern sequence for n=4. A pulse is emitted 
when a “spike” occurs, and received after a delay δ  as an input by the other 
clusters.   
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Figure 3. Graphical method.  The phase of 
the last input (φn*, indicated by the open 
circles) received by each cluster in an n- 
cluster mode with no delay falls at the 
intersection of these two functions described 
in the text. 
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Figure 4. Generalization to unequal time 
lags. For each time lag, there is a clear 
relationship between the four phases defined 
in relationship to this lag by the definitions of 
the stimulus, recovery, and intermediate 
intervals. However, unless the lags are equal, 
there is no fixed relationship between phases 
at which inputs are received in adjacent time 
lag intervals. 
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Figure 5. How delays destroy cluster modes. The intersection of the g functions with the 
dashed lines labeled with n=2, 3 or 4 gives the phase of the last input for cluster modes.  (A) 
With no delay and a linear PRC with slope 0.85, cluster modes 2, 3 and 4 are stable. B. A 
normalized delay shown the by labeled bar shifts all lines to the left, destroying all cluster modes 
and leaving virtual (or ghost) repellers in their wake.  This particular PRC with the illustrated 
delay guarantees that global synchrony is globally attracting, see text.  
 


