aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Enhanced processing in arrays of optimally tuned nonlinear
biomimetic sensors: A coupling-mediated Ringelmann

effect and its dynamical mitigation
Alexander P. Nikitin, Adi R. Bulsara, and Nigel G. Stocks
Phys. Rev. E 95, 032211 — Published 13 March 2017
DOI: 10.1103/PhysRevE.95.032211


http://dx.doi.org/10.1103/PhysRevE.95.032211

Enhanced Processing in Arrays of Optimally-Tuned nonlinear Biomimetic Sensors: A
Coupling-Mediated Ringelmann Effect and its Dynamical Mitigation

Alexander P. Nikitin,!"* Adi R. Bulsara,> T and Nigel G. Stocks" ¥

1School of Engineering, University of Warwick, Coventry CV/J 7TAL, UK
2Space and Naval Warfare Systems Center Pacific, Code 71000, San Diego, CA 92152-6147, USA
(Dated: February 6, 2017)

Inspired by recent results on self-tunability in the outer hair cells of the mammalian cochlea,
we describe an array of magnetic sensors where each individual sensor can self-tune to an optimal
operating regime. The self-tuning gives the array its “biomimetic” features. We show that the
overall performance of the array can, as expected, be improved by increasing the number of sensors
but, however, coupling between sensors reduces the overall performance even though the individual
sensors in the system could see an improvement. We quantify the similarity of this phenomenon to
the Ringelmann Effect that was formulated 103 years ago to account for productivity losses in human
and animal groups. We propose a global feedback scheme that can be used to greatly mitigate the
performance degradation that would, normally, stem from the Ringelmann Effect.

PACS numbers: 05.40.-a, 07.55.Ge, 89.75.-k

I. INTRODUCTION

Biological sensory systems are remarkable in their abil-
ity to detect extremely weak signals. As examples, the
human eye is able to count single photons [1], hair cells
in the cat cochlea are able to detect displacements of
the basilar membrane smaller than 107° m [1], the ol-
factory system of the domesticated silk moth (Bombyz
mori) can detect single molecules of pheromone [2], and
thermal receptors in crotalid snakes are able to recog-
nize the temperature difference of 0.003°C' [3]. All these
systems share a simple design principle based on sensor
array architectures; high sensitivity is achieved through
the use of a large number of sensory receptors.

If the signals are discrete (photons and molecules),
large numbers of receptors are necessary to increase the
probability of a detection event. If the signals are con-
tinuous, e.g. acoustic stimuli, large numbers of receptors
are known to work in parallel to reduce the system noise
and enhance fidelity. In all the above-mentioned cases,
the system sensitivity is proportional to the number of
receptors. A specific example of the extreme sensitivity
in biological sensory systems is afforded by owls. In the
frequency range 5-10 kHz, owls demonstrate better sensi-
tivity to weak acoustic signals than other birds and mam-
mals [4]. This frequency range corresponds to one oc-
tave. But the mechanoreceptors tuned to this frequency
range cover almost half the length of the basilar papilla
(the hearing organ which contains the mechanorecep-
tors), i.e. 6 mm/octave [5]; this is greater than the values
reported for other birds (0.35-1 mm), and mammals (1-4
mm) [6, 7]. This example shows that the high concentra-
tion (in the frequency domain) of the mechanoreceptors
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leads to both the exceptional sensitivity to weak acoustic
signals and the high frequency resolution.

Another key design principle of biological sensory sys-
tems is adaptability. Biological system typically tune
their internal parameters to accommodate changes in the
signal strength. Such adaptation, similar to automatic
gain control, not only increases the dynamic range but
also protects sensitive systems to damage from large sig-
nals. Two well know examples are the mammalian ear,
which has a dynamic range of 120dB but can also detect
sound intensities of less than 1pW/m?, and the human
eye, which can register single photon detection but has
a luminesence range of 10'*. These remarkable features
of biological sensory systems have motivated scientists
and engineers to adopt a “biomimetic” approach for the
design of advanced sensory systems [8-10]. We describe
such an approach in this paper, utilising sensor adapta-
tion in conjunction with array processing to improve the
performance of a system based on fluxgate magnetome-
ters.

Specifically we study Takeuchi and Harada (TH) mag-
netic sensors assembled into an array; the aim is to in-
crease the total array gain and improve the (total) output
signal-to-noise ratio (SNR) over a wide dynamic range.
The magnetic sensor invented by Takeuchi and Harada
is a simple and small system [11], it displays very good
sensitivity to weak magnetic fields because it employs
positive magnetic feedback resulting in oscillatory insta-
bility; the instability can be exploited to enhance sensi-
tivity. We modify the TH sensor to include a self-tuning
mechanism inspired by nonlinear dynamical features of
the auditory system of animals; this “biomimetic” sensor
can achieve a large dynamic range, with a concomitant
lower noise-floor, via adaptation to input signals.

The TH magnetic sensors are, of course, detectors of
the target (usually at dc or extreme low frequency) mag-
netic field, however they also interact (electromagneti-
cally) with each other when they are placed in an array.
This inter-element coupling is unavoidable and turns out



to be an important and interesting feature of the array,
with analogies to work on coupled systems carried out
by Ringelmann, an agricultural engineer, over 100 years
ago.

The paper is structured as follows. We start by pre-
senting a phenomenological model of the TH magnetic
field sensor [11]; this is our “testbed” throughout this
paper. We then develop the sensor model further by
adding a self-tuning mechanism that biases the sensor
into an optimal operating regime, in a single (i.e. uncou-
pled) sensor. The self-tuning is inspired by the adaptive
amplification mechanism that is mediated by hair-cells
in the cochlea [12]. The next step is to introduce an ar-
ray of coupled identical TH elements, together with the
phenomenological (including the self-tuning mechanism)
dynamics for each element in the array. We quantify the
degradation (stemming from the coupling) of the out-
put SNR, and compare this with a well-known (in the
social sciences literature) effect first studied by Ringel-
mann some 103 years ago [13].

In his studies, Ringelmann focused on the maximum
performance of human groups (he also studied the per-
formance of teams of oxen yoked to a plough) involved in
experiments wherein they used different methods to push
or pull a load horizontally [13]. Ringelmann showed that
the maximal “productivity” (P) of a group (of size N)
is less than the expected value that would, nominally,
be the sum of the maximal productivities of the group
members performing alone:

N

Pgroup < Pexpected = Z‘Pi,alonea 1 =1.N. (1)
i=1

Equation (1) encapsulates the essence of the Ringelmann
Effect (RE). We provide a more detailed descripton of
the RE later in this paper, when we demonstrate that
the coupling-mediated losses in our array bear a strik-
ing resemblance to phenomena studied 103 years ago by
Ringelmann; we speculate that the origin of this common
behaviour is almost certainly due to similar coupling ef-
fects in Ringelmann’s original studies.

Finally, we introduce a possible route for mitigating
performance degradation in the array by using a carefully
defined global feedback in the sensor array to (partially)
cancel the loss terms that stem from the inter-element
coupling. This “correction” has the effect of raising the
output SNR (of the array) to a value close to (but not
in excess of) the theoretical maximum response SNR;
the latter limit is calculated as the sum of the response
SNRs of individual elements in the array, assuming zero
inter-element coupling. We conjecture that, at least in
the cochlea, this type of feedback should be present to
mitigate Ringelmann-type losses.

II. MODEL

A. The magnetic field sensor of Takeuchi and
Harada

The sensor circuit is shown in Fig. 1(a) [11]. We see
that the sensor is a combination of an oscillator through
the LoCy resonance circuit, and a low-pass filter RoC5.
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FIG. 1: (a) The circuit of the Takeuchi and Harada. (b) The
complete measuring system.

In the resonance circuit, the inductance Lg is nonlinear
due to a ferromagnetic core. The power loss in the reso-
nance circuit occurs due to the resistance of the coil and
hysteresis in the ferromagnetic core. For self-sustained
oscillations, the power loss in the resonance circuit should
be compensated by a positive feedback. In the sensor of
Takeuchi and Harada (TH), the positive feedback is im-
plemented with the resistance R;, and the inductance Lq;
the operational amplifier is used as a comparator.

In the oscillating magnetic field of the resonance cir-
cuit, the ferromagnetic core is periodically saturated. If
an external constant magnetic field is applied, the oscil-
lations in the sensor output take on an asymmetric form
due to the nonlinearity of the ferromagnetic core. Hence,
the oscillator output averaged by the low-pass filter Ry Cy
is different from zero in this case. Here, it is assumed that
the oscillations are fully filtered out by the low-pass filter.

The transfer function of the sensor is not monotonic
[11]. Here, we introduce a phenomenological model of the
transfer function to simplify our task of analysis of the
noisy nonlinear system. We do not seek a precise quan-
titative agreement between our model and the experi-
mental results (see Fig. 2 in this manuscript and Fig. 3
in Ref. [11]); rather, we need a qualitative agreement
only. This simplification has been carried out precisely
to make it possible to explain the RE in an array of TH
sensors locked by their adaptation feedbacks. Hence, we
avoid a situation wherein we might be overwhelmed with
a plethora of details and parameters of the complex sys-
tem; these details are, as stated above, unimportant to
our stated goal of exploring the RE in an array of these



Sensors.
The transfer function can be, qualitatively, described
by the following equation,

) = sene)va [1 e (<] e (5],
2

q2

where x is an applied magnetic field, and ¢ is a parame-
ter characterizing the feedback of the oscillator. It is as-
sumed that 0 < g < oo. Then, the closer the parameter
q is to zero, the smaller is the excitation of the resonance
circuit via the feedback. The case ¢ = 0 corresponds to
the Andronov-Hopf bifurcation in the TH oscillator (see
Fig. 3). We note here that Eq. (2) is, however, not able
to describe the Andronov-Hopf bifurcation itself.
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FIG. 2: (Color online) The transfer function of the model for
a set of parameters: ¢ = 0.25,¢ = 0.5, ¢ = 1.0 and ¢ = 2.0.

adaptation

FIG. 3: The bifurcation diagram of the Takeuchi and Harada
sensor (shown schematically). The parameter V represents
the amplitude of the voltage oscillations in the LoCo reso-
nance circuit. The parameter ¢ depends on R;. ¢ = 0 corre-
sponds to the Hopf bifurcation.

The sensor can be characterized by the maximal value
of the coeflicient of amplification, and the dynamic range.

According to Eq. (2), the coefficient of amplification of
the sensor is k; = f(x,q)/x. The maximal value of the
coefficient of amplification can be found, in the limit
xz — 0, as kg max = 1/\/6 In practice, sensors are usu-
ally exploited in a range of inputs wherein their trans-
fer functions are almost linear functions of the (small)
input signals. Therefore the dynamic range of the sen-
sor can be defined as the range of x where the trans-
fer function f(z,q) deviates from the linear function
F(x,q) = kgmax® upto a small parameter J,

|F(z,q) — f(z,q)] <0, &§>0.

Since 0 is small, the transfer function can be well approx-
imated by the cubic equation

f(z,q) ~ ax® + bx? + cx + d.

From the symmetry of the transfer function f(x,q) =
—f(—z,q), it follows that b = 0 = d. In the limit of
small values of x, the transfer function becomes almost
linear f(xz,q) ~ cz, so that ¢ = kg max. Therefore,

|F(:C7Q) - f($=Q)| = |ax3|,

just outside the linear regime of the transfer function.
A Taylor expansion (about the origin) of Eq.(2) yields
a ~ —q~°/?; hence the dynamic range of z is [—6/3 ¢°/¢
§1/3 ¢°/6]. Onme readily observes that (i) the parameter
q controls both the dynamic range and the coefficient of
amplification; and (ii) the dynamic range narrows faster
than the amplification coefficient increases.

From this brief analysis it follows that it is possible
to reach very high values of the coefficient of amplifica-
tion (i.e. high sensitivity to weak signals) close to the
limit ¢ — 0, precisely where there is a risk of failure in
the sensor operation due it being poised on the brink
of the Andronov-Hopf bifurcation. In this limit, how-
ever, the internal noise plays a very important role in the
sensor dynamics because it is amplified by the sensor ei-
ther instead of, or with the target signal. In the output
of the TH sensor, the noise £(t) is colored (i.e. corre-
lated with correlation time 7¢) because it is passed via
a low-pass filter of first order with large time constant.
Previously, we had introduced the non-inertial and noise-
less transfer-function Eq. (2). Therefore, to describe the
noise dynamics of the sensor we must assume that noise is
present at the input of our model, x = s+&(t), where s is
a target DC magnetic field. The noise can be represented
by the Ornstein-Uhlenbeck (OU) process,

S _ e Vabn(), 3)

TEE

with correlation function

(et = of exp (221,

T¢

where 7¢ and ag = D/7¢ are the correlation time and
the variance of the OU process correspondingly, 7(t) is



a Gaussian white noise with zero mean (n(t)) = 0 and
correlation function (n(t1)n(t2)) = 0(t1 — t2), with 2D
being the noise intensity. For practical applications, the
input values (s+£(t)) should be set up inside the dynamic
range of x. Therefore the relationship between the noise
level and the dynamic range should be o¢ < §1/3¢5/6
or, for simplicity, o¢ < 6'/3¢. Hence, the coefficient of
amphﬁcatmn must be bounded from above as k2
51/3/0'5.

If the target magnetic field s is too weak or too strong,
the sensor output could be out of the dynamic range
of the display or another readout device. Therefore, we
need an amplifier or an attenuator to complete the mea-
surement system (see Fig. 1(b)). In the case of a weak
output of the sensor, when its value is comparable with
the input noise of the amplifier, the amplifier will amplify
both the output of the sensor and its own internal noise,

v = ka(f(s + 57 q) + §G)7

where k, is the coefficient of amplification of the ampli-
fier, v its output, and £, the input noise of the amplifier.
With the assumption f(z,q) =~ kq(x + £), we obtain,

q,max <

v = kq(kgs + ko€ + o). (4)
Now, it is easy to obtain the output signal-to-noise ratio,

2 2
Tout = % =5 (5)
o2 of +o¢ k]
Here (v) is the mean value of the output, o2 and o?
are the variances of the output and noise of the amphﬁer
correspondingly.

The last equation shows the output SNR to be mono-
tonically decreasing with increasing k,. In the limit of
very high k;, the SNR at the output of the measure-
ment system approaches the SNR at the input of the
sensor. Therefore, to improve the SNR, of the complete
measurement system we need to increase the coefficient
of amplification of the sensor, k,, as much as possible.

B. Biomimeticity: The Self-Tuning Mechanism

It is well known that, in the auditory system, a self
tuning mechanism allows an adaptation of the dynamical
range of the system to different levels of input signals [12].
In the absence of input signals the system will increase
its coefficient of amplification until the amplified internal
noise in the output reaches a significant level. If a signal
is then applied, both the signal and noise are amplified
together so that the total output power is increased but
to a small level compared with the signal-less condition.
The system is organized so that the strongest signal is
amplified with the smallest amplification coefficient [12].

We introduce a self-tuning mechanism with similar
properties for our realization of the TH sensor. For sig-
nal and noise inside the dynamic (working) range, the

output power of the sensor can be estimated as,

b= ([f(s +E). Q).

In this equation we have tacitly assumed the existence of
an ensemble of sensors so we can use the ergodic hypoth-
esis for an estimation of the (average) power. Moreover
we replace the infinite interval of time (over which the
averaging is done) with a finite interval T,

dip
T =g+ [fs+E g (6)
For sufﬁcienyly large T', this provides a good estimator of

the power, ¢ >~ 1.

Z
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FIG. 4: A possible setup of the adaptive system.
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FIG. 5: The input-output characteristics of the adaptive sys-
tem. The periodic input signal is © = acosQt. A is the
amplitude of the main harmonic in the output. It is found

as A = \/A2 + B?, where A; = }Q fZﬂ/Q z cos(Q2t)dt and
= Tr/Q fzﬂ/g z sin(Qt)dt via simulations of Eqgs. (2), (3),

( ) and (7). Parameters: = 27x0.01, 6 = 0.01, T = 7 = 10.
The theoretical solution was obtained with Eq.(8).

To use the entire dynamic range of the sensor, the
power provided by the input signal should be close or



equal to the boundary of the dynamic range of the sen-
sor, (x2) = [61/3¢%/%)? ~ §%/3¢%. In this case, taking
into account the quasilinear character of the function
f(z,q) in the dynamic range, the power of the output can
be estimated as ¢ = [f(/(x2),q)]*> = [f(V5 ¢,q))* ~
[kgmax0'/? q]* = q 62/3. Hence, the value of the pa-
rameter ¢ = 1) 62/ indicates an optimal usage of the
dynamic range of the sensor. Now, the self-tuning mech-
anism for our model of the sensor can be described by
the equation,

dq _ —2/3
T =AY, (7)
where 7 is the tuning time. It is assumed that the tuning
time 7 is equal to or greater than the averaging time T,
iie. 7> T. Egs. (2), (3), (6) and (7) are the model of
the sensor with the tuning mechanism.

Fig. 4 schematically shows a possible setup of the adap-
tive system: the input x is transformed into the out-
put z that is passed via a nonlinear unit (to obtain 22)
and a linear low pass filter to control the parameter ¢ in
the transfer function f(x,q). The Hopf bifurcation and
the adaptation regime for the TH sensor are schematized
in fig. 3. In Fig. 5 the input-output characteristic of
the adaptive system is shown. The so-called “compres-
sion” [12] is readily visible: weak signals are amplified
but strong signals are attenuated. In the interest of com-
pleteness, we evaluate the transfer function of the sensor
using a linear approximation. We start by replacing the
true ¢ with its estimate [f(z, ¢)]?. Then, by assumption,
the parameter ¢ is stationary and can we rewrite Eq.(7),

q¢=[f(z,q)2 6"

Next, we substitute the linear approximation f(x,q) =~
x/4/q into the previous equation to obtain

—2/3
0

q:
q

This, immediately, leads to

q=0"1* Va2,

whence the transfer function is obtained as

T
z = f(z,q) ~ \/:2 516,
T

According to the last expression, if the signal is a periodic
function a cos(wt), then the output amplitude is

A= /a8, (8)

C. Interacting Sensors

In the TH sensor, the positive feedback (a resistor-
inductor circuit) passes the oscillating signal component,

as well as the DC component (that is proportional to
f(x,q)), to the primary coil of the magnetic sensor.
Hence, the magnetic sensor creates a “self” magnetic field
that interferes with the target magnetic field s. The mag-
netic field of the sensor is proportional to f(x,q),

¢(t) o< f(s+&,9)-

Since the oscillator voltage (proportional to f(x,q)) is ap-
plied to a resistor-inductor circuit at very low frequency,
the impedance of the inductor L; is very small. Hence,
the value of the current (and magnetic field) in the RL4
circuit is mainly controlled by the resistor R and is pro-
portional to /q.

We begin our treatment of the coupled system by con-

sidering two identical sensors separated by the interval
l

)

T L a(t) = —a(0) + s+ &) + (0 )],

d
) = )

T 8 a(t) = —a(t) + (5 + Ea(0) + 62(0), 2]

LB (1) = ) + alt) 57, )

that interact via their (self) generated magnetic fields:

o(t) = l% Vz f(5+ & + ba,da),

Pa(t) = l% Vi f(s+ &+ b1, ). (10)

In Eq. (10) the following parameters are introduced, &=
E(t—7), ¢1 = ¢1(t—7), and G = q1(t —r); we note that
the parameter r» = [/c is the time delay, where ¢ is the
speed of light, and g the coupling strength.

The system of delay differential equations Eqs.(2), (9)
and (10) has the small parameter r. In this case, we may
approximate [14] the delay term in the equations with
the following ordinary differential terms,

$i(E+1) = ¢i(E) + 7 ild), (11)

where the new time, £ = t —r has been introduced. From
this we have,

T%(bl — —¢1+l%\/q_2f(8+§2+¢27Q2)7
7‘%% = —¢2+l%\/q_1f(8+§1+¢17m), (12)

i.e., the model of two coupled sensors has been reduced to
the system of ordinary differential equations that can be
easily solved numerically. Since we have assumed r < 1,
in many cases the dynamics of the variables ¢; can be
approximated by the equations

612 5 T3 [+ 6 + 62,02),
b2 = /a1 f(s+ & + 61, ),



i.e. the dynamics are, in essence, independent of the
small parameter r. Therefore, for simplicity, we retain a
fixed value of the parameter r in all our calculations.

For a large number of sensors, Egs. (9) and (12) take
on the following forms,

zi = f(s+&(t) + ¢is qi), (13)
72 Vi = —1; + 27 (14)
dt (2 (3 7
d —2/3
T — i = —q +i(t) 67, (15)
dt
d N
T =it Z Qi NG %5, (16)
i=1,i#j
where i =1, 2, ---, N. Here it is assumed r < 1, and

;= g/lf’_j7 the parameter /; ; is a distance between the
sensors 7 and j. In Eq.(16), the dependence of the small
parameter 7 on l; ; is ignored because it is assumed

N
(bi ~ Z Oziyj\/q_j Zj- (17)
J=1,i#j

The output of the array is Z = Zjvzl f(s+& + ¢4,q5).

In this study, we will consider sensory arrays organized
into square lattices as shown, for example, in Fig. 6).
Before moving on, however, it is useful to provide some
physical detail regarding how we envision the setup of
the array in an experimental system. We assume that
each TH sensor is positioned inside its individual Fara-
day cage made of non-magnetic material (e.g. copper,
aluminium). The cages are de facto low pass filters for
electromagnetic fields, and can, significantly, reduce the
interaction strength between TH elements at their natu-
ral frequencies. At low frequency, however, the Faraday
cages lose their effectiveness, so that the sensors are af-
fected by the target magnetic field (this field is DC or at
very low frequency) and the quasi-static parasitic mag-
netic fields from neighboring sensors, as well as the low
frequency components of the noise.

III. THE SIGNAL TO NOISE RATIO

The design of the sensor with the tuning feedback leads
to the independence of the output of the sensor when the
signal is truly constant (which in practice is never the
case). Therefore we actually observe a target field s that
is time-dependent. To characterize the performance of
the system we now estimate the signal-to-noise ratio at
the output of the array.

For a periodic signal acos(€2t) at the input, the out-
put of the sensor, z, contains a periodic component

(@ (b L ( L L
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FIG. 6: Organization of the 2D sensory arrays: (a) a single
sensor, N = 1; (b) N =4 and (c) N = 9. The dots denote
locations of the sensory units. The parameter L is the inter-
sensor interval.

A cos(Qt+6). Computer simulations show that the phase
0 is close to zero for a broad range of parameters of the
system. Therefore we may ignore it and assume the out-
put to be A cos(t).

The amplitude A can be found via the Fourier trans-
form,

2 [T
A=— / z(t) cos(Qt)dt,
Ty Jo

where T}, = 2m/Q. Since s(t)/a = cos(§2t), the last ex-
pression can be rewritten as,

21 (T
or
, 2 1 ([ 2
A= tz_lgri}oo ho i a /t1 z(t) s(t)dt = - z(t)s(t).

The total power at the output is z2. The power in the
periodic component in the output is P = A%/2. Thus,
the noise power is P, = 22— P;. Now, we can introduce
the signal-to-noise ratio,

A? A?
S N
P, _ A2 A?
22 —_ — _ =
2 222
Here,
A2 [z(0)s()]?
—_— = D)
222 a_?
2
Assuming Z = 0 and 5§ = 0, we can rewrite the last

expression as,

A? [z5—7z3)? )

22 (- F@-F?)
Here, we have introduced the coefficient C' that bears
the hallmarks of a correlation coefficient (see next para-
graph). In terms of C, we can write down the SNR as

02

= ——.
1-C?

(18)



We note that the coefficient C' describes the statistical
dependence of the output of the array Z on the target

field s,
o Zs—7%3
070s

(19)

where 0% = Z2 — (Z)?, 02 = 52 — (3)?, and the over-
line denotes the time averaging, 5 = (to —t1)7! :12 s dt
and 52 = (tg —t;)~" :12 s? dt. Here we have assumed
that (t2 — t1) — oo. The structure of Eq. (19) is similar
to a correlation coefficient. Indeed, the difference arises
through the form of the averaging: time averaging is used
in Eq. (19), and ensemble averaging is used in the corre-
lation coefficient. Therefore, Eq. (19) and the correlation
coefficient could, in general, yield different results (due
to the difference in averaging) when s is non-stationary.

Before considering the form of the RE in this system, it
is necessary to compute an ideal (or theoretical) limit for
the net SNR resulting from an uncoupled array (mean-
ing the separation L becomes extremely large) of identi-
cal sensors. With only a single sensor, and a very weak
periodic signal s = asin(2t), we can use a linear ap-
proximation, Z1 = kq(s + &), for the transfer function.
According to Eq. (19) the coefficient C is

4 a2

a
kig 5
C? = —— = — ) (20)

a* (a a
27 (24 2 &2
kq2<2+ag) 2—1—05
The signal-to-noise ratio can then be rewritten as,

a?/2
ro- 2
O¢

(21)

The output of an array of N sensors for a weak periodic
signal can be written, in the linear approximation, as:,

N
N :kq <NS+Z§1>
1=1

The coefficient C' takes on the form,
C% = 52— (22)

where we assume a statistical independence of the noises
&
From Eq. (21) and Eq.(22) it follows that

Iy =N T;. (23)

This allows us to predict a theoretical dependence of the
signal-to-noise ratio for an array with N units if I'; is
known, for the “ideal” case of widely separated sensors
(i.e. the coupling is negligible).
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FIG. 7: (Color online) The Ringelmann effect in an array of
sensors. The Signal-to-noise ratio 'y as a function of the
number N of sensors in the array. The array is organized into
the square lattices (see Fig. 6) with the inter-sensor intervals
L. The target field is the weak periodic signal z = asin(Qt),
where a = 0.001, Q = 27 x 0.01. The noises &;(t) are inde-
pendent OU stochastic processes. The theoretical dependence
is shown with the dashed line. It was found with Eq. (23).
It is easy to see that the obtained results are always below
the theoretical capacity. This is a sign of the Ringelmann ef-
fect in our coupled array. The inset shows a clear increase in
the summed SNR response (for fixed N = 36) as the sensor
separation in the array increases, corresponding to a lower
coupling strength.

IV. RESULTS AND DISCUSSION

Fig. 7 shows that, in the case of a weak periodic signal,
the performance of the sensory system is better when the
inter-sensor intervals are longer (weak coupling). It is
easy to see that the obtained results are always below
the capacity defined as the theoretical dependence.

If the periodic signal is strong (see Fig.8), the de-
pendence of the SNR on the inter-sensor spacing is also
strong. One readily finds that the amplitude of the out-
put increases with the amplitude of the input signal (see
Eq. (8)). This means that the increased amplitude of the
input signal leads to an increase in the magnetic field cre-
ated by the sensor and, hence, to an increased strength
of the interactions between the sensors. Every sensor in
the array amplifies both the target signal and the mag-
netic field of other sensors of the array. The unwanted
positive feedback stemming from coupling between the
sensors “confuses” their tuning mechanisms so that the
amplitude A of the array output is greater than expected
(see Fig. 9), and the magnitude of the inputs of the sen-
sors can be outside the working dynamic range. There-
fore, the sensors become non-linear systems that pass the
signal with a non-linear distortion. From the SNR defi-
nition eq. (18), the higher harmonics of the signal make
a contribution to the noise in the outputs of the sensors,
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FIG. 8: (Color online) The Ringelmann effect in an array of
sensors. Same parameters as Fig 7 but with a = 0.01

so that the SNR is reduced. It is easy to see that

N

Factual < Fexpected = Z Fi,aloneu i=1..N. (24)
=1

Comparing Eq. (1) and Eq. (24), we conclude that the
inequality Eq. (24) satisfies the definition of the RE, with
the one caveat: instead of the maximal productivity, we
use the SNR in the system as a performance measure.
The SNR is almost the same whether the sensor is opti-
mally tuned or not, as long as the input = of the transfer
function f(x,q) is within the dynamic range. Hence, the
maximum SNR is equivalent to the optimal SNR. There-
fore, we may use the term “Ringelmann Effect” in the
context of the reduction of the SNR in the array of sen-
SOTS.

In contrast to Fig. 7, Fig.8 shows that the SNR is a
non-monotonic function of the number of the units in the
array. In fact, there arises a situation wherein the number
of mutual interactions grows faster than the number of
units in the array. Every interaction makes its individual
contribution to the positive feedback of the system and
increases strength of the interactions.

Fig.8 (inset) shows that the reduction of the inter-
sensor intervals L (meaning an increase in the coupling
strength) leads to a reduction of the performance of the
sensory system, i.e. the SNR rapidly drops. Obviously,
there is a critical L that corresponds to a transition of
the system behavior from the amplification of the exter-
nal magnetic fields to the generation of a spontaneous
magnetic field magnetization) that is mostly indepen-
dent of external fields. This phenomena is similar to
a phase transition [15]. An analogous effect is apparent
as a function of N (see figure 8). For strong coupling
(small separation L), the “self” fields (arising from the
spontaneous magnetization of the core)of each sensor are
amplified far more than the external magnetic field. In

-- Expected linear dependence
a4 Actual dependence
o Mitigated RE

15

0 10 20 30 40

FIG. 9: (Color online) The synergetic effect of the coupling
on the gain in the array. Here A is the output amplitude of
the array. The periodic input signal is * = a cos Q2t. Param-
eters: Q = 27 x 0.01, @ = 0.01, § = 0.01, T'= 7 = 10, and
L = 0.18. The expected theoretical dependence was obtained
with Eq.(8) and assumption that the amplitude is A = N x Ao,
where Ao is the amplitude of the unit (of the array) perform-
ing alone.

the large L (i.e. weak coupling) limit the response ap-
proaches the theoretical maximum, particularly for weak
target signals. These two regimes are, loosely, connected
via a maximum in the SNR vs. N curve as visible in
figure 8. As NN decreases, the maximum shifts to a lower
N value.

To illustrate the influence of the coupling on the sen-
sory system we consider a square matrix consisting of
sensor elements that have the individual SNRs,

Conm
: (25)

Lo = —5—
1_07271.77,,

)

where the coeflicients ¢, ,, are

. _ Zmmn ST Zmn S
m,n — )
0zpmn0s

Zmm = [(8 + EmmrGmm), m = 1,--- /N and n =
1,---, VN.

We now consider the (numerical) results for the almost
independent sensors, i.e. the sensors are weakly coupled
due to the long inter-sensor intervals (we take L = 1 for
this case). It is easy to see that the individual signal-to-
noise ratios I'y, ,, in all matrices are almost identical and
close to value of the SNR of the single sensor (N = 1).
We illustrate this by using a strong signal (amplitude a =
0.01) and computing, for a single sensor, I'; = 6.326391.
For a 2D square lattice of varying size, we can calculate
the individual signal-to-noise ratios I'y, ,, as:

N =4:

(6.159971 6.433196) (26)

6.456477 6.349792



Total I'y is 22.818512.
N =09:

6.297275 6.458169 6.403746
6.374942 6.431465 6.333464 (27)
6.556485 6.643418 6.327900

Total T'g is 45.484923, and so on. It is easy to see that
the total SNR is less than the sum of all SNRs, i.e. much
redundant information passes through the sensory sys-
tem.

Another illustrative example can be considered,
wherein the coupling is strong due to the short inter-
sensor intervals, L. = 0.18. As in the preceding case we
can calculate I'y = 6.234534 for a single element. In this
case, we find, as above,

N =14:

(11.158677 11.292682) (28)

11.451936 11.118461

Total I'y is 23.293699.
N =09:

14.360633 16.886906 14.651738
16.707638 19.346849 17.575212 (29)
14.750152 16.593489 15.213220

Total I'g is 33.708725.

The sensors are “cooperating”. The individual SNRs
are greater than the SNR of the single sensor, and correla-
tions between the individual responses of the sensors and
the external signal are increased. But, the cooperative
work counters the performance of the whole system; the
total SNR is (for increasing N) below that of the weakly
coupled sensors (the previous case for L = 1), with cor-
relations between individual responses being increased in
this case.

V. THE RINGELMANN EFFECT: SOCIOLOGY
MEETS PHYSICS

The coupling-induced phenomena detailed above bear
resemblances to the phenomena described by Max
Ringelmann 103 years ago [13]; the so-called Ringelmann
Effect (RE) is frequently cited in the social sciences lit-
erature [16, 17]. We believe the similarity is much more
than a qualitative coincidence and is based on similar
dynamical principles mediated by the coupling.

In his studies, Ringelmann focused on the maximum
performance of humans involved in experiments wherein
they used different methods to push or pull a load hor-
izontally [13]. The RE has already been introduced in
section I; here, we provide some more detail. Ringelmann
discriminated two main contributions to human produc-
tivity losses (see e.g. Fig. 10), namely the motivation
loss (now referred to in the contemporary literature as
“social loafing”) and a ”coordination” loss; he concen-
trated, however, on the coordination loss as an explana-
tion for the reduction of performance [17]. Ringelmann

800
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FIG. 10: There are the two major causes of productivity losses
in groups working on additive tasks. The portion between
the dashed line and the dotted line represents motivation loss
(social loafing), and the portion between the dotted line and
the solid line represents coordination loss. “Pseudogroups”
are defined as groups of individuals who were actually working
alone, but thought they were working as part of a group. The
design of the figure was adopted from Ref.[16].

believed that coordination loss was the more important
contributor to the RE because similar reductions in per-
formance occurred not only in groups of humans and ani-
mals (horses and oxen [18]), but also in technical systems
wherein social loafing was, clearly, impossible. For ex-
ample, in multicylinder combustion engines, the engines
with the larger number of cylinders produced less power
per cylinder [13, 17].

One hundred years ago it was too difficult to cre-
ate a mathematical description of the Ringelmann Effect
(RE) because of a lack of understanding of complex sys-
tems. Consequently, the co-ordination losses observed by
Ringelmann have never been explained or understood. In
contrast, the performance loss due to social loafing has
been well studied by social scientists. They found that
social loafing was not limited to groups that needed to
exert physical effort. The social loafing could, in fact, be
observed when groups worked at diverse tasks, e.g. maze
performance [19], evaluating a poem [20], song writing
[21], brainstorming [22], reacting to proposals [23], judg-
mental tasks [24], research [25], software developing [26—
28], pumping air [29], clapping [30], rowing [31], pulling
a rope [32], swimming in relay races [33], job selection
decisions, typing, and creativity problems [16, 34].

Social scientists paid far greater attention to the social
loafing component of the RE, because it was believed that
these studies might provide the framework to organize a
team that could improve its performance by increasing
individual efforts in groups [16, 34]. Today, these studies
are motivated by the interest of industrial organizations
for achieving an improvement of their efficiency through
the most optimal organization.



In this work, we have studied (for a coupled sensor
array) another type of contribution to productivity loss;
this contribution stems from interactions between mem-
bers of a group which we believe is also the origin of
the co-ordination loss reported by Ringelmann. To illus-
trate the interaction-induced loss we start by discussing
the Ringelmann’s original experiments relating to a hu-
man horizontally pulling a rope attached to a dynamome-
ter [13]. In the experiments, the subject’s feet are in
contact with the ground and the body slopes to create
tension in the rope with the help of gravity; as the slope
and hence pulling force increases so does the balancing
frictional force on the ground. For some critical slope
the pulling force equals the maximum sustainable fric-
tional force giving rise to a “critical point”. Exceeding
this slope (force) results in loss of stability. Thus, for
the “best” performance, the subject should remain close
to the critical point while not going past it (i.e.remain
within the ’working range’). We can assume that the
subject uses the following control “algorithm” to adjust
(tune) his body to the critical position. The subject in-
creases his slope until slippage starts to occur; he, then,
stumbles backwards to correct the sliding. This process
is then repeated with the subject trying to ’bias’ his po-
sition as close to the critical point as possible without
slipping. Near the critical point fluctuations are ampli-
fied; therefore, the body of the subject moves randomly
with multiple corrections required to prevent, or as a con-
sequence of, slippage. If a group of humans are pulling
the rope, unintentional random movement of one member
will dramatically affect the “tuning” processes of other
members of the group. To avoid loss of stability in the
presence of common fluctuations, the members of the
group will keep the positions of their bodies away from
the critical state. Hence, the net performance of the hu-
mans will be reduced.

In his pulling-the-rope experiments, Ringelmann asked
the subjects to maintain a maximum effort for 4-5 s [13].
Given this relatively long duration it is not really con-
ceivable that subjects were unable to pull at the same
time i.e. they would have been able to synchronise their
efforts. Consequently, the co-ordination losses measured
by Ringelmann were, almost certainly, caused by the (un-
intentional) movement of the rope that was fed-back to
members through the mechanical coupling of the rope
itself.

In this paper we have studied a physical system that is
not similar to the group of humans in Ringelmann’s ex-
periments, but the coupling-induced dynamics does have
a similar impact on performance; the coupling channels
fluctuations from individual sensor outputs to adjacent
sensors which are themselves already optimally tuned
(i.e. their dynamic range, and hence SNR, is maximised).
The fluctuations therefore perturb the sensors away from
their optimal working point thus lowering overall perfor-
mance.

From an application perspective mitigation of the RE
is necessary to enhance performance. We now provide a
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possible path to mitigating the losses in arrays of nonlin-
ear engineered devices.

Can the Ringelmann Effect be Mitigated?

According to Figs.(7) and (8), the RE can be mitigated
by increasing the element separation L in the sensory
array. But, in this case the size of the array will either
become prohibitively large or result in sensors picking up
different spatially localised signals. Hence an alternative
way of reducing the RE is required.

Since the RE takes place due to the coupling between
the sensory units we could, at least on paper, cancel the
coupling term ¢; in Eq.(13) to improve the SNR response
of the array. However, in contrast to the mathematical
model, the simple “cancellation of the coupling term” is
usually impossible in a real sensory system. Therefore we
construct the cancelling term ®.; to the coupling term
¢; in Eq. (13), from data available from measurements
in a possible real experiment; ideally, the cancelling term
should be ®., = —¢;. In keeping with our desire to
achieve the mitigation of the RE through realistic (i.e.
experimentally accessible) scenarios, however, we assume
that it is impossible to measure the quantity ¢;. Accord-
ing to Eq. (17), however, this quantity can be estimated
from a knowledge of the parameters g, l; ;, ¢; and z;,
where ¢ = 1,..., N. For simplicity, we will assume that
the dynamics of all parameters ¢; are similar and all g;
take on almost the same values, ¢; >~ ¢;. Then the can-
celling term will be,

N
2.
(I)c,i = —9\/@ Z l__J_v (30)

. -, b
j=1i#j Y

where z; is the output of the j* unit. Hence, Eq. (13)
can be rewritten as,

zi = f(s+&(t) + & + Peiy qi) (31)

The term ®.; in Eq. (31) implies a global feedback in
the sensory system, as shown in Fig. 11. In Fig. 11(a)
the circuit of a single unit of the array with the output
z and the additive input ®. is shown. Fig. 11(b) shows
the global feedback for each unit. The results stemming
from the feedbacks can be seen in Fig. 12. The SNR
is significantly improved but the theoretical limit is not
reached due to the (still) non-ideal structure of the can-
celling term @, ; (see Eq. (30)).

Throughout this paper, the biomimetic nature of the
magnetometer array stems from what is generally ac-
cepted to occur in the auditory system [36, 37]. Con-
sequently, our approach raises a number of interesting
questions. If the receptors are mechanically coupled via
the Basilar membrane — Tectorial membrane system (see
Fig. 13), could the auditory system suffer from the RE?
If yes, then can the auditory system mitigate the RE? In
(the schematic) Fig. 13, we show that the central nervous
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FIG. 11: (a) The circuit of the sensory unit. Since the pa-
rameter g should depend on R, in the figure we show that
the variable resistor R; is a target for the feedback of the
adaptation (self-tuning mechanism). (b) The complete sys-
tem with 4 units. The blocks marked with ) are summators
with different weights as required by Eq.(30).

system not only receives signals from inner hair cells but
tries to control parameters of outer hair cells. We could
speculate that the feedback circuits, OHCs — THCs —
afferents — CNS — efferents — OHCs, schematized in
figure 13 could play the role of a RE mitigating system.
This is an interesting conjecture but nothing more than
a conjecture at this point.

VI. CONCLUSIONS

In this work, we have introduced a model of an array
of nonlinear interacting sensors. The individual sensors
can be tuned to their optimal regimes for the best perfor-
mance, when uncoupled. However, in the presence of the
other sensors, this optimization (in the individual units)
is lost because of coupling induced interaction. This is
a “coupling” loss that can lead to a reduction in perfor-
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FIG. 12: (Color online) Mitigating the Ringelmann Effect in
an array of sensors. Same parameters as Fig 8 with separation
L =0.18.

mance of the entire sensory system.

The performance loss is most evident at smaller
inter-sensor intervals (corresponding to higher coupling
strength). The overall performance, quantified by a to-
tal SNR, is bounded from above by the theoretical (or
ideal) limit given by N x I'y—1 (Eq. (23)); this value
is approached only in the limit wherein the sensors are,
effectively, de-coupled.

Clearly, it would be a significant improvement if we
could mitigate (or reduce) the losses stemming from the
RE in a sensory array of the type considered in this work.
One possible route to this, via global feedback, has been
proposed. Eq. (30) derived from the feedbacks depends
on both the geometrical parameters of the array (the sep-
aration between sensors l; ;) and the outputs z; of the
individual units of the array. Note that Eq. (30) is an
approximation of the ideal canceling term ®.; = —¢;
but, in contrast to the ideal cancellation term, it can be
realized via the electrical circuit shown in Fig. 11. Since
®. ; differs from —¢; (as already mentioned above), it is
not, able to completely cancel the parasitic coupling ¢;
between the individual elements/sensors. Therefore, the
theoretical limit of ideal performance cannot be reached
in practice (unless the coupling is, identically, zero) and
the RE still limits the array performance, albeit in a
greatly reduced form.

We note, here, that social/behavioral scientists often
find it difficult to quantify the individul performances of
working units that contribute to a total (i.e. group) re-
sult; specifically, they usually cannot quantify any of the
losses depicted in Fig. 10. Thus, in an effort to quan-
tify individual performances in a group effort it is, often,
common practice to scale the performance metric that
characterizes the overall performance by the number of
working units in the group. Applying this reasoning, the
individual (in our case, sensor) performances in each cou-
pled array would be obtained by simply computing the
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FIG. 13: (Color online) (a) The outer hair cell (OHC) in-
teracting with the basilar membrane - tectorial membrane
system and with the central nervous system (CNS) [35]. The
OHC can schematically be split into the sensor and motor
components. The dotted green loop shows that the sensory
part of the OHC is adaptive subsystem [36]. (b) The coupling
in the auditory system of mammals [37]. The afferents are
shown with dash-dotted red arrows targeted to the CNS, and
the efferents are shown with dashed blue arrows. Mechanical
coupling between the OHCs, and inner hair cells (IHCs) and
the basilar membrane - tectorial membrane system are shown
with solid black arrows.

overall SNR performance and scaling it by N to yield
the individual performances. Hence, unlike the results of
the preceding section, all the component elements in each
coupled array would have the same SNR response. For
example, in the L = 0.18 case, we would obtain: I' = 6.23
(N =1),5.82 (N =4), 3.74 (N =9), etc. Clearly, if the
social scientists could, separately, quantify the individual
performances of elements in their systems, their results
might be similar to the results of this article.

At this point it is worth noting that there does in fact
exist at least one exception (that we are aware of) in the
social sciences literature, wherein the loafing and coor-
dination losses were, separately, quantified. Latane et.
al. [38] carried out an experiment involving clapping and
shouting by a group of human subjects. Among the tests,
one in particular stands out: participants were asked to
shout as loudly as they could when alone, in pairs, in
sixes, etc. The subjects were blindfolded and wearing
headphones subject to a masking signal; therefore they

12

were unaware of the presence of other subjects. The tri-
als included situations wherein the subjects (still blind-
folded and wearing headphones) were led to believe that
they were actually part of a group. A novel testing and
measurement procedure allowed the researchers to quan-
tify individual performances when the subjects knew they
were alone, and when they thought they were in a group.
This allowed the researchers to, separately, quantify the
loafing and coordination losses in the group performance.
The following extract, directly from the abstract of [38]
is self-explanatory: “Two experiments found that when
asked to perform the physically exerting tasks of clap-
ping and shouting, people exhibit a sizable decrease in
individual effort when performing in groups as compared
to when they perform alone. This decrease, which we
call social loafing, is in addition to losses due to faulty
coordination of group efforts.”

Other problems in the quantification of human per-
formance could arise when one confronts a heavy-tailed
distribution of contributions of individual group mem-
bers. For example, in an analysis of open source soft-
ware production, it was reported that the distribution
of contributions per software developer was heavy-tailed,
meaning the first two statistical moments (mean and vari-
ance) were undefined [28]. Due to the difficulty in cor-
rectly defining the performance of software developers
and due to problems relating to an estimation of this
quantity from available data, the authors of two sepa-
rate papers [26, 27| came to opposite conclusions regard-
ing the presence of a Ringelmann effect in the software
production process. It is easy to understand that a sim-
ilar situation could arise in a sensory array when the
TH sensors, that are the backbone of this paper, are
replaced with different sensors that might be tuned to
different critical behavior e.g. a phase transition [15] or
self-organized criticality [39], instead of the Hopf bifurca-
tion. Such sensors could be very sensitive to weak signals
but their noise-floor distributions could be heavy-tailed.
Clearly, then, if the first and second moments of the noise
distributions are not defined then it will be difficult to
correctly quantify the signal-to-noise ratio and estimate
the performance of the sensory system.

The results of our work hold for any array of nonlin-
ear sensors (and the coupling can have any form) that
can be, individually, tuned to a regime wherein their re-
sponse to a target signal is optimized. Then, the Ringel-
mann Effect, appears to provide the underlying thread
between the purely social interactions originally exam-
ined by Ringelmann and the (quite complex) sensor ar-
rays that are, increasingly possible with today’s advanced
technology. More importantly, the principles of coupling-
induced performance loss should be generic to many sys-
tems across the physical, biological, engineering, and so-
cial sciences. Adaptive (self-tuning) schemes for oper-
ating isolated sub-units (e.g. people [16], animals [18§],
optical sensors and systems [40], parallel inverters and
converters in power-electronics [41], antenna arrays [42])
close to their optimal operating points can be devised



but become less effective when coupled into a complex
interacting network. We have demonstrated that, in ad-
dition to the local optimization (adaptation), some form
of global optimization, e.g via feedback, can help to mit-
igate Ringelmann type effects. These principles are ex-
pected to be generic across a wide class of nonlinear dy-
namic systems.

It seems fitting to conclude this paper with an excla-
mation point. While the coupling-induced loss and the
RE can occur in many coupled nonliner dynamic sys-
tems (see previous paragraph), it is the self-tuning to an
optimal point (effectively poised on the threshold of the
Andronov-Hopf bifurcation in our case) that is a cen-
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tral feature of signal processing in the cochlea. Thus our
sensor array (and, in fact, the single TH sensor as well)
is not biomimetic unless we incorporate the self-tuning
mechanism in each sensor prior to setting up the array.

Acknowledgments

ARB gratefully acknowledges funding by the Office of
Naval Research Code 30; NGS and APN gratefully ac-
knowledge funding by ONRG award N62909-11-1-7063,
and useful discussions with R. P. Morse.

[1] W. Bialek, Ann. Rev. Biophys. Biophys. Chem. 16, 455
(1987).

[2] K.-E. Kaissling, Ann. Rev. Neurosci. 9, 121 (1986).

[3] T. H. Bullock and F. P. J. Diecke, Journal of Physiology
134, 47 (1956).

[4] M. N. Coleman and D. M. Boyer, The Anatomcal Record
295, 615631 (2012).

[5] C. Képpl, O. Gleich, and G. A. Manley, Journal of Com-
parative Physiology A 171, 695 (1993).

[6] G. A. Manley and J. A. Clack, in Evolution of the Ver-
tebrate Auditory System, edited by G. A. Manley, A. N.
Popper, and R. R. Fay (Springer - Verlag, New-York,
2004).

[7] G. A. Manley, PNAS 97, 11736 (2000).

[8] P. Dobbins, Bioinspiration and Biomimetics 2, 19 (2007).

[9] J. Stroble, R. Stone, and S. Watkins, Sensor Review 29,
112 (2009).

[10] A. P. Nikitin, N. G. Stocks, and A. R. Bulsara, Physical
Review Letters 109, 238103 (2012).

[11] S. Takeuchi and K. Harada, IEEE Trans. Magn. MAG-
20, 1723 (1984).

[12] S. Camalet, T. Duke, F. Julicher, and J. Prost, PNAS
97, 3183 (2000).

[13] M. Ringelmann, Annales de DInstitut
Agronomique, 2e serie XII, 1 (1913).

[14] R. D. Driver, D. W. Sasser, and M. L. Slater, The Math-
ematical Association Monthly 80, 990 (1973).

[15] H. E. Stanley, Introduction to Phase Transitions and
Crritical Phenomena (Oxford University Press, Oxford
and New York, 1971).

[16] D. R. Forsyth, Group Dynamics (Thomson/Wadsworth,
Belmont, Calif., 2006), 4th ed.

[17] D. A. Kravitz and B. Martin, Journal of Personality and
Social Psychology 50, 936 (1986).

[18] M. Ringelmann, Annales de DInstitut
Agronomique, 2e serie VI, 243 (1907).

[19] J. M. Jackson and K. D. Williams, Journal of Personality
and Social Psychology 49, 937 (1985).

[20] R. E. Petty, S. G. Harkins, , K. D. Williams, and B. La-
tane, Personality and Social Psychology Bulletin 3, 579
(1977).

[21] J. M. Jackson and V. R. Padgett, Personality and Social
Psychology Bulletin 8, 672 (1982).

National

National

[22] S. G. Harkins and R. E. Petty, Journal of Personality and
Social Psychology 43, 1214 (1982).

[23] M. A. Brickner, S. G. Harkins, and T. M. Ostrom, Jour-
nal of Personality and Social Psychology 51, 763 (1986).

[24] W. Weldon and G. M. Gargano, Organizational Behavior
and Human Decision Processes 36, 348 (1985).

[25] R. Kenna and B. Berche, Research Evaluation 20, 107
(2011).

[26] D. Sornette, T. Maillart, and G. Ghezzi, PLOS ONE 9
(8), 103023 (2014).

[27] 1. Scholtes, P. Mavrodiev, and F. Schweitzer, Empir. Soft-
ware Eng. 21, 642 (2016).

[28] T. Maillart and D.
http://arxiv.org/abs/1608.03608 (2016).

[29] N. L. Kerr and S. E. Bruun, Personality and Social Psy-
chology Bulletin 7, 224 (1981).

[30] S. G. Harkins, B. Latane, and K. Williams, Journal of
Experimental Social Psychology 16, 457 (1980).

[31] C. J. Hardy and R. K. Crace, Journal of Sport and Ex-
ercize Psychology 13, 372 (1991).

[32] A. G. Ingham, G. Levinger, J. Graves, and Y. Peck-
ham, Journal of Experimental Social Psychology 10, 371
(1974).

[33] K. D. Williams, S. A. Nida, and B. Latane, Basic and
Applied Social Psychology 10, 73 (1989).

[34] J. A. Shepperd, Psychological Bulletin 113, 67 (1993).

[35] P. Dallos, The Journal of Neuroscience 12, 4575 (1992).

[36] R. Fettiplace and C. M. Hackney, Nature Reviews Neu-
roscience 7, 19 (2006).

[37] H. Spoendlin, American Journal of Otolaryngology 6,
453 (1985).

[38] B. Latane, K. Williams, and S. Harkins, Journal of Per-
sonality and Social Psychology 37, 822 (1979).

[39] P. Bak, C. Tang, and K. Wiesenfeld, Physical Review
Letters 59, 381 (1987).

[40] J. M. Beckers, Annu. Rev. Astron. Astrophys. 31, 13
(1993).

[41] N. Hur and K. Nam, IEEE Transactions on Industrial
Electronics 47, 871 (2000).

[42] R. L. Yadava, Antenna and Wave Propagation (Prentice-
Hall of India, 2011).

Sornette,



