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Abstract

Nowadays online searches are undeniably the most common form of information gathering, as

witnessed by billions of clicks generated each day on search engines. In this work we describe online

searches as foraging processes that take place on the semi-infinite line. Using a variety of quantities

like probability distributions and complementary cumulative distribution functions of step-length

and waiting time as well as mean square displacements and entropies, we analyze three different

click-through logs that contain the detailed information of millions of queries submitted to search

engines. Notable differences between the different logs reveal an increased efficiency of the search

engines. In the language of foraging, the newer logs indicate that online searches overwhelmingly

yield local searches (i.e. on one page of links provided by the search engines), whereas for the older

logs the foraging processes are a combination of local searches and relocation phases that are power

law distributed. Our investigation of click logs of search engines therefore highlights the presence

of intermittent search processes (where phases of local explorations are separated by power law

distributed relocation jumps) in online searches. It follows that good search engines enable the

users to find the information they are looking for through a local exploration of a single page with

search results, whereas for poor search engines users are often forced to do a broader exploration

of different pages.

PACS numbers: 05.40.Fb,89.20.Hh,89.75.-k
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I. INTRODUCTION

An increasingly large part of our day is devoted to online activities. It is therefore not

surprising that in recent years online mobility patterns have emerged as a new interdisci-

plinary research area. Much attention has been given to scaling and non-Markovian features

of web browsing [1–6], to the features of mobility in online games [7, 8] as well as to emerging

scaling properties in e-commerce [9].

Each day, tens of billions of clicks are generated on search engines. Understanding human

online search click-through behavior can therefore be of central importance to improve rank-

ing algorithms, rearrange page layout for search engines, and reduce advertisement spending

for enterprises. Click-through data, which are extracted from the click logs of search engines,

contain information on the links clicked by a user as a result of a query submitted to a search

engine. These data have been exploited in a variety of studies that aimed at optimizing web

searches and at improving retrieval quality [10–13].

Our daily experience with web searches shows that a fully deterministic search strategy

usually does not optimize the search outcome. Instead, there is often some degree of ran-

domness involved in choosing the links to click on among those provided by a search engine.

It is therefore tempting to investigate web searches from the point of view of random search

strategies.

Studies of search strategies [14] in animal foraging [15–20] hint at intriguing connections

between movement patterns and availability of preys. Roughly speaking, one can distinguish

between two different cases. If the prey is abundant, then the predator tends to perform a

random walk and only explores a rather restricted territory. On the other hand, if the prey is

scarce, evidence has been found that the pattern changes to a Lévy walk (or, alternatively,

to an intermittent search process that includes Lévy movements [21, 22]) that allows to

cover much larger areas/volumes and to optimize the search efficiency when resources are

sparsely distributed. It has been claimed that Lévy movement patterns also show up in

human foraging [23, 24] as well as in the migration of bacteria [25, 26] and T cells [27]. Of

course, the simple relationship between displacement pattern and availability of preys only

prevails on large scales, and a much more complex and subtle picture emerges when going

beyond such a coarse-grained description [28–31].

Analyzing extensive click-through data sets from different search engines collected in
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different years, we consider in this paper online searches as foraging processes on a straight

semi-infinite line and find a transition in the search patterns from a behavior that includes

long-range relocations to a purely local Brownian-type motion with increasing efficiency of

the search engines. A more detailed analysis reveals a behavior that is more complex than

simple Lévy flights or Brownian motions.

In the next Section we describe the click-through data as trajectories on a semi-infinite

line. Section III analyzes these data as foraging processes on the semi-infinite line through

the study of numerous quantities, ranging from probability distributions and complementary

cumulative distribution functions of displacement and waiting time to mean square displace-

ments and entropies. Our analysis indicates that the character of online searches changes

with increasing efficiency of search engines, shifting from processes that include power law

distributions to a Brownian-type behavior.

II. CLICK-THROUGH DATA SETS

Our study of human online search patterns is based on three click-through data sets

collected by different commercial search engine providers. The sets Sogou-08 and Sogou-11

were collected on the Chinese search engine Sogou in 2008 and 2011 respectively, whereas

the set Yahoo-10 was collected on Yahoo in 2010. For a detailed description of the data sets

and of the data preparation we refer the reader to Appendix A.

As explained in Appendix A and illustrated in Fig. 1, for each query submitted to one

of the search engines we assign to every click on a search result a pair of “space”-“time”

coordinates where the “time” is the time in seconds passed since the first click (i.e. for

the first click, t1 = 0), whereas the “space” coordinate is the rank of the search result,

i.e. its position when treating all search results as points on a semi-infinite line, where the

top result is assigned the rank r = 1. The nth click is therefore characterized by the pair

(tn, rn). Subsequent clicks for a given search then correspond to subsequent steps along the

semi-infinite line where the rank difference ∆rn = |rn+1 − rn| is the step-length dn = ∆rn.

The sign of rn+1 − rn provides us with the direction of the steps. As we will see later, the

data show a strong bias in the forward direction. In a similar way we define as waiting time

τn the time interval between two successive clicks [32]: τn = tn+1 − tn.

Usually a query ends when the user finds the relevant information. In the language of
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FIG. 1: (Color online) Illustration of the terms used in this study: clicking order n, rank r, time of

nth click tn, and step-length dn between successive clicks on results provided by the search engine.

foraging the relevant information is therefore the resource. We know from our own experience

that users occasionally terminate a search early once they are convinced that the search term

is unlikely to yield the expected result. The limitations of the data bases used in this study

do not allow to identify these instances. We therefore do not try to distinguish between these

cases and treat all queries in the same way, with the resource being located at the site r = rf

that corresponds to the rank of the last search result clicked by the user. Of interest is also

the number of clicks (steps) needed to reach the resource. As we discuss below, the resource

location rf and the clicking number Nc provide simple ways of evaluating the efficiency of

a search engine. Both rf and Nc would presumably change slightly if we would be able to

identify those searches that resulted in the user finding the information they were looking

for.

In the following we focus on probability distributions and on complementary cumulative

distribution functions (CCDF(x) is the probability P (X > x) that the random variable

X has a value larger than x) in order to analyze the motion patterns emerging from online

searches. We take a population level approach and base our analysis on population-averaged

distributions. As we are dealing with millions of queries for every search engine, see Table I,
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we expect that distribution functions provide a very reliable characterization of the foraging

patterns in online searches.

III. MODEL SELECTION AND PARAMETER ESTIMATION

In the following we are modeling the distributions of various quantities in the large-value

limit through a variety of models and select the best model using the Akaike information

criterion (AIC). As the quantities derived from the click-through data sets take on positive

integers only, we are considering only discrete versions of the models.

As a power-law model we use the discrete power-law (DPL) distribution

P (k) =
k−α

ζ(α, kmin)
∼ k−α, k ≥ kmin, α > 1, (1)

where the normalizing factor ζ(α, kmin) =

∞
∑

m=kmin

m−α is the incomplete ζ-function [33]. For

the exponential model we use the “shifted” geometric (SG) distribution

P (k) = p(1− p)k−kmin, k ≥ kmin, 1 ≥ p > 0, (2)

=
(

1− e−λ
)

e−λ(k−kmin) ∼ e−λk, λ > 0, (3)

where λ = − ln(1− p).

We also included in the model selection the power law with exponential cut-off (PEC)

model:

P (k) =
1

Liα(e
−λ)−

kmin−1
∑

i=1

i−αe−λi

k−αe−λk ∼ k−αe−λk, k ≥ kmin, λ > 0, α > 0, (4)

where Liα(z) is the polylogarithm function, the discrete log-normal model (DLN) [34]:

P (k) =

Φ

(

ln(k + 1)− µ

σ

)

− Φ

(

ln(k)− µ

σ

)

1− Φ

(

ln(kmin)− µ

σ

) , k ≥ kmin, σ > 0, (5)

where Φ(·) is the standard normal cumulative distribution function, the Yule-Simon (YS)

distribution [35, 36]

P (k) = (α− 1)
Γ (kmin + α + 1)

Γ (kmin)

Γ(k)

Γ(k + α)
, k ≥ kmin, α > 1, (6)
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which for k sufficiently large yields P (k) ∼ k−α, and the conditional Poisson (CP) distribu-

tion [36]

P (k) =

[

eµ −

kmin−1
∑

m=0

µm

m!

]−1

µk

k!
, k ≥ kmin, µ > 0. (7)

Finally, we also considered a pairwise power law (PPL) distribution, which consists of two

power law regions that are connected at k = ktrans:

P (k) =







C k−α, kmin ≤ k < ⌈ktrans⌉

Ckβ−α
trans k

−β, ⌈ktrans⌉ ≤ k
, α, β > 1, ktrans > kmin, (8)

with the normalization factor C =
(

ζ(α, kmin)− ζ(α, ⌈ktrans⌉) + kβ−α
transζ(β, ⌈ktrans⌉)

)−1

. Due

to the ceiling function ⌈x⌉ this distribution does not strictly sum up to 1. Still, as we will

see in the following, it does provide in many instances a good fit to our data.

Inspection of these distributions reveal the presence of a minimal value kmin that deter-

mines the start of the ‘tail’ used for the modeling. In many cases kmin can be determined

as the value that minimizes the Kolmogorov-Smirnov statistics between the empirical dis-

tributions and the fitted distributions [36].

Due to the large size of our data we directly use the formula AIC = −2 ln L̂+2np for the

Akaike information criterion. Here np is number of parameters in each distribution model

and L̂ is the maximum likelihood of the model (see Appendix B). The Akaike weight wi [37]

for each model is

wi =
exp ((AICmin −AICi)/2)
∑

j

exp ((AICmin − AICj)/2)
, (9)

with the model with the largest Akaike weight being the most likely model.

Although we show in the following plots of the probability distribution functions (with

logarithmic binning) and of the complementary cumulative distribution functions as illustra-

tion, we do not use them directly for parameter estimation. Instead we estimate parameters

from the distribution models with the maximum likelihood method. The maximum likeli-

hood estimators (MLE) for the different parameters are summarized in Appendix B.
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IV. RESULTS

A. Search engine efficiency

Before delving into a detailed analysis of foraging related quantities like step-lengths and

waiting times, we will first briefly characterize in a straightforward way the efficiency of the

different search engines (or of the same search engine in different years) through the clicking

number, i.e. the number of clicks needed before the user ends the query.

Sogou-08 Sogou-11 Yahoo-10

year 2008 2011 2010

search engine provider Sogou Sogou Yahoo

number of valid queries (in millions) 14.6 30.4 53.8

〈Nc〉 1.741 1.433 1.130

max(Nc) 299 23 19

P (Nc > 10) 0.626% 0.000033% 0.00655%

TABLE I: A comparison of the search engine efficiency based on the clicking number Nc. The third

line provides the total number of queries analyzed in our study. As a default the search engines

provide 10 links per page.

From the point of view of a user submitting a query to a search engine, what matters is the

number of links they have to click on before retrieving the needed information. The clicking

number Nc should therefore directly reflect the efficiency of a search engine to provide the

user with the relevant information.

Table I summarizes some of our findings for the clicking number. Inspection of the table

reveals immediately striking differences when comparing Sogou-08 with the other, newer,

sets. Both the average clicking number 〈Nc〉 and the largest clicking number found in the

millions of queries forming the different sets point to an impressive increase of the efficiency

when going from Sogou-08 to the newer sets. The most striking difference is provided by

the probability P (Nc > 10) that more than 10 clicks are needed for accessing the relevant

information. Whereas for Sogou-08 around 0.63% of the queries result in more than 10 clicks

on links provided by the search engine, only a very small number of searches in Sogou-11

and Yahoo-10 result in the inspection of more than 10 links.
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Set model ln L̂ AIC wi most likely model kmin MLE

Nc

Sogou-08

YS −722852 1445707 0.000

PPL 7

α̂ = 3.488

β̂ = 4.280

k̂trans = 39.234

DPL −722912 1445825 0.000

SG −746099 1492200 0.000

CP −1000863 2001728 0.000

DLN −723126 1446255 0.000

PEC −722760 1445524 0.000

PPL −722739 1445484 1.000

Sogou-11

YS −3637855 7275713 0.000

SG 3 λ̂ = 0.855
DPL −3671768 7343538 0.000

SG −3603146 7206293 1.000

CP −3659310 7318621 0.000

Yahoo-10

YS −789652 1579305 0.000

SG 4 λ̂ = 0.732
DPL −794101 1588203 0.000

SG −786042 1572086 1.000

CP −803599 1607199 0.000

rf Sogou-08

YS −1657346 3314695 0.000

PPL 16

α̂ = 2.108

β̂ = 2.948

k̂trans = 139.580

DPL −1657674 3315350 0.000

SG −1734486 3468975 0.000

CP −9745388 19490777 0.000

DPL −1655263 3310530 0.000

PEC −1654553 3309109 0.000

PPL −1654359 3308723 1.000

TABLE II: Model selection using AIC and maximum likelihood estimators for the parameters in

the most likely models of Nc and rf . In the table ln L̂ and AIC are rounded to integers. See the

main text for the meaning of the acronyms.

The distribution CCDF(Nc) shown in Fig. 2 reveals the dramatic differences between the

efficiency (as measured by Nc) of the different search engines. As reported in Table II, we

find using AIC that the probability distribution for Sogou-08 follows a pairwise power law

distribution with the maximum likelihood estimations α̂ = 3.448, β̂ = 4.280, whereas the
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Set model ln L̂ AIC wi most likely model kmin MLE

d

Sogou-08

YS −2090805 4181612 0.000

PPL 10

α̂ = 2.169

β̂ = 3.417

k̂trans = 91

DPL −2091568 4183137 0.000

SG −2187409 4374821 0.000

CP −7645269 15290541 0.000

DLN −2088146 4176295 0.000

PEC −2087035 4174075 0.000

PPL −2085243 4170491 1.000

Sogou-11

YS −22684073 45368149 0.000

SG 1 λ = 0.544
DPL −23284589 46569181 0.000

SG −21326460 42652922 1.000

CP −22894455 45788912 0.000

Yahoo-10

YS −12128059 24256120 0.000

SG 1 λ = 0.540
DPL −12450282 24900567 0.000

SG −11415241 22830484 1.000

CP −12326037 24652076 0.000

din Sogou-08

YS −16506000 33012001 0.000

SG 1 λ = 0.550
DPL −16924868 33849738 0.000

SG −15652590 31305183 1.000

CP −16985431 33970864 0.000

dout Sogou-08

YS −1232283 2464569 0.000

PPL 1

α̂ = 2.353

β̂ = 3.226

k̂trans = 9.000

DPL −1225123 2450249 0.000

SG −1435452 2870906 0.000

CP −1943098 3886197 0.000

DLN −1235756 2471516 0.000

PEC −1223417 2446838 0.000

PPL −1221825 2443655 1.000

TABLE III: Model selection using AIC and maximum likelihood estimators for the parameters in

the most likely model for the step-lengths. See the main text for the meaning of the acronyms.
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FIG. 2: (Color online) Complementary cumulative distribution function of the clicking number

Nc obtained from the different sets. (a) Log-log plot of CCDF(Nc) for Sogou-08 and comparison

with the distributions obtained from three different models, see Table II: power law with expo-

nential cut-off (PEC), exponential model (SG), and pairwise power law (PPL). (b) Linear-log plot

of CCDF(Nc) for Sogou-11 and Yahoo-10. For Sogou-11 the probability distribution displays a

dramatic drop for Nc ≥ 10. The lines indicate an exponential decay.
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transition happens at k̂trans = 39.234. For Sogou-11 and Yahoo-10, however, the distributions

rapidly show an exponential decay. This exponential decay stops at Nc = 10 for Sogou-11,

indicating that with a very few exceptions all queries are finished within 10 clicks. This

discontinuity does not happen in Yahoo-10 which instead shows a smooth behavior. The

jump in Sogou-11 reveals that with a few exceptions users found within the links provided

on the very first page with results the information they were looking for.

One also expects from an efficient search engine that the relevant result is included in the

very first suggested links. Fig. 3 compares for our three data sets the probability distribution

P (rf) where rf is the rank of the final click (i.e. the position of the resource on the semi-

infinite line). We first note that for Yahoo-10 75% of the searches end with a click on the

very first link on the search result page provided by the search engine. For Sogou-11 this

number is 47%, very similar to the 45% of searches that end with a click on the very first

link for Sogou-08. For Sogou-11 and Yahoo-10 almost all resources (99.997% for Sogou-11

and 99.864% for Yahoo-10) are located on the first page with 1 ≤ rf ≤ 10. For these two

cases one also observes large changes between P (rf = 10) and P (rf = 11), illustrating the

fact that only for a negligible number of searches the resource is found for rf > 10. This is

different for Sogou-08 where P (rf > 10) = 3.661% and P (rf > 100) = 0.224%, resulting in

a much smoother shape with a pairwise power-law tail. The probability distribution P (rf)

indicates that for Sogou-11 and Yahoo-10 only a local exploration on the first page is needed

in order to reach the resource. As we will see in the following, this difference yields different

space-time patterns during the searches.

B. Step-lengths and waiting times

In the following analysis we view as a random walk on the semi-infinite line the exploration

by the user of the links provided by the search engine. Focusing on the step-length and

waiting time distributions, we will see that the difference in efficiency noticed in the previous

subsection yields different space-time processes.

A way to distinguish between Brownian-type motion and Lévy movement is to investigate

the probability distribution P (d) of the step-length d, which should display a heavy tail in

the form of a power-law

P (d) ∼ d−α (10)
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FIG. 3: (Color online) (a) Probability distribution P (rf ) where rf is the rank of the link that

is clicked as last in a given search. rf therefore corresponds to the position of the resource on

the semi-infinite line. Large differences can be observed between the tails of Sogou-08 and Sogou-

11. (b) Complementary cumulative distribution function CCDF(rf ) for Sogou-08 as well as the

corresponding distributions obtained from three different models, see Table II: power law with

exponential cut-off (PEC), exponential model (SG), and pairwise power law (PPL).
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FIG. 4: (Color online) Step-length probability distribution functions and (in the inset) comple-

mentary cumulative distribution functions. (a) For Sogou-08 the distributions display a pairwise

power-law tail, whereas (b) for Sogou-11 and Yahoo-10 they decay exponentially, see Table III.

The lines in the inset of panel (a) show the following fitted models: PEC (solid blue line), SG

(dot-dashed red line), and PPL (dashed green line). The solid black line in the inset of panel (b)

represents an exponentially decaying function.
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with 1 < α < 3 for super-diffusive Lévy flights.

Fig. 4 shows the probability distributions for the step-length derived from the data at our

disposal. Focusing first on Sogou-08, our model selection procedure shows that the pairwise

power law model provides a good absolute fit, see Fig. 4a as well as Fig. 5b. From the

maximum likelihood estimation we obtain that the transition between the two power laws

happens at dtrans = 91. The exponent in the first power-law region is given by α = 2.169,

a value that is within the Lévy-flight range 1 < α < 3, i.e. between 10 < d < dtrans we

have a long-range search pattern that is consistent with the power law distribution of a Lévy

flight. This behavior does not persists for the largest values of d. Instead, the exponent

in the second power-law region is β = 3.417, which is outside the Lévy-flight range. This

value guarantees a finite variance for step-lengths and suggests that the very long-range

movements have the properties of normal diffusion. We believe that this change in behavior

around dtrans = 91 is due to the layout of the search engine result pages, since the search

engines used in our study list 10 pages at the bottom of a result page. For Sogou-11 and

Yahoo-10, 99.997% and 99.890% of steps have a length d < 10. The distributions for d < 10

are exponential which points to the overwhelming predominance of local searches where only

a small “area” is explored.

Interestingly, even for Sogou-08 an exponential decay is hidden in the distribution shown

in Fig. 4a. Separating the jumps within a page from those between pages, we discover in

Fig. 5 a more complex behavior. Restricting ourselves to jumps within a given page, where

we denote by din the corresponding step-length, we find for Sogou-08 an exponential decay

of the step-length distribution. The difference between Sogou-08 and the other sets therefore

mainly results from searches where the resource is not readily found, yielding jumps between

different pages with a pairwise power-law probability distribution for the out-of-page step-

length d ≥ 10. As shown in Fig. 5b, the page difference dout of out-of-page jumps still yields

a pairwise power law distribution.

The fact that Sogou-08 yields a switch between a local (i.e. on one page with search

results) Brownian search and a relocation phase that is power law distributed is very remi-

niscent of an intermittent search process that includes Lévy strategies [21, 22]. Intermittent

search processes have been proposed as search strategies in cases where the targets are hidden

[38–40]. They are characterized by switches between two different phases: careful searches

around one location, followed by rapid relocations to some other areas. The careful searches
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FIG. 5: (Color online) (a) Step-length distribution for jumps within a page for Sogou-08. An

exponential decay is observed for local searches, similarly to the distributions encountered for

Sogou-11 and Yahoo-10. (b) Distribution of the page difference for jumps between pages for

Sogou-08. From the model selection follows that these data are described by a pairwise power law

distribution, indicated by the green dashed line (see also Table III).
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are usually described as Brownian searches whereas the relocations are often assumed to be

either ballistic or Lévy distributed. The set-up of search engines queries has many obvious

direct connections with an intermittent search process. This is especially true for Sogou-08

for which we observe relocations over large distances.

Backward Forward

Yahoo-1027% 73%

Sogou-1119% 81%

Sogou-0817% 83%

Turn backward Turn forward

Yahoo-1040% 60%

Sogou-1146% 54%

Sogou-0847% 53%

FIG. 6: (Color online) Upper part: fraction of jumps in the forward and backward directions.

Lower part: fraction of turns that change the direction from forward to backward and of turns

that change the direction from backward to forward.

For any of the processes usually discussed in the context of foraging, one generally assumes

the movement to be unbiased, i.e. that jumps are happening with a direction independent

probability distribution. As we know from our own experience and as shown in Fig. 6 for

the different data sets, this is not the case in online searches, where users have a tendency to

start at the top of a page with research results and proceed to the bottom of the page (i.e. to

move preferentially in one direction, see top of Fig. 6). While there is a clear directionality

in how a user exploits search results, a much smaller bias is observed in the ’turning angles’,

i.e. in the changes of direction from forward to backward and from backward to forward.

On the semi-infinite line, which provides the landscape for online foraging, moving for-

ward usually means exploring new results, while moving backwards often means revisiting

previously viewed results. The bias of foraging means that there is much more exploration

of new results than revisitation of already viewed ones. Meanwhile, since most of the initial

movements are forward when users start to view results from a search, the much weaker bias

in turning angles indicates that a revisitation is usually followed by another exploration.

Other differences between online searches and models for foraging emerge when consider-

16



10
0

10
1

10
2

10
3

10
4

10
5

τ

10
-9

10
-6

10
-3

P(
τ)

Sogou-08
Sogou-11
Yahoo-10

10
2

10
4

10
-4

10
-2

10
0

C
C

D
F(

τ)

FIG. 7: (Color online) Waiting time distributions P (τ) for the different sets, with τ measured in

seconds. For all three cases the distribution exhibits a power-law tail, with an exponent around

1.9, followed by an exponential cut-off. The different sets have different upper limits for the waiting

times: one day for Sogou-08 and Sogou-11 and one hour for Yahoo-10. Inset: the corresponding

complementary cumulative distribution functions and the fits (solid and dashed lines) obtained

from power law models with exponential cut-offs.

ing the probability distribution P (τ) of the waiting time τ , i.e. the time elapsed between two

consecutive clicks on links provided by the search engine. The time between two clicks on

the links provided by the search engine is mainly the time spent by the user viewing a web

site. The average time spent on selecting the next link on the search result pages is indeed

small compared to the average time spent on a selected web site. Inspection of Fig. 7 reveals

that P (τ) is well modeled by a power law distribution with exponential cut-off, see inset.

This is especially true for Yahoo-10 where our model selection indeed finds that a power law

distribution with exponential cut-off provides the best fit. For Sogou-08 and Sogou-11 AIC

yields the log-normal distribution as the most probable one, but the log-normal distribution

does not at all capture the behavior for large τ , which instead is well described by a power

law distribution with exponential cut-off, see the black lines in the inset of Fig. 7. This

exponential cut-off in P (τ) is due to upper limits for the waiting time set by the session

expiration time (one hour for Yahoo-10 and one day for Sogou-08 and Sogou-11).
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C. Mean square displacement

For Brownian motion and Lévy flights the mean square displacement shows a character-

istic behavior, increasing linearly with the number of jumps for the first case, whereas for

the second case a super-diffusive behavior is expected, with a power-law increase where the

exponent is larger than one.

Regarding a query again as a motion along the semi-infinite line where the rank of a click

r corresponds to the position whereas the clicking order n counts the number of jumps and

therefore serves as a proxy for “time”, we can calculate the mean square displacement as

σ(n) = 〈(r(n)− r(1))2〉 (11)

where r(1) is the rank of the first clicked result. In (11) the average is over the different

trajectories along the semi-infinite line.

Fig. 8 shows for the different sets the variation of the mean square displacement with

increasing clicking order n. For Sogou-08, see Fig. 8a, we do find for n ≤ 30 the expected

super-diffusive behavior, σ(n) ∼ na, with an exponent a ≈ 1.95. For Sogou-11 and Yahoo-

10 reliable data are only available for small values of n due to the fact that the resource is

usually found after only a few clicks. For n < 10 we find for Sogou-11 an exponent a = 0.92,

whereas for Yahoo-10 the value of the exponent is a = 0.75. These values, which indicate a

slight sub-diffusive behavior, are rather close to the value a = 1 of normal diffusion.

As we know from the click-through logs the time elapsed between any two consecutive

clicks, we can also calculate the mean square displacement as a function of the real time

measured since the very first click:

σ(t) = 〈(r(t)− r0))
2〉 (12)

where r0 is the rank of the first click at time t = 0. We know from Fig. 7 that for all three

sets the distributions of waiting times, which are composed by the times spent on selecting

the next link on the search result pages and the times spent viewing the previously selected

website, are rather complicated. This will of course impact the time dependence of σ(t).

Our result for Sogou-08 shown in Fig. 9a indicates that for that case the time-dependent

mean square displacement varies in the time interval 100 s < t < 2000 s like a power law

with an exponent close to 1.30. For Sogou-11 and Yahoo-10, however, σ(t) roughly varies

logarithmically with time in the interval 10 s < t < 500 s, see Fig. 9b.
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FIG. 8: (Color online) Mean square displacement σ(n) as a function of the clicking order n. (a)

A super-diffusive behavior is observed for Sogou-08. (b) For Sogou-11 and Yahoo-10 a slightly

sub-diffusive behavior is revealed by σ(n).

D. Entropy

The differences between the different sets can also be highlighted through the study

of time-dependent entropies. We can for example start from the conditional probability

P (d|t) = P (t, d)/P (t), which is the probability that the step-length is d given that the jump
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FIG. 9: (Color online) Mean square displacement σ(t) as a function of time t (measured in seconds)

elapsed since the very first click on a link provided by the search engine. Whereas for Sogou-08 a

power law with an exponent close to 1.30 is observed in the time interval 100 s < t < 2000 s, for

Sogou-11 and Yahoo-10 σ(t) is found to vary logarithmically with time for 10 s < t < 500 s.

takes place at time t. Here P (t, d) is the joint probability of the time t elapsed since the

first click and the step-length d, whereas P (t) is the probability that the event happens at
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FIG. 10: (Color online) Joint probability P (t, d) for Sogou-08 (left panel), Sogou-11 (middle panel),

and Yahoo-10 (right panel). Note the sharp transition at d = 10 for Sogou-11 and Yahoo-10, due

to the rather few jumps between different pages. t is the time measured in seconds since the first

click on a link and d is the step-length between two consecutive clicks.

time t. This allows us to define the time-dependent entropy

Sd(t) = −
∞
∑

d=1

P (d|t) lnP (d|t) (13)

We could also start from a different conditional probability distribution, e.g. P (d|n) where

n is the clicking order,

Sd(n) = −
∞
∑

d=1

P (d|n) lnP (d|n) . (14)

Fig. 10 compares the joint probabilities P (t, d) for the different sets. We note again

that for Sogou-11 and Yahoo-10 almost all displacements are local with d < 10, which is

reflected by the very low or even vanishing joint probability P (t, d) for d ≥ 10 for these cases.

We also note that for d ≤ 9 the probabilities are very similar for the different sets, which

indicates that the properties of local searches are rather set independent. The probability

for Sogou-08 reveals the emergence and distribution of long-range relocations. Finally, for

all cases P (t, d) changes as a function of time, as expected for a search process that is taking

place far from equilibrium.

The time dependence of the entropy Sd(t) defined in Eq. (13) is shown in Fig. 11a. We

first note that for all three sets the entropy shows a strong increase at early times. For Sogou-

11 and Yahoo-10, characterized by mostly local searches on the first page with links, this

increase rapidly weakens and Sd reaches a plateau for times t > 50 seconds. For Sogou-08,

where the motion is formed by a combination of local searches and long relocation jumps,

the entropy keeps increasing up to t ≈ 2000 seconds before reaching a plateau. Sd(t) is
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FIG. 11: (Color online) (a) Time dependence of the entropy Sd(t) for the different sets. The early

time regime is characterized by a strong increase of Sd(t). For Sogou-11 and Yahoo-10 a plateau is

reached much earlier than for Sogou-08 (of the order of a minute for Sogou-11 and Yahoo-10 and

of the order of an hour for Sogou-08). For Sogou-08 the increase of the entropy at intermediate

times is due to the predominance of long relocation jumps in this regime. (b) Entropy Sd(n) as a

function of the clicking order n. For Sogou-08, Sd(n) reaches a plateau for n ≥ 11.
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therefore another quantity that allows to easily distinguish between Brownian-like searches

and searches that are characterized by power law distributions.

Fig. 11b shows the entropy Sd(n) defined in Eq. (14). For Sogou-08, Sd(n), after an

initial increase for small n, rapidly reaches a plateau for n ≥ 11. The process is therefore

stationary for n ≥ 11. In contrast to this, for Sogou-11 and Yahoo-10 the entropy does not

reach a well defined plateau, and the processes therefore do not reach a stationary state.

E. Correlations

Correlation coefficients allow us to gain additional insights into the relationships between

different quantities (see Appendix C for the definitions of the correlation coefficients dis-

cussed in the following). This is of interest as Brownian motions and Lévy flights, which are

commonly used to model human dynamics, assume that space and time are uncorrelated

and that the random walks are memoryless. Studying correlation coefficients will allow us

to see to what extend these assumptions are fulfilled in human online search processes.

Well suited correlation coefficients for our purpose are Kendall’s tau [42], τK , and Spear-

man’s rho [43], ρS, as these two non-parametric measures are distribution-free and can

handle power-law distributed quantities. Both coefficients are rank-based and measure the

correspondence of two series of ordinal numbers. Series for waiting times and displacements

are of course readily obtained from the original search engine click-through logs.

Sogou-08 Sogou-11 Yahoo-10

τK(d, τ) 0.1273 0.0914 0.0878

ρS(d, τ) 0.1721 0.1224 0.1175

TABLE IV: Correlations between step-length and waiting time for the different data sets. The

positive correlation coefficients indicate that for human online search processes spatial and temporal

activities are not independent, with stronger correlations emerging for Sogou-08 than for Sogou-11

and Yahoo-10.

Table IV shows our results for the correlations between step-length d and waiting time

τ . Both Kendall’s tau and Spearman’s rho provide correlation coefficients close to or larger

than 0.10, indicating a weak positive correlation between step-length and waiting time.
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correlation Sogou-08

m τK ({di}, {di+m}) ρs ({di}, {di+m})

1 0.2763 0.3511

2 0.2761 0.3496

3 0.2653 0.3358

4 0.2608 0.3297

5 0.2568 0.3243

6 0.2519 0.3176

7 0.2509 0.3157

8 0.2506 0.3149

9 0.2476 0.3105

10 0.2477 0.3102

20 0.2433 0.3001

30 0.2343 0.2852

40 0.2321 0.2784

50 0.2227 0.2638

TABLE V: Correlations between successive displacements. The positive correlation coefficients

indicate the presence of long-term memory effects in human online searches. We only calculated

correlations for {di} with i ≥ 11.

We also note that the correlations for Sogou-08 are larger than for Sogou-11 and Yahoo-

10, illustrating again that different mechanisms underlie the different click-through logs.

The positive correlation indicates that the assumption of independence between spatial and

temporal activities, valid for both Brownian motion and Lévy flights, does not hold in a

strict sense for human online search processes.

We can also check whether a process is memory-less or not. In order to do so we define for

every step-length series {di} = {d1, d2, · · · } sets {di+m} = {d1+m, d2+m, · · · } with m > 0 and

calculate the correlation coefficient τK({di} , {di+m}) and ρS({di} , {di+m}). For a completely

memory-less process these two coefficients should be zero. As we have previously seen that

Sd(n) exhibits a plateau, characteristic of a stationary process, only for Sogou-08 and n ≥ 11,

we performed this analysis only for Sogou-08 and series {di} with di ≥ 11. The results shown
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in Table V and Fig. 12 reveal positive correlations even for large values of m. Long-term

memory effects therefore permeate online human searches.
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FIG. 12: (Color online) τK and ρS as a function ofm for Sogou-08, see main text. These correlations

decrease for increasing m but remain positive even for large m, revealing the presence of long-term

memory effects in online human searches.

V. DISCUSSION AND CONCLUSION

Online activities are an integral part of our daily lives. In many cases these activities

involve search queries submitted to one of the search engines. In this paper we propose to

view the exploration of the results (i.e. links) provided by the search engine as a foraging

process on a semi-infinite line where the rank of a link corresponds to a coordinate on that

line. Using a variety of space- and time-dependent quantities we investigate three different

publicly available click-through logs.

Our study reveals a sharp contrast between the oldest log and the two logs obtained

more recently. For the two newer sets almost all queries can be understood as local searches

restricted to a single page. These local searches have many characteristics of a Brownian

random walk, as for example an exponential decay of the step-length distribution or a mean-

square displacement that increases almost linearly with the clicking order. However, there
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are also marked differences, as a power-law behavior of the waiting time distribution or the

directionality of the jumps along the semi-infinite line. A very interesting behavior emerges

for the oldest data set, where both local searches as well as long-range power-law distributed

jumps are found. This behavior is reminiscent of intermittent processes with Lévy strategies

that have been proposed to describe searches with hidden targets. Interestingly, the waiting

time distributions, i.e. the distributions of the times elapsed between successive clicks,

are very similar for all three click-through logs and reveal a power-law behavior with an

exponential cut-off as that encountered in other areas of human activities.

The different properties of the different data sets point to the evolution of the search

engines over the years. Until recently search engines were of limited efficiency and as a

result a sizeable number of queries ended up with the user jumping from one page with

links to another. These searches are therefore best characterized as a combination of local

explorations and power law distributed relocations. The more recent logs reveal an increased

efficiency of the search engines where the overwhelming part of the queries yield only local

searches on the first page of results. These local searches have some characteristics of

Brownian motion.

The online search behavior clearly changes as a function of the efficiency of a search

engine. Whereas efficient search engines result in an overwhelmingly large number of local

searches, earlier engines prompted searches where local explorations and long-range, power

law distributed, relocations processes are combined. This scenario shows many common

features with those of intermittent search processes which have been proposed as search

strategies for finding hidden resources.

The description of online searches as foraging processes yields some interesting insights,

but our results also reveal notable deviations from the simple models used to describe forag-

ing processes. It remains a challenge to come up with a more realistic foraging model that is

capable of reproducing the results we obtain from our analysis of the different click-through

logs.
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Appendix A: Data description and preparation

For our study we analyzed three different click-through data sets. In the following we

briefly describe these sets as well as how we prepared the data and used them in our study.

Sogou-08 and Sogou-11 refer to the data sets Search Engine Click-through Log Version

2008 and Search Engine Click-through Log Version 2011 [44] which are parts of the “Sogou

Lab Data.” These two data sets provide millions of users’ search queries and click-through

activities on Sogou (www.sogou.com), which is one of the largest Chinese search engines.

Sogou-08 has been collected in June 2008, whereas Sogou-11 contains queries submitted

from 12/30/2011 to 01/01/2012. For Sogou-08 respectively Sogou-11 we get 51, 537, 388

respectively 43, 545, 440 lines of record, each corresponding to an individual click and

consisting of the following components [44]:

Time of click User ID User query Ranking of clicked result Order of click URL of clicked result

where “click” refers to the event of the user clicking on a link on the search engine result

pages, whereas “time” is the calendar time of the click event.

Yahoo (YahooL18 [45]) is the data set Annonymized Yahoo! Search Logs with Relevance

Judgments version 1.0 provided by Yahoo! Labs [46] as part of the Yahoo! Webscope

program [47] (“Approval for Access” granted October 7, 2013). It provides users’ search

click-through logs on Yahoo Search (search.yahoo.com) collected in July 2010. Yahoo-10

contains 80, 779, 266 lines, where each line corresponds to an individual search and contains

the following information (separated by “\t”) [45]:

Query Cookie Timestamp List of URLs Number of “clicks” List of time and click position/type pairs

where the “List of URLs” is the list of weblinks on the first result page. “Click” refers to

any type of click on the result pages, including clicking on a search result, clicking at the top

of a result page (unspecified; this can include clicking on the “also-try” button, on a spell

correction suggestion, on an advertisement located at the top of the page, etc.), clicking at

the bottom of a result page (unspecified, this can include clicking on next page button, on

the bottom “also-try” button, on an advertisement located at the bottom of the page, etc.).

For the “time and click position/type pairs”, the “time” is the time (in seconds) since the
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beginning of the search. Since we do not know the specific activities done when clicking at

the top or the bottom of a result page, we ignore the clicks at the top of result pages but

assume that a click at the bottom of a result page is on the next page button.

From all these sets we removed entries with missing values for the first click as well as

(for Sogou-08) unusual cases where a click was on a link of rank 1000 or above. For entries

with successive clicks on the same link, we only kept the first click and jumped to the next

click on a different link. The total number of queries retained after this procedure are listed

in Table I.

After this data cleaning all clicks belonging to the same search were grouped together

and the corresponding (time, rank) pairs were calculated based on the order of the clicks.

Time is the time passed in seconds since the click on the first result. In this way we end up

for each search with a series of (time, rank) pairs

(t1, r1) (t2, r2) (t3, r3) (t4, r4) · · ·

with t1 = 0. These series were then used as the starting point for our study.

Appendix B: Maximum likelihood estimators

Let us consider first the discrete power-law distribution

P (k) =
k−α

ζ(α, kmin)
. (B1)

For a given data set {ki}, we have the likelihood

L(α|k) =

n
∏

i=1

P (ki) =

(

n
∏

i=1

ki

)−α

ζ (α, kmin)
n , (B2)

where n is the number of data points. The log-likelihood is then given by

lnL(α|k) = −α
n
∑

i=1

ln ki − n ln ζ(α, kmin) , (B3)

and the maximum likelihood estimator (MLE) for α is obtained numerically from [48]

α̂ = argmax
α

lnL(α|k) = argmax
α

(

−α
n
∑

i=1

ln ki − n ln ζ(α, kmin)

)

. (B4)
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We used the L-BFGS-B method for parameter optimization, see for example Ref. [49].

For the “shifted” geometric distribution

P (k) = p(1− p)k−kmin, k ≥ kmin (B5)

the likelihood is given by

L(p|k) =
n
∏

i=1

P (ki) = (1− p)

n∑

i=1

ki−nkmin

pn, (B6)

where n is again the size of the data. The maximum likelihood estimator for p is

p̂ =
n

n
∑

i=1

ki − nkmin + n
=

1

k̄ − (kmin − 1)
(B7)

where k̄ is the mean of ki’s. Finally, for the exponential form

P (k) =
(

1− e−λ
)

e−λ(k−kmin), (B8)

we obtain

λ̂ = − ln(1− p̂) = − ln

(

1−
1

k̄ − (kmin − 1)

)

, (B9)

when k̄ > kmin, since λ = − ln(1− p) and MLE is invariant to this transformation.

The MLE for parameters in the other distributions are obtained in similar ways. For the

Yule-Simon distribution the MLE for the shape parameter α is

α̂ = argmax
α

(

n ln(α− 1) + n ln Γ (kmin + α + 1)−

n
∑

i=1

ln Γ (ki + α)

)

, (B10)

whereas for the conditional Poisson distribution the MLE for µ is

µ̂ = argmax
µ

(

−nµ − n ln (1− Fµ(kmin − 1)) +

n
∑

i=1

ki lnµ

)

, (B11)

where Fµ(·) is the cumulative distribution function of a Poisson distribution with rate pa-

rameter µ.

Finally for the distributions with more than one parameter, one has:

power-law with exponential cut-off

{α̂, λ̂} = argmax
α,λ

(

−n ln

(

Liα(e
−λ)−

kmin−1
∑

i=1

i−αe−λi

)

− α
n
∑

i=1

ln ki − λ
n
∑

i=1

ki

)

; (B12)
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discrete log-normal

{µ̂, σ̂} = argmax
µ,σ

(

n
∑

i=1

ln

(

Φ

(

ln(ki + 1)− µ

σ

)

− Φ

(

ln(ki)− µ

σ

))

− n ln

(

1− Φ

(

ln(kmin)− µ

σ

))

)

;

(B13)

pairwise power law

{α̂, β̂, k̂trans} = arg max
α,β,ktrans



n lnC − α

n
∑

i=1

ln ki − (β − α)
∑

ki≥⌈ktrans⌉

(ln ki − ln ktrans)



 .

(B14)

Appendix C: Correlation coefficients

1. Kendall’s tau

Kendall’s tau provides a measure of rank correlation. Assuming a set of observations

(x1, y1), (x2, y2), · · · of two joint random variables x and y (step-length and waiting time,

for example), Kendall’s tau compares the number P of concordant pairs with the number

Q of discordant pairs:

τK(x, y) =
P −Q

P +Q
. (C1)

Two pairs (xl, yl) and (xm, ym) are concordant if (1) xl < xm and yl < ym or (2) xl > xm

and yl > ym. If, however, xl < xm and yl > ym or xl > xm and yl < ym, then they are

discordant. In the case of data with tied ranks (which is the case for our series), Kendall’s

tau can be calculated as

τK(x, y) =

∑

i<j

sgn [(xi − xj)(yi − yj)]

√

1

2
n(n− 1)− U

√

1

2
n(n− 1)− V

(C2)

where sgn is the signum function, whereas U and V are the numbers of x-tied pairs and

y-tied pairs.
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2. Spearman’s rho

Spearman’s rho is Pearson’s correlation coefficient between ranked variables. Denoting

by ui the rank of xi and by vi the rank of yi, then Spearman’s rho can be expresses as:

ρS(x, y) =

n
∑

i=1

(ui − ū)(vi − v̄)

√

n
∑

i=1

(ui − ū)2

√

n
∑

i=1

(vi − v̄)2
(C3)

where ū =
1

n

n
∑

i=1

ui and v̄ =
1

n

n
∑

i=1

vi. While Spearman’s rho and Kendall’s tau usually yield

different numbers, they work the same way.
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