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Yiğit Subaşı
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Abstract

We show how the classical action, an adiabatic invariant, can be preserved under non-adiabatic

conditions. Specifically, for a time-dependent Hamiltonian H = p2/2m + U(q, t) in one degree of

freedom, and for an arbitrary choice of action I0, we construct a “fast-forward” potential energy

function VFF(q, t) that, when added to H, guides all trajectories with initial action I0 to end with

the same value of action. We use this result to construct a local dynamical invariant J(q, p, t) whose

value remains constant along these trajectories. We illustrate our results with numerical simula-

tions. Finally, we sketch how our classical results may be used to design approximate quantum

shortcuts to adiabaticity.
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For a classical system in one degree of freedom, the action variable I =
∮
p · dq is an

adiabatic invariant [1]. As an example, when the length of a pendulum is slowly varied, both

its energy E and frequency of oscillation ω change with time, but their ratio E/ω, which is

proportional to the action, remains constant. The adiabatic invariant can be visualized in

phase space by imagining a collection of trajectories evolving under a slowly time-dependent

Hamiltonian, H. If all initial conditions are sampled from a single energy shell (that is, a

level curve) of H(q, p, 0), then a snapshot of these trajectories at a later time t will find

them located on a single energy shell of H(q, p, t), with the same action as the initial shell,

as shown in Fig. 1.

In this paper we pose and answer the question: how can the adiabatic invariant be

preserved under non-adiabatic driving conditions? We consider a Hamiltonian H(q, p, t) =

p2/2m + U(q, t) that varies at an arbitrary rate. Under the evolution generated by this

Hamiltonian, the action I(q, p, t) does not remain constant: if at time t = 0 we launch

a collection of trajectories, each with the same initial action I0, then at later times their

actions will generally differ from one another, and from the initial action. Thus under non-

adiabatic driving, trajectories wander away from the energy shell associated with the action

I0. But suppose we want these trajectories to “return home” at a specified later time τ , i.e.

we demand that the action of each trajectory be equal to I0 at t = τ , given that its action

had this value at t = 0. In this paper we solve for the additional forces that are required

to steer the trajectories back to the action I0 at t = τ . More precisely, we show how to

construct an auxiliary “fast-forward” potential VFF(q, t) with the following property. Under
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FIG. 1. Illustration of the classical adiabatic invariant. Fifty trajectories evolving under a slowly

varying Hamiltonian are shown at an initial time and a later time. The closed curves are instanta-

neous energy shells – level curves of H – with identical values of the action I =
∮
p ·dq. Trajectories

were generated using H(q, p, t) given by Eq. 22, setting τ = 10.0 to achieve slow driving.
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the dynamics generated by the Hamiltonian HFF = H + VFF, all trajectories that begin with

action I0 at t = 0 will end the same action, I0, at t = τ . Throughout this paper, the action

I(q, p, t) is defined with respect to the original Hamiltonian H(q, p, t).

We were led to this topic through our interest in quantum shortcuts to adiabaticity [2],

and (as we briefly discuss later) we expect our results will prove useful in the design of such

shortcuts for guiding a quantum system to a desired energy eigenstate. The primary focus of

this paper, however, is a self-contained problem of general theoretical interest in elementary

classical dynamics, for which we obtain a simple and appealing solution (Eq. 10).

Consider a classical system in one degree of freedom, described by a kinetic-plus-potential

Hamiltonian

H(z, t) =
p2

2m
+ U(q, t) , z = (q, p) (1)

H varies with time during the interval 0 ≤ t ≤ τ , but is constant outside this interval. We

assume that H is twice continuously differentiable with respect to time, hence both ∂H/∂t

and ∂2H/∂t2 vanish at t = 0 and t = τ . In Appendix A, we discuss how this assumption

can be relaxed.

The term energy shell will denote a level curve of H(z, t), that is the set of all points

where H takes on a particular value, E, at time t. We will assume that each energy shell

forms a simple, closed loop in phase space. The function

Ω(E, t) =

∫
dz θ [E −H(z, t)] =

∮
E

p · dq (2)

is the volume of phase space enclosed by the energy shell E of H(z, t), and the action,

I(z, t) = Ω(H(z, t), t), (3)

is the volume enclosed by the energy shell that contains the point z. Eq. 3 implies

{I,H} ≡ ∂I

∂q

∂H

∂p
− ∂I

∂p

∂H

∂q
= 0 (4)

which will prove useful.

Let us choose an arbitrary action value I0 > 0, and define the adiabatic energy Ē(t) by
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FIG. 2. The region of phase space enclosed by the adiabatic energy shell E(t) is divided by line

segments at {qn(t)} into vertical strips of equal phase space volume. The motion of these lines is

described by velocity and acceleration fields v(q, t) and a(q, t).

the condition

Ω(Ē(t), t) = I0 (5)

The adiabatic energy shell E(t) = {z|H(z, t) = Ē(t)} is the level curve of H(z, t) with the

value Ē(t), enclosing a phase space volume I0. Hence I(z, t) = I0 for all z ∈ E(t).

At t = 0, the adiabatic energy shell E(0) defines a set of initial conditions that form a

closed loop in phase space. As trajectories evolve under H(z, t) from these initial conditions,

this loop evolves in time,

L(t) = {z = zt(z0)|z0 ∈ E(0)} (6)

where zt(z0) indicates the trajectory that evolves under H(z, t) from initial conditions z0. If

H varies slowly with time, then these trajectories remain close to the adiabatic energy shell,

but under more general conditions the loop L(t) strays away from E(t) for t > 0.

Now consider an auxiliary potential VFF(q, t), let zFFt (z0) indicate evolution under HFF =

H + VFF, and consider the loop

LFF(t) = {z = zFFt (z0)|z0 ∈ E(0)} (7)

that evolves under HFF from the initial conditions defined by E(0). Our aim is to construct

VFF(q, t) such that LFF(τ) = E(τ): we want the auxiliary potential to guide trajectories

faithfully back to the adiabatic energy shell at the final time t = τ . The notation FF, for

“fast-forward” [3–10], indicates that VFF drives the system rapidly to a destination that it

would otherwise have reached during a slow process. We now describe how to construct a

potential VFF(q, t) with this property.
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Imagine a set of line segments at locations q1(t), · · · qN−1(t), that divide the region of

phase space enclosed by the adiabatic energy shell E(t) into N � 1 narrow strips of equal

phase space volume; see Fig. 2. Let q0(t) and qN(t) denote the left and right turning points

of the adiabatic energy shell. In the limit N →∞, the parametric time-dependence of these

line segments defines a velocity field v(q, t) and an acceleration field a(q, t):

dqn
dt

= v(qn, t) ,
d2qn
dt2

= a(qn, t) =
∂v

∂q
v +

∂v

∂t
(8)

Since ∂H/∂t = ∂2H/∂t2 = 0 at t = 0 and t = τ (see comments following Eq. 1) we have

v(q, 0) = v(q, τ) = 0 , a(q, 0) = a(q, τ) = 0 (9)

We now claim that the desired fast-forward potential satisfies

−∂VFF
∂q

= ma (10a)

therefore it is given by 1

VFF(q, t) = −
∫ q

q0(t)

dq′ma(q′, t) (10b)

By Eq. 9, VFF(q, t) vanishes at the start and end of the process. Since v(q, t) and a(q, t)

depend on the value I0, different choices of I0 generally produce different fast-forward poten-

tials VFF(q, t). We now show that an auxiliary potential given by Eq. 10 will indeed produce

the desired result, for an arbitrary but fixed I0.

We begin by solving for the velocity field v(q, t). The volume of the region of phase space

that is enclosed by the energy shell, and is located to the left of a point q ∈ [q0, qN ], is given

by

S(q, t) = 2

∫ q

q0(t)

dq′ p̄(q′, t) (11)

where p̄(q, t) =
[
2m(Ē − U)

]1/2
specifies the upper branch of the adiabatic energy shell.

By construction, v(qn(t), t) is the velocity of a line segment qn(t) that evolves at fixed S:

(d/dt)S(qn(t), t) = 0. Hence

v(q, t) =
dq

dt

∣∣∣∣
S

= −∂tS
∂qS

(12)

1 The choice of setting the lower bound of integration at q0(t) is arbitrary. A different choice would modify

VFF(q, t) by an additive function φ(t) having no effect on the dynamics.

6



Now consider a point in phase space, (qn(t), pn(t)), attached to the top of the n’th line

segment: pn = p̄(qn, t) (see Fig. 2). As the shape of the energy shell and the locations of

the line segments vary parametrically with time, this point (qn, pn) moves in phase space,

“surfing” the upper branch of the energy shell. This motion is described by the equations

q̇n = v(qn, t) , ṗn = −pnv′(qn, t) (13)

where the equation for ṗn is obtained by demanding that the phase space volume of the

strip between neighboring vertical lines, δSn ≡ 2pn(qn+1 − qn), remain constant. In Eq. 13

and throughout the paper, dots and primes denotes derivatives with respect to t and q,

respectively. Eq. 13 also describes the motion of a point attached to the bottom of one of

the vertical lines. We easily verify that Eq. 13 is generated by a Hamiltonian

K(q, p, t) = pv(q, t) (14)

Therefore if we start with initial conditions distributed over the energy shell E(0), and we

evolve trajectories from these initial conditions under the Hamiltonian K(q, p, t), then these

trajectories cling to the evolving adiabatic energy shell, with each trajectory attached to

the upper or lower end of one of the vertical line segments. Hence the flow generated by K

preserves the adiabatic energy shell, in the following sense: for each time step δt, this flow

maps points on E(t) to points on E(t+ δt). This implies that the action I(z, t) is conserved

under this flow, for those trajectories with action I0. Therefore we have:

0 =
∂I

∂t
+
∂I

∂q
q̇ +

∂I

∂p
ṗ =

∂I

∂t
+ {I,K} ∀ z ∈ E(t) (15)

Next, we construct a Hamiltonian G(z, t) ≡ H +K, which generates equations of motion

q̇ =
p

m
+ v(q, t) , ṗ = −U ′(q, t)− pv′(q, t) (16)

Along a trajectory z(t) obeying these dynamics, we have

İ =
d

dt
I(z(t), t) =

∂I

∂t
+ {I,H}+ {I,K} (17)
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Eqs. 4, 15 and 17 imply that İ = 0 for all z ∈ E(t). Thus the flow generated by G = H +K

preserves the adiabatic energy shell. This is easily understood: with each time step δt, the

term K(z, t) generates a flow that maps E(t) onto E(t+ δt) while the term H(z, t) generates

flow parallel to the adiabatic energy shell. As a consistency check, we can verify directly

from Hamilton’s equations that the flow generated by G preserves the adiabatic energy shell

(see Appendix B).

To this point, we have constructed a Hamiltonian G = H +K that generates trajectories

which cling to the adiabatic energy shell E(t). Along these trajectories, I(z, t) remains

constant. We now introduce a change of variables that effectively transforms K(z, t) into

the potential energy function VFF(q, t) that we seek.

Consider the evolution of the observables

Q(q, p, t) = q , P (q, p, t) = p+mv(q, t) (18)

along a trajectory that evolves under Eq. 16. By direct substitution we get

dQ

dt
=
P

m
,

dP

dt
= −U ′(Q, t) +ma(Q, t) (19)

using Eq. 8. Eq. 19 is generated by the Hamiltonian

HFF(Z, t) = H(Z, t) + VFF(Q, t) (20)

where Z = (Q,P ) and VFF satisfies Eq. 10. Thus Eq. 18 defines a time-dependent transfor-

mationMt : z → Z, which maps any trajectory z(t) evolving under G(z, t) to a counterpart

trajectory Z(t) evolving under HFF(Z, t). Now consider specifically a trajectory z(t) that

evolves, under G, from initial conditions on the adiabatic energy shell E(0). As we have al-

ready seen, this trajectory remains on the adiabatic energy shell E(t) for all times t ∈ [0, τ ].

Under the mapping Mt, its image Z(t) (which evolves under HFF) is displaced along the

momentum axis by an amount mv(q, t) (Eq. 18). By Eq. 9, Z(t) begins and ends on the

adiabatic energy shell: Z(0) ∈ E(0), Z(τ) ∈ E(τ). This is precisely the behavior we desired

to generate, which concludes our proof.

In Eq. 7 we used LFF(t) to denote a loop in phase space evolving under HFF. The results
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of the previous paragraph can be written compactly as follows:

Mt : E(t)→ LFF(t) (21)

At any time t, LFF(t) is the image of E(t) under the transformation defined by Eq. 18 (see

Fig. 4 below). This result implies that the function J(q, p, t) ≡ I(q, p − mv(q, t), t) is a

local dynamical invariant. That is, if a trajectory z(t) is launched from the energy shell

E(0) and then evolves under HFF, then the value of J is conserved along this trajectory:

J(z(t), t) = I0. For consistency, we can verify directly from Hamilton’s equations that

dJ/dt = 0 for any point z ∈ LFF (see Appendix C).

To illustrate our results, we chose the dimensionless Hamiltonian

H(z, t) =
p2

2
+ q4 − 16q2 + α(t)q (22a)

with

α(t) = 4 cos(πt/τ)[5− cos(2πt/τ)] (22b)

This Hamiltonian describes a particle in a double-well potential, with a linear contribution

whose slope α(t) evolves from +16 at t = 0, to −16 at t = τ , with α̇ = α̈ = 0 at initial and

final times. As illustrated in Fig. 1, when τ = 10.0 the driving is sufficiently slow for the

adiabatic invariant to be conserved with high accuracy. For the simulations described in the

following paragraph, we set τ = 1.0 to obtain non-adiabatic driving.

We considered an initial adiabatic energy shell E(0) with energy Ē(0) = 50.0, which

corresponds to I0 = 214.035. We numerically determined the fields v(q, t) and a(q, t) and

constructed VFF(q, t) according to Eq. 10. We then generated 50 initial conditions on the

energy shell E(0), shown in Fig. 3(a), and we performed two sets of simulations. In the first

set, trajectories were evolved from these initial conditions under H(z, t). In the second set,

trajectories were evolved from the same initial conditions under the Hamiltonian HFF =

H + VFF. In the absence of the fast-forward potential VFF, the trajectories belonging to the

first set have final actions I(z, τ) that span a range of values, as seen in Fig. 3(b). By contrast,

the addition of VFF guides the second set of trajectories back to the adiabatic energy shell

E(τ), where each trajectory ends with I(z, τ) = I0; see Fig. 3(c). Note, however, that while

the initial conditions in Fig. 3(a) are spaced uniformly with respect to the microcanonical
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FIG. 3. Initial (a) and final (b,c) conditions for trajectories launched from a single energy shell

E(0). The trajectories in panel (b) evolved under H(z, t) (Eq. 22), while those in panel (c) evolved

under HFF = H + VFF, with τ = 1.0. The solid black curves show the adiabatic energy shell E(t)

at initial and final times.
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FIG. 4. A snapshot, at t = τ/2, of 50 trajectories evolving under HFF(z, t) using a rapid protocol,

with τ = 0.2 (see text). The closed black loop is the adiabatic energy shell E(t), and the red loop

above it is constructed by displacing each point on the lower loop by an amount mv(q, t) along the

p-axis. As predicted by Eq. 21, the trajectories coincide with the red loop.

measure, this is not the case for the final conditions in Fig. 3(c). As discussed in the

Appendix D, this non-uniformity is due to the fact that VFF(q, t) depends on the choice of

I0.

We also performed simulations with a shorter duration, τ = 0.2. After constructing

VFF(q, t) for this faster protocol, we simulated 50 trajectories evolving under HFF = H+VFF,

using the initial conditions in Fig. 3(a). Fig. 4 depicts a snapshot of these trajectories at

t = τ/2. The two closed curves show the adiabatic energy shell E(t) and its image under

the mapping p → p + v(q, t) (see Eq. 18). This figure confirms Eq. 21: the trajectories

evolving under HFF = H + VFF are located on a loop LFF(t) that is obtained by “shearing”

the instantaneous energy shell E(t) along the momentum axis, by an amount mv(q, t).

For so-called scale-invariant driving [11], the time-dependence of U(q, t) is described by
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scaling and translation parameters γ(t) and f(t):

U(q, t) =
1

γ2
U0

(
q − f
γ

)
(23)

We then obtain v(q, t) = (γ̇/γ)(q − f) + ḟ and

VFF(q, t) = −m
2

γ̈

γ
(q − f)2 −mf̈q (24)

which does not depend on I0. [11] In this rather special case, every trajectory evolving under

HFF returns to its adiabatic energy shell at t = τ , J(z, t) is a global dynamical invariant

– it is the Lewis-Riesenfeld invariant [12, 13] – and microcanonical initial distributions are

mapped to microcanonical final distributions.

The problem that we have studied has a quantum analogue, introduced by Masuda and

Nakamura [3, 4]: given a Hamiltonian

Ĥ(t) = − ~2

2m

∂2

∂q2
+ U(q, t) (25)

construct V
(n)
FF (q, t) such that evolution under Ĥ+V

(n)
FF causes a selected eigenstate ϕn(q, 0) ≡

〈q|n(0)〉 of Ĥ(0) to evolve to the corresponding eigenstate ϕn(q, τ) of Ĥ(τ). This problem has

been solved for both Schrödinger [3–9] and Dirac [10] dynamics, but the solution generically

becomes singular at the nodes of ϕn(q, t) (see e.g. Eq. 5 of Ref. [5]), hence a well-behaved

V
(n)
FF (q, t) cannot generally be constructed for n > 0.2 Our result offers an alternative

approach: for the corresponding classical Hamiltonian H(z, t) = p2/2m+U(q, t), choose I0 =

2π~[n+(1/2)] and construct the fast-forward potential V
(n)
FF (q, t) using the method developed

in this paper. This potential is free from singularities, and for large n the Correspondence

Principle suggests that evolution under Ĥ + V
(n)
FF will cause the initial eigenstate ϕn(q, 0) to

evolve approximately to the final eigenstate ϕn(q, τ). Preliminary numerical results support

this expectation [14].

It is also interesting to compare our analysis with the counter-diabatic approach, where

the quantum eigenstate |n(t)〉 [15, 16] or the classical action I(z, t) [17–19] is preserved

along the entire trajectory. In the classical case this is achieved at the cost of adding a

2 The special case of scale-invariant driving is an exception to this statement.
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momentum-dependent term HCD(z, t) rather than a potential VFF(q, t), to the Hamiltonian.

For scale-invariant driving [11], HCD coincides with our term K (Eq. 14), but more generally

HCD is a nonlinear function of both q and p, which may be complicated [19] and difficult to

implement experimentally.

It is natural to ask whether our results can be applied to systems with d > 1 degrees

of freedom. In certain situations of experimental relevance, such as ultracold gases in opti-

cal lattices, a separation of variables reduces a three-dimensional problem to an effectively

one-dimensional one [7, 20], providing a potential platform to test our predictions. More

generally, the distinction between integrable, chaotic, and mixed phase space systems be-

comes crucial for d-dimensional systems [21]. For integrable systems, the transformation to

action-angle variables [1] may provide a useful first step to extending our results, but for

chaotic or mixed systems the task is likely to be more challenging.

Adiabatic invariants enjoy a distinguished history in quantum and classical mechan-

ics [22], but the problem of how to achieve adiabatic invariance under non-adiabatic condi-

tions has gained attention only recently. Here we have shown how to construct a potential

VFF(q, t) that guides trajectories launched from a given energy shell of an initial Hamiltonian

to the corresponding energy shell of the final Hamiltonian, so that the initial and final values

of action are identical for every trajectory.

We acknowledge financial support from the U.S. National Science Foundation under grant

DMR-1506969 (CJ), the U.S. Department of Energy through a LANL Directors Funded

Fellowship (SD), and the U.S. Army Research Office under contract number W911NF-13-1-

0390 (AP, YS).

A. APPENDICES

A. A. Continuity conditions on H(z, t)

In the main text, we specified that H(z, t) is constant in time for t < 0, then varies

between t = 0 and t = τ , then remains constant in time for t > τ . As a result, H cannot

be an entirely smooth function of time: for some n ≥ 0, the derivative ∂nH/∂tn must be

12



discontinuous. We explicitly assumed that this discontinuity occurs at n ≥ 3, giving us

∂H

∂t
(z, 0) =

∂H

∂t
(z, τ) = 0 (26a)

∂2H

∂t2
(z, 0) =

∂2H

∂t2
(z, τ) = 0 (26b)

leading to Eq. 9 of the main text.

The assumption that H is twice continuously differentiable was made both for clarity of

presentation, and because it arises in proofs of the adiabatic invariance of the action [23].

In our context, however, the assumption is not necessary, therefore in the following we will

discuss how Eq. 26 can be relaxed. We will continue to require that H itself is a continuous

function of time. Without loss of generality, we will assume that discontinuities in ∂H/∂t

and ∂2H/∂t2 occur only at t = 0 and t = τ , and not within the time interval 0 < t < τ .

We first consider the simpler case, in which the above-mentioned discontinuity occurs

at n = 2, i.e. Eq. 26a holds but 26b is violated. Then v(q, 0) = v(q, τ) = 0, but a(q, t)

changes abruptly at t = 0 and/or t = τ . In this situation the fast-forward potential will

also be discontinuous at these times (see Eq. 10) but otherwise the analysis in the main

text remains valid. Thus the violation of Eq. 26b simply implies that VFF(q, t) is turned on

and/or off suddenly rather than continuously.

Now consider the case in which the discontinuity occurs at n = 1, hence Eq. 26a is vio-

lated. Specifically, suppose the time-dependence of the Hamiltonian is turned on abruptly:

∂H/∂t 6= 0 at t = 0+, hence

v0(q) ≡ v(q, 0+) 6= 0 (27)

The velocity field changes suddenly from v(q, 0−) = 0 to v(q, 0+) = v0(q). The term ∂v/∂t

in Eq. 9 then leads to a singular term v0(q)δ(t) in the acceleration field a(q, t). By Eq. 10,

this term leads to a contribution to VFF that is proportional to δ(t), which produces an

impulsive force field at t = 0:

−∂VFF
∂q

(q, t) = mv0(q)δ(t) + [other terms] (28)

The effect of this impulse is simple to state: a trajectory located at (q, p) at time t = 0− is

instantaneously “boosted” to (q, p+mv0(q)) at time t = 0+ as it evolves under HFF.
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Similar comments apply if ∂H/∂t 6= 0 at t = τ−. Then

vτ (q) ≡ v(q, τ−) 6= 0 (29)

and we get a singular term in VFF that produces an impulsive force

−mvτ (q)δ(t− τ) (30)

Now consider a collection of trajectories that, for t < 0, are found on the adiabatic

energy shell E(0). As in the main text, let the loop LFF(t) describe the evolution of these

trajectories, under HFF(z, t). At t = 0, the impulsive force in Eq. 28 boosts these trajectories

from LFF(0−) = E(0) to a loop LFF(0+) that is displaced along the momentum axis by an

amount mv0(q). Subsequently, this loop evolves exactly as described in the main text: for

0 < t < τ , LFF(t) is displaced from the adiabatic energy shell E(t) by an amount mv(q, t)

(Eq. 21). In particular, at t = τ− this loop is displaced from E(τ) by mvτ (q). The final

impulse at t = τ (Eq. 30) instantaneously brings the collection of trajectories from LFF(τ−)

to LFF(τ+) = E(τ).

Thus, non-vanishing derivatives ∂H/∂t at initial and final times can be accommodated by

impulse-like terms in VFF(q, t). See Section III.A. of Ref. [11] for an example that illustrates

this point in the context of scale-invariant driving.

B. B. Flow under G preserves the adiabatic energy shell

The Hamiltonian G(z, t) = H +K generates the flow (Eq. 16)

q̇ =
p

m
+ v(q, t) , ṗ = −∂U

∂q
(q, t)− p∂v

∂q
(q, t) (31)

Let Ḣ(q, p, t) denote the instantaneous rate of change of H, along a trajectory that passes

through the point (q, p) at time t as it evolves under these dynamics:

Ḣ(q, p, t) ≡ ∂H

∂q
q̇ +

∂H

∂p
ṗ+

∂H

∂t

=
∂U

∂q
v − p2

m

∂v

∂q
+
∂U

∂t
(32)
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To establish that the flow given by Eq. 31 preserves the adiabatic energy shell, we must

show that

Ḣ(q, p, t) =
d

dt
Ē(t) when (q, p) ∈ E(t) (33)

We evaluate Ḣ at a point (q, p) ∈ E(t), by setting p = ±p̄(q, t) = ±
[
2m(Ē − U)

]1/2
:

Ḣ(q,±p̄, t) =
∂U

∂q
v − 2(Ē − U)

∂v

∂q
+
∂U

∂t

= −1

v

∂

∂q

[
(Ē − U)v2

]
+
∂U

∂t

=
∂qS

∂tS

∂

∂q

[
p̄2

2m

(
∂tS

∂qS

)2
]

+
∂U

∂t

=
p̄

2m
∂q∂tS +

∂U

∂t
=

p̄

m

∂p̄

∂t
+
∂U

∂t

=
∂

∂t

[
p̄2(q, t)

2m
+ U(q, t)

]
=

d

dt
Ē(t) (34)

which is the desired result. In obtaining Eq. 34 we have made repeated use of the identities

∂qS = 2p̄ and v = −∂tS/∂qS (Eqs. 11 and 12).

C. C. Local dynamical invariance of J(q, p, t)

HFF(z, t) generates the equations of motion

q̇ =
p

m
, ṗ = −U ′ +ma = −U ′ +mv′v +m

∂v

∂t
(35)

Consider the quantity

J(q, p, t) = I(q, p−mv(q, t), t) (36)

and let J̇(z, t) denote the instantaneous rate of change of J along a trajectory that passes

through the point z = (q, p) at time t. We have, by direct substitution,

J̇(z, t) =
∂I

∂q
q̇ +

∂I

∂p

(
ṗ−mv′q̇ −m∂v

∂t

)
+
∂I

∂t

=
∂I

∂q

p

m
− ∂I

∂p
U ′ − ∂I

∂p
v′(p−mv) +

∂I

∂t
(37)

where the derivatives of I are evaluated at (q, p−mv(q, t), t).

In general J̇(z, t) 6= 0. However, let us now restrict our attention to a point z that satisfies
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J(z, t) = I0 at a particular time t. At such a point, we have

p = ± p̄(q, t) +mv(q, t) (38)

with p̄ =
[
2m(Ē − U)

]1/2
as in the main text. Taking p = p̄ + mv for specificity (the case

p = −p̄+mv gives the same result) we get

J̇(z, t) =
∂I

∂q

( p̄
m

+ v
)
− ∂I

∂p
U ′ − ∂I

∂p
v′p̄+

∂I

∂t

= {I,H}+ {I,K}+
∂I

∂t
(39)

where all quantities on the right side are evaluated at (q, p̄) ∈ E(t). From Eqs. 4 and 15 we

conclude that the right side of the above equation is zero, hence

J(z, t) = I0 ⇒ J̇(z, t) = 0 (40)

where the symbol ⇒ is short for “implies that”.

Eq. 40 establishes that J(z, t) is a local dynamical invariant, in the following sense.

Along trajectories zt evolving under HFF(z, t) from initial conditions z0 ∈ E(0), the value of

J remains constant:

J(zt, t) = I0 (41)

D. D. Evolution of the microcanonical measure under HFF

As mentioned in the main text, initial conditions that are sampled from a microcanonical

distribution on E(0) generally evolve (under HFF) to final conditions that are not distributed

microcanonically on E(τ), as illustrated in Figs. 2(a) and 2(c). To understand this point, let

ΦFF : z0 → zτ (42)

denote evolution under HFF(z, t) from t = 0 to t = τ . ΦFF maps initial points z0 ∈ E(0)

to final points zτ ∈ E(τ). Now consider an initial phase space distribution ρ(z, 0) that is
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uniform in the thin annular region R between the energy shells E(0) and

EdE(0) ≡ {z|H(z, 0) = Ē(0) + dE} (43)

and zero elsewhere. In the limit dE → 0, this distribution converges to a microcanonical

distribution on E(0).

For finite dE, ρ(z, 0) evolves to a distribution ρ(z, τ) that is uniform (by Liouville’s

theorem) in the region R′ = ΦFF(R) between the images of E(0) and EdE(0) under ΦFF.

Although ΦFF maps E(0) to E(τ), in general it does not map EdE(0) to an energy shell of

H(z, t). As a result, in the limit dE → 0, ρ(z, τ) converges to a distribution on E(τ) that is

not microcanonical. Thus the clustering of points in Fig. 2(c) traces back to the fact that

VFF(q, t) depends on the choice of I0.
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