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Abstract

We verify the finite time fluctuation theorem for a linear Ising chain in contact with heat reser-

voirs at its ends. Analytic results are derived for a chain consisting of two spins. The system can

be mapped onto a model for particle transport, namely, the symmetric exclusion process in contact

with thermal and particle reservoirs. We modify the symmetric exclusion process to represent a

thermal engine and reproduce universal features of the efficiency at maximum power.
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I. INTRODUCTION

Thermodynamics and statistical mechanics have been mutually inspiring fields of research

for over 100 years. Recently, the formulation of thermodynamic laws for the description of

small scale nonequilibrium systems in contact with heat and work reservoirs has deepened

and extended our understanding of thermodynamics and its relation to microscopic laws.

This novel connection has been made in various different contexts, including microscopic

classical and quantum descriptions, mesoscopic descriptions embodied in stochastic thermo-

dynamics, and thermostated systems [1]-[5]. In the present contribution, we apply stochastic

thermodynamics to a prototype model of statistical mechanics, namely, a linear chain of Ising

spins in contact with heat reservoirs of different temperatures at its ends. One interesting

point of our analysis is that, in contrast with most models studied so far in the context of

stochastic thermodynamics, the internal dynamics of the chain is microcanonical in the sense

that it is energy conserving. Nevertheless, the standard formalism of stochastic thermody-

namics applies, and one of its basic predictions, the so-called fluctuation theorem, is verified.

Furthermore, the system can be mapped onto a model for particle transport, namely, the

symmetric exclusion process. In this respect, we note that, with a proper interpretation of

the boundary conditions, the system can function as a small scale thermal engine. We verify

another prediction of stochastic thermodynamics, the universality of efficiency at maximum

power.

The outline of the paper is as follows. In section II we define the model and its different

interpretations in terms of energy and particle transport, and we review the relation with the

symmetric exclusion process. In section III we discuss its use as a heat engine and compute

its efficiency at maximum power, showing that it displays some universal features. In section

IV we discuss and numerically check the validity of the fluctuation theorem. In section V

we analytically derive the large deviation function for the case of two spins. Finally, in

section VI we summarize the main conclusions. The more technical details of the paper are

presented in the appendices.
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II. LINEAR ISING CHAIN AND SYMMETRIC EXCLUSION PROCESS

We consider a 1-d Ising chain with M nodes and nearest neighbor interactions. To each

configuration {s} = (s1, . . . , sM), si = ±1, we assign the value of the Hamiltonian function

H({s}) = − ε
2

M−1∑
i=1

sisi+1. (1)

This can also be written as H = ε
2

[`1 + `2 + · · ·+ `M−1], where `i = −sisi+1 is a variable

associated with the link between spins i and i+ 1. As for boundary conditions, we consider

the situation in which s1 is in contact with a heat reservoir B1 at temperature T1 and sM

with another heat reservoir B2 at temperature T2 > T1. Energy is transferred in the form

of heat from B2 to B1. The connections to the reservoirs induce a stochastic dynamics in

which spins s1 and sM update their states using heat-bath canonical rates at temperatures

T1 and T2, respectively. More precisely, the probabilities that the spins s1 and sM adopt

particular values are given by

prob(s1) =
1

1 + e−εs1s2/kT1
prob(sM) =

1

1 + e−εsM−1sM/kT2
, (2)

where k is the Boltzmann constant. The dynamics of the internal spins si, i = 2, . . . ,M − 1

are assumed to be microcanonical in the sense that a spin can change its state si → −si
provided that energy is conserved. In other words, spin si can only flip provided that its

neighbors are in opposite states, si−1 + si+1 = 0.

These updating rules induce Markovian dynamics between the different configurations

with rates ω({s} → {s′}) which are different from zero only if configuration {s′} differs from

configuration {s} in the value of a single spin. The probability P ({s}, t) for a configuration

{s} at time t thus satisfies the following master equation:

dP ({s}, t)
dt

=
∑
{s′}

[ω({s′} → {s})P ({s′}, t)− ω({s} → {s′})P ({s}, t)] . (3)

We refer to Appendix I for a detailed description of the numerical procedure which we use

to obtain the statistical thermodynamic properties for this process.

We are interested in this Ising model with a finite number of spins as a small scale

nonequilibrium system, for which stochastic thermodynamics can be applied, see e.g. [5] for

a simple introduction. This formalism can be applied without modification for stochastic

systems with “internal” transitions, provided they satisfy detailed balance with respect
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to a microcanonical distribution rather than the canonical or grand-canonical distribution

that apply to rates describing the contact with the reservoirs. Hence, only transitions

between states of the same energy are possible and, since the corresponding microcanonical

probabilities are equal, these rates are equal. With this proviso, we will verify and discuss

the stochastic heat transport and corresponding stochastic entropy production in the Ising

chain.

The above model is known to be isomorphic to one for particle transport, namely, the

one-dimensional symmetric simple exclusion process. This model has been studied intensely

in the past decades. It is one of the rare instances for which the exact expression for the

stationary (nonequilibrium) distribution Pst({s}) has been derived [6]. The mapping of

the Ising version to the particle version is as follows (see Fig. 1): To each configuration

(s1, . . . , sM) of the Ising chain we assign a configuration τ1, . . . , τL with L = M − 1 and

τi = 1
2
(1 − sisi+1) = 1

2
(1 + `i) such that τi = 1 (resp. 0) if the energy of the link is `i =

+1 (resp. − 1). We interpret τi = 1 (resp. 0) as the presence (resp. absence) of a particle in

the link between nodes i and i+ 1. In the exclusion process particles are introduced on the

site i = 1 at a rate α only if another particle does not occupy this site; a particle on site 1

can be removed with rate γ; a particle can be introduced on site L with rate δ, provided the

site is not already occupied; and, finally, a particle on site L can be removed with rate β.

Particles inside the chain can move right or left with a rate λ (setting the unit of time) only

if the site to which the particle wants to jump is not occupied. There are 2M configurations

{s} = (s1, . . . , sM) and 2L configurations {τ} = (τ1, . . . , τL). A configuration (τ1, . . . , τL) is

equivalent to two configurations (s1, . . . , sM) which differ only in a global spin flip. If {τ}

and {s} are two equivalent configurations, then P ({τ}) = 2P ({s}). The stochastic dynamics

of the two versions (Ising and particle) of the model are also equivalent if the insertion and

removal rates are related to the temperatures by

α = λp1, γ = λ(1− p1), δ = λp2, β = λ(1− p2), (4)

with λ the time-scale factor between the two models, and where we have defined

p1 =
1

1 + eε/kT1
p2 =

1

1 + eε/kT2
. (5)

Our interest in this connection has a different focus: as the reservoirs can be understood

to specify both temperature and chemical potential, the system can operate as a small scale

4



α
γ

δ
β

T1 T2

λ
2

λ
2

T1,µ1 T2,µ2
λ
2

λ
2

 
−
ε

2  
+
ε

2  
−
ε

2  
+
ε

2  
+
ε

2  
+
ε

2

 ε  ε  ε  ε

s1 s2 sM

τ1 τ 2 τ L

FIG. 1: Schematic representation of the three different interpretations of our model. Top row

corresponds to a “standard” Ising chain with an energy flux between two heat reservoirs at different

temperatures T1 and T2. The middle row represents particle transport, with insertion/removal

rates α, β, δ, γ at the ends. The lower row features a thermal engine with both energy and particle

transport between two heat and particle reservoirs at respective temperatures T1, T2 and chemical

potentials µ1, µ2.

Carnot engine. Its corresponding properties can again be studied from the point of view of

stochastic thermodynamics. The model is closely related to that of particle-energy transport

considered in [7–9], with the difference that two particles can not occupy the same site, see

also [10]. To make the connection with a thermal engine we include, in addition to the

above prescription, a new ingredient such that particle motion implies both a particle and

an energy flux. This is simply achieved by identifying the presence of a particle with the

presence of an energy amount ε. To give a concrete example, one can imagine that the

particle sites correspond to quantum dots and that the appearance of a particle corresponds

to an excitation in the quantum dot from energy zero to energy ε. When a particle moves
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FIG. 2: Mapping between the spin and the particle interpretations. When the spin si is flipped,

an amount of energy ε is moved along the chain. This can also be interpreted as the movement of

a particle carrying an energy ε.

from a site to a neighboring site, this energy is moved accordingly. Note that this is in fact

also taking place in the corresponding spin system, as, for example, a spin-up flip of a spin-

down between a spin-up and spin-down neighbor, corresponds to a change of the spin-pair

energies from ε/2,−ε/2 to −ε/2, ε/2. Hence an amount of energy equal to ε has moved along

the spin chain, see Fig. 2. The consideration of the energy associated with the presence of a

particle becomes particularly interesting if we describe the contact with the reservoirs as an

exchange with a particle and heat reservoir, say with respective temperatures and chemical

potentials T1 < T2 and µ1 > µ2. Hence when a particle enters from reservoir 1, the required

energy ε is provided by a chemical work contribution µ1 plus an extra contribution ε − µ1

which is heat provided by the same reservoir. To properly describe the exchange with the

reservoirs, the insertion probabilities now have to obey the grand-canonical rule, denoted by

a prime to distinguish them from the canonical situation, cf. Eq. (5):

p′1 =
1

1 + e(ε−µ1)/kT1
p′2 =

1

1 + e(ε−µ2)/kT2
. (6)

III. EFFICIENCY

We first focus on the Ising spin chain version and discuss the heat transport through

this system. In a finite time t an amount of heat Qi(t), i = 1, 2 will be extracted from the

reservoir Bi. In the long time limit, a steady state regime is reached in which the cumulative

average heats increase linearly with t, corresponding to a time-independent heat current JQ,

JQ =
〈Q2(t)〉

t
= −〈Q1(t)〉

t
> 0. (7)
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Interpreted within the framework of the model for particle transport, the heat current JQ

is related to the particle current J by εJ = JQ, a property that has been called strong

coupling [11]. In Appendix II, we obtain the following exact expression for this net current

(for any value of the number of spins M):

J =
p2 − p1

M
. (8)

Introducing Eq. (5), the corresponding expression of the heat current is

JQ =
tanh(ε/2kT1)− tanh(ε/2kT2)

2M
ε. (9)

We next turn to the interpretation of the model as a particle transport symmetric ex-

clusion process in contact with heat and particle reservoirs with respective temperatures

and chemical potentials T1, T2 and µ1, µ2. In this interpretation, the system now transports

both heat and chemical energy. With this interpretation the symmetric exclusion process

can function as a thermal machine where a heat flow from high to low temperature drives

a particle flow (hence a production of work) from low to high chemical potential. It is thus

possible to calculate the efficiency of this engine and to verify its expected universal proper-

ties. When a particle hops, it takes with it a given amount of energy. As physical realizations

of such a situation, we cite the hopping of an electron in a linear array of quantum dots or

of an excitation in a linear array of states (for example, a linear polymer).

As discussed above, when a particle is removed from reservoir B1 with chemical potential

µi, the corresponding energy flow JQi
contains a chemical work component. More precisely,

we have:

JQi
= (ε− µi)J, i = 1, 2. (10)

At the steady state, the particle current J can be copied from Eq. (8) using appropriate

insertion rates Eqs. (6):

J =
p′2 − p′1
M

=
tanh(x1/2)− tanh(x2/2)

2M
, (11)

where we have defined xi =
ε− µi
kTi

.

The transport of particles from the high temperature low chemical potential reservoir B2

to the one with low temperature and high chemical potential B1 is tantamount to a chemical

engine. The power (chemical energy produced per unit of time) is given by

P = (µ1 − µ2)J = kT2[x2 − (1− ηC)x1]J (12)
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and the corresponding efficiency reads

η =
P
JQ2

= 1− (1− ηC)
x1

x2

, (13)

with JQ2 the heat flow out of the hot reservoir 1 and ηC = 1− T1/T2 the Carnot efficiency.

To compute the efficiency η∗ at maximum power we search for the values x∗1 and x∗2 that

maximize the power:
∂P
∂x1

∣∣∣∣
(x∗1,x

∗
2)

=
∂P
∂x2

∣∣∣∣
(x∗1,x

∗
2)

= 0. (14)

These equations determining (x∗1, x
∗
2) are transcendental. A recursive solution can be found

using a series expansion in ηC :

x∗1 = a0 + a1ηC + a2η
2
C + a3η

3
C + . . . (15)

x∗2 = b0 + b1ηC + b2η
2
C + b3η

3
C + . . . (16)

As the case ηC = 0 is degenerate (the extrema of P are then achieved by any x∗1 = x∗2),

the exact calculation of the expansion is somewhat tricky, cf. Appendix III for details. The

result is (the numerical coefficients are given to six significant digits):

η∗ =
1

2
ηC +

1

8
η2
C + 0.0774919η3

C + 0.0540545η4
C + 0.0396952η5

C + 0.0301064η6
C +O(η7

C) (17)

Note that first two coefficients have the universal value predicted in [7].

IV. ENTROPY PRODUCTION: FLUCTUATION THEOREM

The fluctuation theorem is one of the most spectacular recent results in statistical me-

chanics [1]-[5]. It was originally discovered in thermostated systems in its time-asymptotic

form, and mathematically linked to a symmetry property of the largest eigenvalue of a tilted

evolution operator. Later on, it was realized that various versions of the fluctuation theo-

rem can be derived, some of which are valid also at all times. The asymptotic form of the

fluctuation theorem has been studied in some detail in the asymmetric exclusion process.

Our intention here is to study the finite time version. Stochastic thermodynamics predicts

(in the absence of time-dependent driving such as considered in the Ising chain problem)

that the probability P (∆S) of observing a total entropy change ∆S during a given (finite)

time interval t is exponentially larger than the probability for observing a corresponding
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decrease,
P (∆S)

P (−∆S)
= e∆S/k. (18)

It is important to realize that, in order to verify this prediction, we need to evaluate the

total entropy change ∆S. The entropy change in the reservoirs, which is (the stochastic

amount of) heat over temperature for each of the reservoirs, dominates the time-asymptotic

limit, as it grows without bound with time (and in fact on average proportional to time).

But at finite times, one needs to also measure the (bounded) stochastic entropy change of

the system. This is a much more intricate quantity. One essential point in stochastic ther-

modynamics is that one can define the (stochastic nonequilibrium) entropy of a given micro

state {s} in terms of the probability P ({s}) for this state by Ssystem = −k logP ({s}). For

simplicity, we will operate under steady state conditions, so that we only need to determine

the steady state probability Pst. We have already indicated that the Ising chain/symmetric

exclusion process is one of the very few instances in non-equilibrium statistical mechanics for

which an exact expression for the stationary distribution Pst({s}) has been derived. Unfor-

tunately, the exact expression only becomes explicit in the limit of a large system, far beyond

the sizes for which we would like to verify the finite-time fluctuation theorem. Hence we

have resorted to complimentary methods -one algebraic, one numerical- to calculate Pst({s})

essentially exactly for the small systems of interest, see Appendix IV for more details.

With these preliminaries, the numerical verification of the fluctuation theorem Eq. (18)

proceeds according to following steps. Starting from an initial equilibrated configuration

at time t = 0, {s(0)}, we simulate numerically the stochastic process up to a time t MCS

(Monte Carlo steps), ending in a configuration {s(t)}. During this run, we monitor the

amount Q2(t) of heat taken from B2 and an amount −Q1(t) of heat given to B1. The

reservoir entropy production of this single realization of the stochastic process is given by:

∆SBath(t) =
−Q2(t)

T2

+
Q1(t)

T1

. (19)

As the stochastic entropy is again a state function (but now of the stochastic state of

the system), the change in system entropy for the run under consideration is the final

value minus the initial value: ∆SSystem(t)/k = − lnPst({s(t)}) + lnPst({s(0)}). The to-

tal entropy production then follows as the sum of the reservoir and system contribution:

∆S(t) = ∆SBath(t) + ∆SSystem(t). By generating a large number of runs and recording the

corresponding values of ∆S(t), one can construct a histogram for P (∆S, t) . The results
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are in excellent agreement with the fluctuation theorem as shown in the Figs. 3 and 4 for

M = 10 with t = 10, T1 = 1 and T2 = 2, 5, 10,∞. Similar results are obtained for smaller

and larger system sizes. As the system size increases, one notes that the system contribu-

tion to the entropy being bounded, becomes less important, and the fluctuation theorem

converges to its time-asymptotic formulation, involving only the reservoir contribution. As

an independent check of the simulations, we have also verified that, by averaging over many

realizations, we reproduce the aforementioned average heat flux and corresponding reservoir

entropy production 〈∆SBath(t)〉 = tJQ

(
1

T1

− 1

T2

)
> 0.

Note finally a peculiar property of the probability distribution for the stochastic entropy:

while obeying the fluctuation theorem, P (∆S) does have an unexpected shape with several

bizarre peaks, cf. Figs. 3, a feature that disappears in the limit of a large system size. A

similar phenomenon has been observed in other stochastic models with discrete step-like

dynamics, notably in a single level quantum dot [20]. Unfortunately, the explicit analytic

expression of the stochastic entropy cannot be obtained even for the simplest case of two

spins discussed below, and the precise nature of this feature remains to be elucidated.

V. THE LARGE DEVIATION FUNCTION FOR THE SINGLE-PARTICLE CASE

After having presented mostly numerical data about the stochastic particle flux, heat

flux and entropy production for a finite system we finally present the exact analytic result

for the case of only two spins, corresponding, in the particle interpretation, to a single site

allowing at most one particle. This study is complimentary to the analysis of other two-state

systems [12–15], to the study of particle transported in models without particle interaction

[9, 16], and to exact asymptotic results in the limit of very large systems sizes [17, 18]. Our

exact results allows to compare in detail the short and intermediate time behavior with the

asymptotic large time behavior embodied in the large deviation function.

We focus on the the large deviation function, describing the asymptotic time regime. In

this way, one can evaluate the finite time probability distribution for the stochastic entropy

production P (∆S). Of particular interest to us is how the fluctuation theorem goes over

into its asymptotic form in which both the system contribution and the effect of the initial

preparation disappear. We expect that this will be the case after a few time steps as the

system entropy is limited to kT ln 2. While the analytic result for P (∆S) at finite times are

10



P(ΔS)

ΔS

(a)	 P(ΔS)

ΔS

(b)	

P(ΔS)

ΔS

(c)	 P(ΔS)

ΔS

(d)	

FIG. 3: P (∆S), probability of finding a value of the entropy increase ∆S, after a time of t = 10

Monte Carlo steps, with T1 = 1 and: T2 = 2, panel (a); T2 = 5, panel (b); T2 = 10, panel (c);

T2 = ∞, panel (d). Results obtained by an average over K = 109 configurations. The number of

spins is M = 10. A bin size of ∆S = 0.2 has been used in the construction of the histogram. We

set ε = 2, k = 1.

still quite complicated, the large deviation function is relatively simple. It can be obtained by

the following short-cut. For long times, we will have that the stochastic entropy production

is given by ∆S = (µ2/T2 − µ1/T1)Jt, where J = N/t is the stochastic particle current,

defined now from reservoir B1 into the site. Note that we are neglecting here the entropy of

the system, and the fact that the current into the system can differ by ±1 from the current

between the reservoirs. Hence it is sufficient to evaluate the large deviation of the current

J .

Our starting point considers the probability distribution for both the state of the system

and the net number of particles N that have been injected from the B1 reservoir during a

time t, namely, P0(N ; t) ≡ P (N ; τ1 = 0; t) and P1(N ; t) ≡ P (N ; τ1 = 1; t), with the subscript
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FIG. 4: Verification of the fluctuation theorem based on the data in Fig. 3 (logarithmic scale on

the vertical axis). The straight line corresponds to exp(∆S/k). Same parameter values as in Fig. 3.

0 and 1 referring to whether there no particle or a single particle in the site. They satisfy

the master equation:

∂P0(N ; t)

∂t
= γP1(N + 1; t) + βP1(N ; t)− (α + δ)P0(N ; t), (20)

∂P1(N ; t)

∂t
= αP0(N − 1; t) + δP0(N ; t)− (β + γ)P1(N ; t). (21)

The probability P (N ; t) of interest, i.e., for having a cumulative number of particles N , or a

corresponding flux of J = N/t from reservoir B1 into the system after a time t, is obtained

by summing out the state of the system P (N ; t) = P0(N ; t) + P1(N ; t).

Eqs.(20-21) can be solved by introducing the generating functions

G0(ξ; t) =
∑
N

eξNP0(N ; t), (22)

G1(ξ; t) =
∑
N

eξNP1(N ; t). (23)
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They verify:

∂G0(ξ, t)

∂t
= −(α + δ)G0(ξ, t) +

(
β + γe−ξ

)
G1(ξ, t), (24)

∂G1(ξ, t)

∂t
= −(γ + β)G1(ξ, t) + (δ + αeξ)G0(ξ, t). (25)

Note that ξ is just a parameter in these equations. Therefore, we have a system of two

ordinary (not partial) differential equations. After some algebra, the solution satisfying the

initial condition G0(ξ, 0) = 1, G1(ξ, 0) = 0 corresponding to starting with no particle in the

system at t = 0, can be written as:

G0(ξ, t) = e−λt

cosh
(
λt
√
u(ξ)

)
+ (γ − δ)

sinh
(
λt
√
u(ξ)

)
√
u(ξ)

 , (26)

G1(ξ, t) = e−λt
sinh

(
λt
√
u(ξ)

)
√
u(ξ)

(δ + αeξ), (27)

u(ξ) ≡ (δ + βeξ)
(
α + γe−ξ

)
, (28)

and we have used α+ γ = β+ δ = λ. To extract the large deviation function of the current,

we first derive from the above exact expression the asymptotic behavior of the cumulant

generating function G = G0 +G1:

G(ξ) ∼ e
−λt

(
1−
√
u(ξ)

)
. (29)

The large deviation function I(J) quantifies the exponentially small probability for observing

a current J = N/t in the large t-limit :

P (N, t) ∼ e−tI(J). (30)

It is related by Legendre transform to the asymptotic behavior of the cumulant generating

function (since the latter is continuous differentiable [19]):

I(J) = min
ξ

{
Jξ + λ

(
1−

√
u(ξ)

)}
. (31)

The minimum is reached for ξm obeying:

J =
λ

2

u′(ξm)√
u(ξm)

, (32)

hence

I(J) = Jξm + λ
(

1−
√
u(ξm)

)
. (33)
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FIG. 5: Left panel: large deviation function obtained by parametric elimination of ξm from Eqs. (32)

and (33). Here, u(ξ) is given by Eq. (28) and the exchange parameters are chosen according to

Eqs. (4) and (5). We set λ = 1, and ε = 2, k = 1 as before. The 4 different curves, from right

to left, correspond to T1 = 1 and T2 = 2, 5, 10,∞, respectively. Right panel: I(J)− I(−J) versus

J , for the same temperature values. These are, in agreement with the fluctuation theorem, linear

functions of J with slope equal to
ε

k

(
1

T1
− 1

T2

)
, cf. Eq. (36).

The large deviation function I(J) is then readily obtained by parametric elimination of ξm

from these two equations, see Fig. 5.

Turning to the fluctuation theorem, we note that a particle current J produces a entropy

production rate JS given by:

JS = XJ (34)

X =
ε− µ1

T1

− ε− µ2

T2

(35)

As stated before, we neglect here the fact that a particle may have entered the system from

one reservoir without moving into the other reservoir, as well as the bounded contribution

of the entropy production in the system. Hence the large deviation properties of the entropy

production are identical to those of the current, apart from the rescaling by the prefactor

X. This factor can be interpreted as the effective thermodynamic force. The fact that there

is a single thermodynamic force while there are two gradients (in chemical potential and

in temperature) is a result of the strong coupling of the particle and energy flux (hence
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JS = XQJQ +XJ reduces to the above expression).

To make the connection with the fluctuation theorem for the entropy production of the

reservoirs in the large t limit, we note that u(ξ), and hence the cumulant generating function

φ(ξ) = −t−1 lnG(ξ), is invariant under the transformation ξ → ξ0 − ξ with ξ0 = ln

[
δγ

αβ

]
=

ln

[
p2(1− p1)

p1(1− p2)

]
= x1− x2 = X/k, which is precisely the thermodynamic force X divided by

Boltzmann’s constant. Since the large deviation function I(J) is related to the cumulant

generating function by Legendre transform I(J) = extξ {φ(ξ) + ξJ}, one concludes that:

I(J) = I(−J) +XJ/k, (36)

which is the expression of the fluctuation theorem in terms of the large deviation function

of the current.

VI. DISCUSSION

Stochastic thermodynamics provides the generalization of thermodynamics to the descrip-

tion of small nonequilibrium systems. In this paper we have studied in the novel context

of stochastic thermodynamics, the one dimensional Ising model and the simple symmetric

exclusion process. These models are among the best studied models in (non)equilibrium

statistical mechanics and are particularly well suited for investigating the system contribu-

tion to the stochastic entropy, as it is one of the very few cases for which the nonequilibrium

steady state probability is known exactly. Our results provide yet another illustration of

the powerful formalism of stochastic thermodynamics, with an application to a spatially

extended system obeying micro-canonical dynamics. We verify two specific predictions,

namely the universality of efficiency at maximum power for thermal machines in the simple

symmetric exclusion process and the fluctuation theorem for the finite Ising chain in contact

with two thermal reservoirs.
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Appendix I: Numerical simulation of the Master equation for the Ising chain and

calculation of the entropy change

In our numerical simulations we use a discrete-time Monte Carlo update scheme[21]. We

first randomly select a node i = 1, . . . ,M . Then:

-If the node is i = 1 or i = M we replace the spin variable s1 or sM by a new value ±1

chosen with the heat-bath probabilities (k is Boltzmann’s constant)

prob(s1 = ±1) =
1

1 + e∓s2ε/kT1
prob(sM = ±1) =

1

1 + e∓sM−1ε/kT2
. (37)

Note that, correspondingly, the link variables `1 = −s1s2 and `M−1 = −sM−1sM can take

two values with probabilities:

prob(`1 = ±1) =
1

1 + e±ε/kT1
, prob(`M−1 = ±1) =

1

1 + e±ε/kT2
. (38)

To simplify the notation, we use the shorthand:

p1,2 = 1− q1,2 =
1

1 + eε/kT1,2
. (39)

-If the chosen node satisfies 1 < i < M , we use a microcanonical update: since the contri-

bution of spin i to the total energy is −si(si+1 + si−1), the flip si → −si is accepted if and

only if si−1 + si+1 = 0.

This elementary update is repeated t Monte Carlo steps (defined as M single spin update

trials). We denote the value of the spin si after the single spin update trial number n by

si(n), where n = 1, . . . ,Mt. At a selected time t we compute the heat fluxes and the change

of entropy of the reservoir using Eq. (19). For this, we first compute the heat Q2(t) taken

from B2 during the time interval (0, t) (starting to count after the equilibration updates).

This is defined as the following sum over spin updates:

Q2(t) =
ε

2
×

∑
updates n where sM has been selected

∆`M(n) (40)

with ∆`M(n) = (sM(n − 1) − sM(n))sM−1(n − 1), the energy change due only to updating

variable sM . Similarly, the heat Q1(t) taken from reservoir B1 is defined as:

Q1(t) = − ε
2
×

∑
updates n where s1 has been selected

∆`1(n) (41)
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with ∆`1(n) = (s1(n−1)−s1(n))s2(n−1), the energy change due only to updating variable

s1. Note that the definition is such that Q1,2(t) < 0 (resp. > 0) when energy is given to

(resp. taken from) the respective reservoirs B1 and B2. For the average over realizations

we expect that −〈Q1(t)〉 = 〈Q2(t)〉 ≡ 〈Q(t)〉 > 0 (T2 > T1).

Appendix II: Calculation of the flux

We first compute the probabilities of the possible values of ∆`1 in a single spin update.

The link energy `1 is allowed to change only when s1 is selected, a process that occurs with

probability 1/M . There are four possibilities:

1) If s1 = s2 = +1, the change is ∆`1 = +2 only if s1 changes to s1 = −1 (an event with

probability p1), otherwise the change is 0.

2) Similarly, if s1 = s2 = −1, the change is ∆`1 = +2 only if s1 changes to s1 = 1, an event

with probability p1.

3) If s1 = +1, s2 = −1, the change is ∆`1 = −2 only if s1 changes to s1 = −1, an event

with probability q1.

4) Finally, the case s1 = −1, s2 = +1, leads to a change ∆`1 = −2 with probability q1.

We add all contributions and write them in terms of the reduced stationary probability

distribution Pst(s1, s2) =
∑

s3,s4,...,sM
Pst(s1, s2, . . . , sM).

Prob(∆`1 = +2) =
1

M
Pst(1, 1)p1 +

1

M
Pst(−1,−1)p1, (42)

Prob(∆`1 = −2) =
1

M
Pst(1,−1)q1 +

1

M
Pst(−1, 1)q1. (43)

Due to the symmetry of the problem, we have Pst(1, 1) = Pst(−1,−1) and Pst(−1, 1) =

Pst(1,−1). Using the normalization condition
∑

s1=±1,s2±1 Pst(s1, s2) = 1, it turns out that

the average energy taken from B1 during a time interval t = 1/M (a single spin update) is

〈Q1(t = 1/M)〉 = − ε
2
× 2

M
[2Pst(−1, 1)− p1] =

ε

M
[Pst(`1 = +1)− p1] . (44)

The exact solution [22] shows that the probabilities of the different energies of the link sisi+i

follow a linear dependence on the distance to the reservoirs:

Pst(`i = +1) =
(M − i)p1 + ip2

M
. (45)
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Taking i = 1 and substituting in Eq.(44), we obtain 〈Q1(t = 1/M)〉 = −ε(p2 − p1)

M2
, and a

current JQ = −〈Q1(t = 1/M)〉/(1/M) =
ε(p2 − p1)

M
. Using JQ = εJ we conclude that the

particle flux is:

J =
p2 − p1

M
. (46)

Comparing with the equivalent result of the symmetric exclusion process, we conclude that

the time scale factor must be set to λ = 1 to reproduce the discrete-time simulation results.

If the temperature difference between the two ends of the chain is small ∆T = T2−T1 � 1,

then it is possible to expand the current:

JQ =
ε

M
(p(T1 + ∆T )− p(T1)) =

ε

k
(2T1 cosh(ε/2kT1))−2 ∆T

M
+O(∆T )2, (47)

where p(T ) =
1

1 + eε/kT
. This is simply Fourier’s law in its simplest version that the current

is proportional to the temperature gradient. Far away from this linear regime, the verification

of Fourier’s law requires the introduction of a local temperature T (x). This can be achieved

(in the steady state) by setting the probability of link `i to have energy ε/2 as prob(`i =

1) = p(Ti), which combined with Eq.(45) leads to

p(Ti) =
(M − i)p(T1) + ip(T2)

M
, (48)

or in terms of continuous variables x = i∆x, L = M∆x

p(T (x)) =
(L− x)p(T1) + xp(T2)

L
, (49)

which defines the temperature profile as

T (x) =
ε/k

log

(
L

(L− x)p(T1) + xp(T2)
− 1

) . (50)

Now it is possible to satisfy Fourier law (at least in the steady state) introducing a suitable

heat conductivity κ(x) such that JQ = κ(x)
dT (x)

dx
. Using JQ = εJ and the afore-defined

T (x) one finds after a simple algebra:

κ(x) = ε
dp(T )

dT
=
ε

k
[2T (x) cosh(ε/2kT (x))]−2 , (51)

independent of system size L.

18



Appendix III: Calculation of the expansion of the efficiency at maximum power

We start from

P = (x2 − (1− ηC)x1)[f(x2)− f(x1)] (52)

and will later specify the appropriate form of the function f(x). To find the values (x∗1, x
∗
2)

that maximize P , we need to solve the equations:

∂P
∂x1

∣∣∣∣
(x∗1,x

∗
2)

= (−1 + ηC)f(x∗2)− f(x∗1)− (x∗2 − x∗1(1− ηC)f ′(x∗1) = 0, (53)

∂P
∂x2

∣∣∣∣
(x∗1,x

∗
2)

= f(x∗2)− f(x∗1) + (x∗2 − x∗1(1− ηC)f ′(x∗2) = 0. (54)

Inserting the expansions (15-16) we obtain at order η0
C that a0 = b0. At order η1

C one finds:

b1 = a1 + a0/2. (55)

It is only when going to order η2
C that a0 is found as the solution of the equation:

2f ′(a0) + a0f
′′(a0) = 0, (56)

with in addition:

b2 = a2 +
a1

2
+

3a0

8
. (57)

At this order a1 and a2 are still not determined. Note however that by expanding

η∗ = 1−(1−ηC)
x∗1
x∗2

= 1−(1−ηC)
a0 + (a1 + a0/2)ηC + (a2 + a1

2
+ 3a0

8
)η2
C

a0 + a1ηC + a2η2
C

=
ηC
2

+
η2
C

8
+O(η3),

(58)

we reproduce the known universal coefficients 1/2 and 1/8, irrespective of the values of

a0, a1, a2 and of the function f(x). At order η3
C we find

a1 = −a0

4
, (59)

b3 = a3 +
a2

2
+

3a0

16
− a2

0f
′′′[a0]

96f ′′[a0]
, (60)

determining the value of a1 and hence b1. At order η4
C we find a2 as a function of a0 (and

hence we can determine b2), and b4 as a function of a0, a3, a4. It is only at order η5
C that we

find the explicit values of a3 and b3.
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In summary, to find the coefficients of the expansion of x∗2, x
∗
1 to order ηkC we need to go

to order ηk+2
C , but given the relations between coefficients it turns out that the expansion

for η∗ in (13) is correct to order ηk+2
C . Specifically, for f(x) = 1/(1 + ex) we find

x∗1 = 2.39936 + 0.599839ηC + 0.399893η2
C + 0.294431η3

C + 0.230513η4
C + . . . (61)

x∗2 = 2.39936− 0.599839ηC − 0.199946η2
C − 0.0944843η3

C − 0.0529399η4
C + . . . (62)

from where we obtain Eq.(17).

Appendix IV: Calculation and properties of the stationary distribution

Given the isomorphism between the Ising and the particle versions of the model, it is

possible to use the exact result for the stationary distribution as found in [23]:

Pst(τ1, . . . , τL) =
〈W |

∏L
i=1(τiD + (1− τi)E)|V 〉
〈W |(D + E)L|V 〉

(63)

where the operators E, D and the vectors |V 〉, |W 〉 are defined by:

[D,E] ≡ DE − ED = D + E, (64)

(βD − δE)|V 〉 = |V 〉, (65)

〈W |(αE − γD) = 〈W |. (66)

The idea is simple, given a configuration {s} = (s1, . . . , sM), translate into {τ} = (τ1, . . . , τL)

with L = M − 1 and then apply the above formula and Pst({s}) = 1
2
Pst({τ}), as one

configuration (τ1, . . . , τL) is equivalent to two configurations (s1, . . . , sM) which differ only

on a global sign. For instance, the configuration {s} = (−1, 1,−1, 1, 1) corresponds to

{τ} = (1, 1, 1, 0) whose probability is:

Pst(1, 1, 1, 0) =
〈W |DDDE|V 〉
〈W |(D + E)4|V 〉

. (67)

To compute this, we use the following algebra: define

X = βD − δE ⇒ X|V 〉 = |V 〉, (68)

Y = αE − γD ⇒ 〈W |Y = 〈W |. (69)
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The commutator of X and Y and the inverse relations are:

[X, Y ] = X + Y, (70)

E =
γX + βY

αβ − γδ
, (71)

D =
αX + δY

αβ − γδ
, (72)

where we have used α + γ = β + δ = λ = 1.

In practice one defines rescaled operators

Ê = γX + βY, (73)

D̂ = αX + δY, (74)

and uses the known value of the denominator of Eq.(63) to write:

Pst(τ1, . . . , τL) =
1

(L+ 1)!

〈W |
∏L

i=1(τiD̂ + (1− τi)Ê)|V 〉
〈W |V 〉

(75)

The method to find Pst({τ}) is to write in this equation the operators Ê, D̂ in terms

of X, Y using Eqs.(73,74), make repeated use of the commutation relation Eq.(70) to get

a sort of “normal order” in which all X’s are to the right of Y ’s and then apply X|V 〉 =

|V 〉, 〈W |Y = 〈W |.

The process is cumbersome to carry out in detail. It is possible to use non-commutative

symbolic packages [25] to do this algebra. However, we have not been able to obtain explicit

expressions beyond system sizes L = 8. For larger sizes, we turn to numerical methods to

compute Pst({s}).

For larger values of L . 25 we have computed Pst({s}) by solving numerically the sta-

tionary solution of the master equation (3):

Pst({s}) =
∑
{s′}

ω({s′} → {s})Pst({s′}). (76)

This is equivalent to finding the eigenvector of eigenvalue 1 of the transition matrix ω. This

matrix has, in principle, a dimension of 2M × 2M (recall M = L + 1). However, most of

the entries are 0 since the rules of the process only allow for transitions {s′} → {s} in

which only one spin variable si → −si is changed. Therefore if {s} = (s1, . . . , sM), the only

configurations {s′} for which ω({s′} → {s}) is not equal to zero are, besides the configuration
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{s} itself, the M configurations {s}1 ≡ (−s1, s2, s3, . . . , sM), {s}2 ≡ (s1,−s2, s3, . . . , sM),

. . . , {s}M ≡ (s1, s2, s3, . . . ,−sM). The equation to solve is then:

Pst({s}) = ω({s} → {s})Pst({s}) +
M∑
k=1

ω({s}k → {s})Pst({s}k). (77)

This equation we solve by iteration: take an initial guess in the right-hand side P
(0)
st ({s})

and iterate until there is convergence:

P
(n+1)
st ({s}) = ω({s} → {s})P (n)

st ({s}) +
M∑
k=1

ω({s}k → {s})P (n)
st ({s}k). (78)

Note that this recursion relation strictly conserves the sum
∑
{s} P

(n)
st ({s}) = 1. We check

that the numerical recursion conserves this normalization, something that we take as an

indicator of its accuracy. We iterate until
∑
{s}[P

(n)
st ({s})]2 does not vary significantly. We

have found that convergence can be speeded up if, instead, we use the recursion relation:

P
(n+1)
st ({s}) =

∑M
k=1 ω({s}k → {s})P (n)

st ({s}k)
1− ω({s} → {s})

. (79)

However, this does not conserve exactly the sum
∑
{s} P

(n)
st ({s}) = 1 and we add after (79)

the correction step:

P
(n+1)
st ({s}) =

P
(n+1)
st ({s})∑

{s} P
(n+1)
st ({s})

. (80)

Both recursion relations converge to the same values and, for small system sizes, they

also coincide to a high degree of accuracy (we have found agreement up to 16 significant

figures for M ≤ 8) with the exact values obtained from the ”Derrida solution” [23]. This

recursion method allows to compute the stationary distribution up to M ≈ 25.

For larger values of M & 25 this method takes too long to converge. In this case, we have

generated numerically the stationary distribution by running the Monte Carlo simulation

for a sufficiently long time. The caveat of this method is that some configurations (specially

those with high and small values of the energy) have a small probability and do not appear

in a typical simulation run. Hence, the data for those large values of M is not accurate at

both ends of the energy scale.

It is clear that, as detailed balance is not satisfied, except for T1 = T2, the stationary

distribution can not be expressed as the canonical distribution Pst({s}) ∝ e−H({s})/kT . How-

ever, it is possible to find a canonical distribution at an effective temperature that provides
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a good approximation to the probabilities for the different energy values. We start by noting

that, by using Eq. (45) the, exact, average energy of the chain is

〈H〉 =
ε

2

M−1∑
i=1

〈`i〉 = − ε
2

M − 1

2
[tanh(ε/2kT1) + tanh(ε/2kT2)] . (81)

Comparing with the energy on an equilibrium chain at temperature T ,

U = − ε
2
(M − 1) tanh(ε/2kT ) it is possible to define an effective (average) temperature as

tanh(ε/2kTeff) =
1

2
[tanh(ε/2kT1) + tanh(ε/2kT2)] . (82)

A one-dimensional Ising model with this effective temperature has the following expression

for the (equilibrium) probability of an energy value E:

p(E) =
Ω(E)e−E/Tkeff∑
E Ω(E)e−E/kTeff

, (83)

being Ω(E) = 2

(
M

M−1−2E/ε
2

)
the number of states with total energy H = ε

2
E. In Fig. 6

we provide numerical evidence that this equilibrium distribution with the above introduced

effective temperature provides a surprisingly good fit for the probability of having a total

energy E.

The fact that p(E) can be approximated by an effective canonical distribution does of

course not imply that the probability for a configuration has an equilibrium form. In sum-

mary, while

Pst({s}) 6= Z−1e−H({s})/Teff , (84)

the probability for the total energy is well approximated by

p(E) =
∑

{s}|H({s})=E

Pst({s}) ≈ Z−1Ω(E)e−E/Teff . (85)

Although we have checked that the canonical distribution is not exact for small values of

the system sizes, we have no simple explanation for the goodness of this fit and we leave for

further work the detailed analysis of its quality as a function of system size, temperature

and other parameters of the model.
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