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We study the role of the tail and range of interaction in a spatially structured population of two-
state on-off units governed by Markovian transition rates. The coupling among the oscillators is
evidenced by the dependence of the transition rates of each unit on the states of the units to which
it is coupled. Tuning the tail or range of the interactions, we observe a transition from an ordered
global state (long range interactions) to a disordered one (short range interactions). Depending on
the interaction kernel, the transition may be smooth (second order) or abrupt (first order). We
analyze the transient, which may present different routes to the steady state with vastly different
time scales.

I. INTRODUCTION

Emergent behaviors of systems that consist of many
coupled constituent units have captured the attention
of the scientific community for decades. Examples of
this kind of behavior can be found in many contexts,
starting from equilibrium phase transitions [1]. Tradi-
tional examples go from equilibrium magnetic systems
that have become paradigmatic of how its constituents
(up-down spins) can be in an ordered state other than
randomly evenly distributed up and down, to more com-
plex nonequilibrium transitions such as synchronization
[2–4], where many nonlinear oscillators are able to oscil-
late in unison. The key to understanding these processes
begins with the interactions that might allow the units
to display their dynamics in a coordinated way.

Many theoretical models have been used to describe
such dynamics. Here we focus on systems whose units
have a discrete number of states, with Markovian rate
processes governing transitions between these states.
Such dynamics have traditionally been used to model
processes in physics and chemistry [5–7], and in recent
years they have also been applied to ecology and to prob-
lems in the social sciences. For instance, in 1993 A. Kir-
man [8] used this approach to simultaneously address two
distinct but closely related problems: how ants decide be-
tween two different but identical sources of food, and how
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consumers decide between two different but in some sense
equivalent products. Each of these problems was mod-
eled as a Markov chain of interacting units each of which
could be in one of two states (i.e., spin-like). In both
cases, the majority of the population prefer one of the
two states, but this preference can switch stochastically
to the other state. This explains switching as a stochas-
tic phenomenon rather than one that relies on multiple
equilibria, and is in agreement with observations in en-
tomology and in economics. Spin-like models for situa-
tions involving decisions have become a fruitful field of
research [9]. A paradigmatic example is the voter model
[10], which has expanded to include many situations such
as the addition of stubborn voters or even agents that do
not change their opinions (zealots) [11, 12], contrarian
agents [13]. Among many examples, the voter model has
also been used in small-world networks [14] and in hetero-
geneous graphs [15, 16]. Beyond the social sciences, this
modeling approach has been used in population genetics
[17] and in ecology [18, 19]. Here, we will consider two-
state units (on-off units) as a simple abstract dynamics
without claim of specific applicability.

Wood et al. [20–23] have proposed a three-state model
that exhibits an interesting transition to synchronization.
When uniform global coupling is considered, the system
synchronizes due to a Hopf bifurcation (i.e., a second or-
der phase transition) to a state in which the units tend
to oscillate in unison. By “uniform global coupling” we
mean all-to-all coupling all of equal strength. In a partic-
ular rendition of the model, further increasing the cou-
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pling strength leads to a slowing down of the state-to-
state transitions until the oscillatory global state is lost
altogether via an infinite-period bifurcation [24, 25], and
the system reaches a static stationary state in which most
of the units are locked and static in the same state. Note
that with uniform global coupling we do not introduce
the notion of dimensionality, nor do we need to address
any “spatial” questions. One simply deals with the global
densities of units in each state.

Beyond global coupling, Wood et al. have explored
local coupling [20, 21], that is, the placement of three-
state Markovian units on a regular lattice with nearest
neighbor interactions. Under these conditions it is of
course necessary to include “dimensionality” and “space”
in the discussion. The system is able to synchronize to
global oscillatory behavior only in three or more spatial
dimensions. Therefore, the lower critical dimension to
observe oscillatory synchronization is d = 2.

Later it was shown that when nonlocal (but not uni-
form global) interactions with more distant neighbors are
considered, the system is able to synchronize with suffi-
ciently distant and strong interactions even in one dimen-
sion [26]. Furthermore, with appropriate nonlocal inter-
actions the lattice exhibits new self-organized behaviors
such as wave formation in a parameter regime where no
synchronous behavior of any kind is observed for a glob-
ally coupled system. Spatial patterning has also been
documented for similar models in the context of popula-
tion genetics [27].

Two-state models with Markovian intra-unit transition
rates are simpler to analyze, but with our form of cou-
pling a transition to oscillatory behavior is not possible
regardless of the coupling strength. Transitions to mo-
tionless ordered phases in which the fraction of oscilla-
tors in each state is not 1/2 even if the potential shows
no asymmetry, on the other hand, are possible, and the
study of the transition to the ordered phase in uniformly
globally coupled arrays can be carried out analytically,
as opposed to the numerical work needed for the three-
state array. In fact, uniformly globally coupled networks
of two-state Markovian stochastic oscillators can even be
handled analytically for finite arrays [28, 29]. We can
describe the transition to an ordered phase taking into
account the fluctuations induced by the finite size of the
system via a Fokker-Planck equation, with an exact solu-
tion for the steady state distribution. Similar approaches
have been used in the context of the voter model [13],
and exact results have been obtained in the presence of
external perturbations [30]. We note that when non-
Markovian effects (memory) are introduced into intra-
unit transitions in our model, oscillatory behaviors may
be observed even for two-state globally coupled networks
[31, 32].

The purpose of this paper is to explore the transition
to an ordered phase in a two-dimensional lattice of two-
state Markovian units with local or nonlocal interactions,
including interactions whose strength may depend on dis-
tance. This means that dimensionality and location must

now be included in the analysis - it is not sufficient to
address only global mean field densities of oscillators in
one state or the other. We pose the following question:
what is the necessary distance dependence and range of
interactions that will lead to ordered behavior, that is,
to stationary states where there are more units in one
state than in the other even with no inherent potential
asymmetry?

We choose two models. In one, which we call the
“long tail model”, we assume a power law dependence
of the transition rates on the distance of each given unit
on the states of its neighbors. For this model we look
for the highest degree of the polynomial that still allows
the phase transition for a given interaction strength pa-
rameter. (If the degree of the polynomial were zero, we
would be back to uniform global coupling, while a very
high degree strongly limits the range of interactions and
brings us back to the local picture.) Our second model,
which we call the “uniform kernel model”, is akin to a
hat, where the interaction of each given unit with its
neighbors is uniform up to a given range, beyond which
it abruptly falls to zero. Here we explore the distance
of interactions needed for a given interaction strength.
In both cases our control parameter is the interaction
strength. We also explore the order of the transition to
order in both cases (to compare with the second order
transition in the uniformly globally coupled model).

Our presentation is organized as follows. In Sec. II we
review our uniform global coupling theory and present
our two models. In Sec. III we present our results for
the phase transitions to an ordered phase for each model.
Interesting findings include the transient behaviors on the
way to the stationary states, the phase diagrams of the
stationary states, and the nature of the transitions from
disordered to ordered stationary states. In Sec. IV we
present a brief summary and some concluding remarks.

II. THE MODEL

We consider a two dimensional square lattice, where
the position of a unit in the array is indicated by the

vector ~k ∈ {(kx, ky)}Lkx;ky=1. The total number of units

is then N = L2. The basic unit of our model is a two-
state (0 and 1) Markovian oscillator. We denote the state

of the oscillator at position ~k by the binary indicator
s~k(t) ∈ {0, 1}. The oscillator transitions from state 0 to
state 1 occur with a transition rate γ0, and from state 1
to state 0 with a transition rate γ1.

The interaction between units is modeled via a depen-
dence of the rates γ0 and γ1 on the states of all the neigh-
bors with which each given unit interacts. More precisely,
at each position in the array we define

ν~k(t) =
∑
~k′

f(~k′)s~k+~k′(t), (1)

where the sum is over the entire square lattice, with pe-
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riodic boundary conditions, and f is a normalized kernel
function which accounts for the range of the interaction,∑

~k

f(~k) = 1. (2)

Then the transition rates of the unit at location ~k now
depend on ν~k,

γ0 → γ0(ν~k) and γ1 → γ1(ν~k). (3)

A. All-to-all interactions of uniform strength

To better place our two models in context, we first
consider an all-to-all interaction of uniform strength, that
is, a kernel function

f(~k) =
1

L2
=

1

N
. (4)

Consequently, we have

ν~k(t) =
1

N

∑
~k′

s~k′(t) = n1(t), (5)

where n1(t) is the global density of oscillators in state 1.
Therefore the position dependence is no longer relevant,

γ0 → γ0(n1) and γ1 → γ1(n1). (6)

In the thermodynamic limit N →∞, the evolution of
the global density is described by the differential equation

ṅ1 = F (n1) = γ0(n1)(1− n1)− γ1(n1)n1. (7)

In this limit there are no finite-size fluctuations, so we
can call on the mean field relationship between the global
density, the mean global density, and the probability of
finding a unit in state 1 at time t,

lim
N→∞

n1 = 〈n1〉 = P1. (8)

Equation (7) is then also the master equation for the
probability P1(t). To describe the second order transition
from disorder to order, note that Eq. (7) has the form

ṅ1 = −∂UMF

∂n1
, (9)

where UMF = −
∫ n1

0
F (n)dn is a mean field potential.

Therefore, Eq. (7) dictates a relaxation dynamics that
tends to minimize UMF .

We introduce the symmetric potential that we have
introduced in our earlier studies [28, 29],

UMF (n1) =
1

4

[
ε− (n1 − 1/2)

2
]2
, (10)

which models a transition from disorder to order, as we
move the control parameter ε. For ε < 0, the minimum

energy corresponds to the disordered phase, n1 = 1/2,
where half of the units are in state 1 and the other half in
state 0. When ε > 0, the disordered state corresponds to
a maximum of the potential Eq. (10), which then exhibits
two new minima at n± = 1/2 ±

√
ε. These phases are

“ordered” states, where more than half of the units are in
the same state. The transition from disorder to order is
continuous (second order). The maximum possible value
of the control parameter is ε = 1/4, at which point all the
units are in the same state. We exclude values ε > 1/4
since these would place the minima n± outside of the
physically permissible range 0 < n1 < 1.

We associate the double-well potential Eq. (10) with
the transition rates

γ0 (n1) =
1

2
n21 +

1− 4ε

8
, (11)

γ1 (n1) =
1

2
(1− n1)

2
+

1− 4ε

8
, (12)

which satisfy the symmetry γ0 (n) = γ1 (1− n). Note
that the requirement that these rates be positive also
excludes values ε > 1/4.

As we showed in Ref. [28], for large but finite N the
deterministic evolution equation Eq. (7) for the global
density must be augmented by finite size fluctuations.
The appropriate description is now the Langevin equa-
tion

ṅ1 = F (n1) +

√
G(n1)

N
ξ(t), (13)

where F (n1) coincides with the mean field force of
Eq. (7), and ξ(t) is white Gaussian zero-centered δ-
correlated multiplicative noise, with

G(n1) = γ0(n1)(1− n1) + γ1(n1)n1. (14)

In the thermodynamic limit N → ∞ the last term on
the right hand side of Eq. (10) vanishes and the equation
reverts to the deterministic form. Note the appropriate
N−1/2 dependence of the additional term on system size.

Interpreting Eq. (13) in the Itô sense leads to the
Fokker-Planck equation for the probability P (n1, t) that
the fraction of units in state 1 is equal to n1 at time t,

∂

∂t
P (n1, t) = − ∂

∂n1
[F (n1)P (n1, t)]

+
1

2N

∂2

∂n21
[G(n1)P (n1, t)] . (15)

The steady state probability, that is, the stationary so-
lution of the Fokker-Planck equation, then is

Pst(n1) = C
exp [−2NUeff (n1)]

G(n1)
(16)

where C is the normalization constant, and

Ueff (n1) = −
∫ n1

0

F (n)

G (n)
dn. (17)



4

Therefore, for large enough N , the most likely states cor-
respond to the minima of potential Eq. (17). Although
this potential is modified from the potential Eq. (10) due
to the finite size effects, the minima of the two potentials
coincide at F (n1) = 0. We note that in contrast with our
previous work [28, 29], the choices of F (n1) and G(n1)
in the Langevin equation (13) insure that the transition
rates to/from the two states are symmetric, that is, the
fluctuations do not add a bias to one or the other state.

B. Interactions of variable strengths

We now move away from uniform global interactions
to our models that require nonuniform kernel functions

f(~k), cf. Eqs. (1) and (2). Here we introduce two dif-
ferent kernels. The first is a long tailed kernel describ-
ing interactions that decrease with distance as an inverse
power of the distance between units:

f(~k) =
Nn

(1 + k2)
n (18)

where Nn is a normalization constant and n controls the
tail of the interaction kernel. For small n the decay of the
interaction kernel is slow so we expect behavior similar to
the uniform global coupling model. As n increases, the
interaction becomes more and more local. For sufficiently
large values of n we expect the behavior of uncoupled
oscillators with no phase transition to order.

The second is a uniform local kernel,

f(~k) =

{
Nσ for k < σ.
0 otherwise,

(19)

Here Nσ is also a normalization constant and σ deter-
mines the range of the interaction. For small σ we ex-
pect the oscillators to remain disordered, while for large
σ we anticipate behavior similar to the uniform global
coupling model.

These two kernels allow us to separate and analyze
different qualitative aspects of the problem. While both
kernels can go from a local to an all-to-all interaction,
they do so in different ways. The long tailed kernel re-
veals the importance of the form of the decay of the inter-
action for the evolution of the system, while the uniform
kernel focuses exclusively on the range of the interaction.
The different behaviors of the two kernels are qualita-
tively illustrated in Fig. 1. Both kernels obey the proper
normalization Eq. (2), but the areas in the figure need to
be adjusted with the appropriate numbers of neighbors
to achieve this normalization.

C. Spatially extended mean field theory

It is convenient to reformulate this problem from a
discrete version to a continuous one. This approach was

 0

 0.08

 0.16

 0  1  2  3

f(k
)

k

FIG. 1: Dependence of the two kernels on distance. In
this figure we used n = 1.5 (smooth curve) and σ = 2.0
(rectangular curve). The comparison is qualitative, not

quantitative, in this figure.

used successfully in our earlier work in [26] for a one-
dimensional array of three-state units interacting with
the kernel function Eq. (19). The same approach can be
used here for two-state units interacting with an arbitrary
kernel function in two spatial dimensions. It is a mean
field approach that starts with transforming the lattice
into a continuous square, with

~k → ~x ∈ C1 = [0, 1]× [0, 1] . (20)

Here ~x = ~k/L and dx = L−1. Next we implement the
mean field approximation

ν~k(t) ≈ ν(~x, t) =

∫
C1
f(~x′)p1(~x+ ~x′, t)d2x′, (21)

where p1(~x, t) is the probability density for the unit at
position ~x to be in state 1 at time t. This probability
density obeys the equation

∂p1(~x, t)

∂t
= γ0(ν(~x, t))(1− p1(~x, t))

− γ1(ν(~x, t))p1(~x, t), (22)

which is the generalization of Eq. (7) to include spatial
location.

Equation (22) does not predict steady-state pattern
formation [27, 33–36], nor does it yield the formation of
permanent defects [37–41], as do similar descriptions in
other systems. However, as we show in the next sec-
tion, we find a remnant of sorts of these behaviors. We
show that the system displays a domain dynamics, often
called coarsening, similar to the genetic invasion observed
in population genetics in the case of disruptive selection
[27]. We will see that for ε > 0, that is, for ε above the
mean field critical point, we obtain results that can be
described as a two-step process, one that occurs on a fast
time scale and a second on a much slower time scale. In
the first, the system produces large local domains where
one of the two “ordered” states, p1 = n+ = 1/2 +

√
ε or

n− = 1/2−
√
ε, clearly dominates. On the slow time scale
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we observe domain dynamics (frequently called coarsen-
ing dynamics) aimed at establishing a global equilibrium
that consists of a completely uniform state with p1 = n+
or n− in the entire square. We next present numerical
results quantifying and confirming this description, and
we also elucidate the nature of the phase transition from
disorder to order for each model.

III. RESULTS

We carried out simulations of our models on 512× 512
lattices, with ε = 0.22 except where otherwise indicated.
The neighborhoods of all the units that contribute to
out results were circles of radius L/2 (L = 512), and
we used periodic boundary conditions. The finite size of
the lattice is sufficiently large so that it does not intro-
duce strange unphysical effects, that is, the lattice is large
enough so that its finite size does not introduce spurious
results, and the contributions of the interactions across
long distances are negligible. We tested larger lattices
and saw no changes in our results (except for the occur-
rence of longer transients, see below). We started from
two types of initial conditions: all the oscillators in one
state (uniform initial condition), and the states of the
oscillators randomly chosen with equal probability (ran-
dom initial condition). These two initial conditions are
close to one or the other steady states of the globally
coupled model.

A. Steady state

1. Long tail model

For the kernel function Eq. (18) with small n (long
tails), the oscillators approach the distributions of the
globally coupled model. As n increases and the interac-
tion becomes more and more local, the system smoothly
becomes uncoupled. In Fig. 2, we show the steady state
density of the less populated state dl as a function of n.
We choose to present dl instead of the density of one of
the two populations because each sample is equally likely
to arrive at a state where one or the other population is
dominant. Therefore, averaging the density of one pop-
ulation over different samples would lead to meaningless
results. The transition is smooth albeit rapid, i.e., it is a
second order transition.

The spatial structure brings a new feature into the
model not present in the globally coupled model, namely,
the appearance of density fluctuations (see Fig. 3). We
ascertained that the fluctuations in Fig. 3 are not finite
size effects by comparing this simulation on a lattice of
512× 512 sites with one on a lattice of 2048× 2048 sites
and seeing essentially the same distributions. Since finite
size fluctuations depend on lattice size, these two distri-
butions would be different. Also, finite size fluctuations
in Fig. 3 would scale as ∼ 1/N = 1/512 = 0.002, that

 0

 0.2

 0.4

 0.6

 1  2  3  4  5

d l

n

FIG. 2: Steady state density of the less populated state
(averaged over 10 samples) as a function of n (purple)
for the long tail model. The horizontal (green) line is
the lower stable steady state density in the globally

coupled model.

y

x

FIG. 3: Snapshot of the steady state (4000 time units
after the start of the simulation) for n = 2.6. The

oscillators in state 0 are represented by red dots and
those in state 1 by white dots. The simulation is over a
lattice of 512× 512 two-state units; the figure shows 1/4

of the lattice, namely, a 256× 256 portion.

is, orders of magnitude smaller than those visible in the
figure. Note that the choice of n in this figure places the
system at the start of the regime of the random steady
state, cf. Fig. 2.

In order to quantify these density fluctuations further,
we divided the lattice into Nl = (L/l)2 boxes of side l and
computed the density in each box. Next we defined the
parameter ∆̃ as the mean square deviation of the density
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 0  0.1  0.2  0.3  0.4  0.5

∆~  (4
)

dl

FIG. 4: Parameter ∆̃ for random samples as a function
of the density of the less populated state in the long tail

model. The reason for the non-monotonic behavior is
not obvious.

of the boxes from the lattice density,

∆̃(l) =
1

Nl

Nl∑
k=1

(
n
(k)
1 − n1

)2
. (23)

The parameter ∆̃ would vanish for a completely uniform
distribution and is nonzero for a random distribution (see
Fig. 4). The parameter increases as fluctuations increase.
Here we wish to quantify the density fluctuations due to
the model and not those due to a given distribution. A
better choice to quantify those purely due to the model
is to define a new parameter ∆ that subtracts the effect
of the random fluctuations from ∆̃(l),

∆(l) = ∆̃(l)− ∆̃R(l), (24)

where the subscript R stands for random sample. To cal-
culate ∆R for a given density n1 we randomly distribute
n1 × L2 units in state 1 on an L × L lattice and the re-
maining oscillators in state 0. We calculate the value of
∆̃(l) according to Eq. (23) for this lattice, and average

this value of ∆̃ for many samples. This average value is
∆̃R(l). Figure 5 shows this parameter as a function of
n. As we can see, the density fluctuations are negligible
for small n (because we approach the globally coupled
regime) and for large values of n (because the effects of
the random fluctuations in this regime have been sub-
tracted), but is appreciable around the transition from
the globally coupled state to the uncoupled state. The
appearance of fluctuations near a transition is not sur-
prising, but cluster formation is nevertheless interesting
and even unanticipated.

Finally, in Fig. 6 we show a phase diagram for this
system as a function of the exponent n and the parameter

 0

 0.1

 0.2

 0.3

 1  2  3  4  5

∆ 
(4

)

n

FIG. 5: Parameter ∆(4) as a function of n. See text for
description.

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0  0.05  0.1  0.15  0.2

n

ε

uncoupled

coupled

FIG. 6: Phase diagram for the long tail model as a
function of the exponent n and the parameter ε. The

circles indicate the results of our simulations. We have
joined the circles by a line as a guide to the eye.

ε. The disordered steady state is associated with the
uncoupled regime, and the ordered steady state with the
coupled regime. To decide whether to place the system
in the coupled or uncoupled regime for a given pair of
parameters n and ε, we start simulations from two initial
conditions, one in which half of the units are in each
state and the other with all units in a single state. We
let the system evolve to the steady state, which is (or
should be) the same for both cases. If the steady state
has half of the units in each state, we place it in the
uncoupled regime; otherwise it is in the coupled regime.
To deal with fluctuations, we place the system in the
uncoupled regime if the fluctuations are greater than the
average density of the most occupied state. We especially
focus on parameter pairs that place us at and near the
boundary between the two phases.
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 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1  2  3  4  5

d l

σ

FIG. 7: Steady state density of the less populated state
as a function of σ (purple) for the uniform kernel

model. The horizontal (green) line is the stable steady
state density of the globally coupled model. The first

order transition occurs at σ ≡ σc =
√

2.

2. Uniform kernel model

For the uniform kernel, we observe a discontinuous
(first order) transition as we increase the range of the in-
teraction for fixed ε. If the radius of interaction is small
enough so that only first neighbors interact, the system
evolves to a state where almost half of the oscillators are
in each state. However, even if only the next neighbors
fall into the range of interactions (which corresponds to

the value σ ≡ σc =
√

2), the steady state density jumps
to a value near the one of the globally coupled system
(see Fig. 7). While the discontinuity is caused by the
discreteness of the lattice, the abrupt jump (first order
transition) is not something we foresaw. That is, due to
the discreteness of the lattice, it is expected that changes
in the state of the system will only occur at certain val-
ues of σ so that the number of neighbours under the
influence of the interaction kernel change. However, the
abrupt change is not a priori obvious.

Here too in Fig. 8 we present a phase diagram as a
function of the range σ and the parameter ε. The hor-
izontal lines connecting circles for small σ are “real” in
that in this regime the critical value of σ is the same for
finite intervals of ε. This is a consequence of the dis-
creteness of the lattice. Small changes in the range σ in
this regime may not lead to changes in the number of
neighbors. What is more, for sufficiently large values of
ε (near 0.25), even nearest neighbor interactions lead to
an ordered state.

B. Transient

A uniform initial condition quickly evolves to the
steady state with a very short transient. If we start with

 0
 5

 10
 15
 20
 25
 30

 0  0.05  0.1  0.15  0.2  0.25

σ

ε

uncoupled

coupled

FIG. 8: Phase diagram for the uniform kernel model as
a function of the range parameter σ and the parameter
ε. The circles indicate the results of our simulations. We

have joined the circles by a line as a guide to the eye.

all oscillators in the same state, they will likely either
evolve to an uncoupled steady state or to a steady state
with a larger prevalence of oscillators in the initial state,
depending on the range of interaction (σ) or the tail of
the distribution (n). This evolution ends quickly. How-
ever, when we start the system with half of the oscillators
in each state and the interaction between the oscillators
is strong enough (small n, large σ), there is a competi-
tion between the two possible steady states. The system
may evolve to the final state with larger prevalence of
one or the other state with equal probability. However,
this competition leads to the formation of large domains
of the two possible steady states which compete. Ulti-
mately, one domain wins the battle, but the evolution
may be very slow and the transient may follow different
paths.

We can group the dynamical evolution of the system to
the steady state into three qualitatively different groups.
The first is a trivial fast direct evolution without the for-
mation of any large domains, as described above. This
very fast equilibration typically takes about 100 units of
time. The very early evolution of the two other routes
to the steady state is similar, but quickly begins to differ
from the fast equilibration and from each other. In both
cases we see the formation of large domains in which one
or the other state is dominant (see Figs. 9 and 10). In
one, the more common of the two, there appear large lo-
calized domains of mainly one state surrounded by large
domains in which the other state dominates. The latter
tend to extend all the way to the borders of the array,
while the former are in the interior (see Fig. 9). The ap-
pearance of the large domains in the interior slows down
the evolution to the steady state. Eventually the popu-
lation that surrounds an interior domain encroaches in-
ward (by causing transitions of the units in the interior
domain), causing it to become smaller and smaller. The
surfaces that need to be encroached become smaller and
smaller and the process speeds up, until the interior do-
mains are destroyed. The evolution to the steady state in
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FIG. 9: Snapshots of the system configuration where
large transient localized domains appear, with large

regions of one state surrounding interior domains of the
other. The four panels left to right and top to bottom

correspond to the following simulation times:
t = 500, 2500, 9000, 12500. The first panel (t = 500)
shows the early evolution, the next one (t = 2500) a
later snapshot where a large localized domain of one

species is entirely surrounded by the other species. The
third panel (t = 9000) illustrates the decrease in size of
the interior domain. The final panel (t = 12500) shows
the uniform stationary state, which here happens to be
the “red” one. For this simulation we used the long tail
kernel with n = 1.6 and a random initial condition with

half of the oscillators in each state.

this case typically takes from 5000 to 20000 units of time.
In the other case the configuration in the transient regime
of large domains occurs in stripes that extend throughout
the lattice in one direction (see Fig. 10). This competi-
tion involves encroachment surfaces that do not decrease
in size (even as the stripes of one state or the other be-
come narrower) so that the transient dynamics to the
steady state is longer, around 130000 units of time. The
reason for the slower dynamics is quite evident. In both
cases, the evolution to the steady state occurs in three
steps. First, on a very fast time scale, domains are cre-
ated. Next, on an intermediate time scale, the curvature
of the domains is smeared out. These first two steps are
very similar in both cases. However, in the stripe case we
are left with an almost one-dimensional problem, while
for bubble type domains the two-dimensional character-
istic of the problem causes the bubbles to disappear much
more rapidly.

IV. SUMMARY AND FINAL REMARKS

In this work we have considered arrays of two-state
(“on-off”) units with Markovian transition rates between

FIG. 10: Snapshots of another realization of the same
system with the same parameters as in Fig. 9 but with

a new initial condition. Here again large localized
domains appear. The four times here are

t = 500, 3000, 100000, 135000. The first panel (t = 500)
shows the early evolution, where it is not yet entirely
clear whether stripes or interior domains will develop.
The second panel (t = 3000) clearly shows the early

evolution of a striped pattern. The third panel
(t = 100000) shows neat strips with a majority of the
units in the “red” state. The final panel (t = 135000)

shows the uniform stationary state, which here again is
the “red” state.

the two states. The coupling among units is reflected in
the dependence of the transition rates of each unit on the
states of the units to which it is coupled at the instant
of the transition. The transition rates of each unit thus
depend on time. In earlier work [28, 29] we considered
such arrays with global uniform coupling, that is, where
the coupling is all-to-all and of equal strength to all. In
that model there is therefore no spatial structure.

Here we have analyzed arrays in which spatial struc-
ture plays a role in that the interactions between units
depends on the distance between them in a lattice array.
We have considered two different distance dependences:
in one, which we call the long tail model, the distance
dependence is an inverse power law with a power law
parameter n that reflects the decay of the interaction
strength with distance. A large value of n leads to a
rapid decay of interaction strength with distance, while
a small value indicates a slow decay, which approaches
the global uniform coupling model. The second distance
dependence we have considered, which we call the uni-
form kernel model, is one that is uniform up to a distance
σ and sharply falls to zero beyond this distance. As
σ increases, this model also approaches the global uni-
form model. However, the two models behave very dif-
ferently before the global uniform global coupling model
is reached. In addition to the parameters n and σ, the
two models also include an interaction strength parame-
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ter that we have called ε in both cases.
In all cases we have considered an effective potential

that has a single minimum at n+ = n− = 1/2 when ε < 0
and two minima at 1/2±

√
ε when ε > 0. In the uniform

global coupling case the steady state at long times is
either “disordered”, with half of the units randomly in
one state and the other half in the other (ε < 0), or
“ordered”, in which more than half of the units are in one
of the two minima of the potential when ε > 0. When one
starts with a disordered initial condition, the system goes
to one or the other steady state depending on the value of
ε, and the transition as a function of ε is smooth (second
order), that is, it is a second order transition. In the
two cases considered in this paper we have analyzed the
nature of the transition from a disordered to an ordered
steady state as a function of the exponent n in the long
tail model, and as a function of σ in the uniform kernel
model, for fixed value of ε. We have determined that
the transition is of second order (smooth) in the long tail
model and of first order (sharp) in the uniform kernel
model. We have also presented phase diagrams for both
models.

The approach to the steady state presents interesting
differences depending on the initial condition. When we
begin with a uniform state, that is, with all units in the
same state, the system evolves to the steady state, be
this ordered or disordered (depending on the value of ε),
in a very short time, of order of 100 time steps (all units
are updated synchronously in one time step). If we are
in the coupled regime as described in Figs. 6 and 8 and
if the initial condition has more units in one state than
in the other (“more” here meaning a difference in num-
ber greater than those associated with fluctuations), the
system evolves toward an ordered steady state consisting
entirely of the units initially in the majority. However, if

the initial state is disordered, then the evolution to the
ordered steady state is quite different. First, the system
quickly evolves to a state with large domains of a major-
ity of units in one state or the other. This first step occurs
on a time scale of about 100 time steps. Then, these do-
mains compete with one another toward a steady state in
which one or the other majority state “wins”. This evolu-
tion is slow in either model, and may occur in two differ-
ent ways. In one, smaller domains are fully surrounded
by the opposite domains which then encroach across the
common boundaries. Since the common boundaries de-
crease in length as the encroachment continues and the
inner domains become smaller and smaller, the approach
to the ordered steady state speeds up until one state wins.
This process occurs over approximately 5000 to 20000
units of time. In the other, the transient domain consists
of stripes of the two majority states that cross the entire
system. The encroachment boundaries therefore do not
decrease in length as time proceeds until one or the other
disappears, and this process is therefore slower, occurring
on a time scale of around 130000 units of time. In both
cases all boundaries eventually disappear and the entire
system relaxes to a single species.

In earlier work we showed that in a two-state array no
transition to order or to oscilatory behavior can occur in
our approach to coupling unless at least one of the two
transition rates has a memory [32]. In this work we have
dealt exclusively with Markovian transition rates, and so
the ordered stationary states are static (of course with
fluctuations). We have here shown that the spatial inter-
action structures exhibit different interesting routes to
the ordered steady states, and that the tail and range of
interactions brings new features to these routes that are
completely absent in all-to-all uniform interaction mod-
els.
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