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We numerically examine clogging transitions for bidisperse disks flowing through a two dimen-
sional periodic obstacle array. We show that clogging is a probabilistic event that occurs through
a transition from a homogeneous flowing state to a heterogeneous or phase separated jammed state
where the disks form dense connected clusters. The probability for clogging to occur during a fixed
time increases with increasing particle packing and obstacle number. For driving at different angles
with respect to the symmetry direction of the obstacle array, we show that certain directions have a
higher clogging susceptibility. It is also possible to have a size-specific clogging transition in which
one disk size becomes completely immobile while the other disk size continues to flow.

A loose collection of particles such as grains or bubbles
can exhibit a transition from a flowing liquidlike state to
a non-flowing or jammed state as a function of increasing
density, where the density φj at which the system jams
is referred to as Point J [1–3]. Jamming has been exten-
sively studied in bidisperse two-dimensional (2D) pack-
ings of frictionless disks, for which φj ≈ 0.844, and where
the system density is uniform at the jamming transition
[1, 2, 4]. Related to jamming is the phenomenon of clog-
ging, as observed in the flow of grains [5–8] or bubbles
[9] through an aperture at the tip of a hopper. The clog-
ging transition is a probabilistic process in which, for a
fixed grain size, the probability of a clogging event occur-
ring during a fixed time interval increases with decreasing
aperture size. A general question is whether a system can
exhibit features of both jamming and clogging. For ex-
ample, in a system containing quenched disorder such as
pinning or obstacles, jammed or clogged configurations
can be created by a combination of particles that are
directly immobilized in a pinning site as well as other
particles that are indirectly immobilized through con-
tact with obstacles or pinned particles. In many systems
where pinning effects arise, such as for superconducting
vortices or charged particles, the particle-particle inter-
actions are long range, and there is no well defined areal
coverage density at which the system can be said to jam
[10], so a more ideal system to study is an assembly of
hard disks with strictly short range particle-particle in-
teractions. Previous studies have described the effect of
a random pinning landscape on transport in a 2D sample
of bidisperse hard disks [11], while in other work on the
effect of obstacles, the density at which jamming occurs
decreases when the number of pinning sites or obstacles
increases [12, 13].

Here we examine a 2D system of bidisperse frictionless
disks flowing through a square periodic obstacle array
with lattice constant a composed of immobile disks. The
total disk density φt is defined as the area coverage of
the mobile disks and the obstacles. We find that for φt
far below the obstacle-free jamming density φj , the sys-
tem can reach clogged configurations by forming a phase
separated state consisting of a high density connected
cluster surrounded by empty regions, and that the clog-

ging probability Pc during a fixed time interval depends
on both a and φt. There is also a strong dependence of
Pc on the angle θ between the driving direction and the
x-axis symmetry direction of the obstacle lattice, with an
increase in Pc for certain incommensurate angles. Over a
range of θ values we observe a novel size-dependent clog-
ging effect in which the smaller disks become completely
jammed while a portion of the larger disks continue to
flow. This work is relevant for filtration processes [14–
16], the flow of discrete particles in porous media [17, 18],
and the flow and separation of of colloids on periodic sub-
strates [19–22].
Model and Method— We consider a 2D square system

of size L× L where L = 60 with periodic boundary con-
ditions in the x and y-directions. The sample contains
Nl disks of diameter σl = 1.4 and Ns = Nl disks of di-
ameter σs = 1.0, giving a size ratio of 1 : 1.4. This
same size ratio was studied in previous works examining
jamming in bidisperse obstacle-free disk packings, where
jamming occurs at φj = 0.844 and is associated with a
contact number of Z = 4.0 [1–4]. We place Np obsta-
cles, modeled as immobile disks of diameter σs = 1.0,
in a square lattice with lattice constant a. The disks
interact through a repulsive short range harmonic force,
Finij = k(σij−|rij |)Θ(σij−|rij |)r̂ij where σij = (σi+σj)/2
is the sum of the radii of disks i and j, rij = ri − rj ,
r̂ij = rij/|rij |, and Θ is the Heaviside step function. The
spring constant is set to k = 300 which is large enough
to ensure that the overlap between disks for the largest
driving force we consider remains small. To prepare the
initial disk configuration, we alternately place small and
large disks in the sample at randomly chosen available
spaces that are not already occupied by disks or obsta-
cles. Then we apply a constant driving force Fd to the
mobile disks which could arise from a gravity or fluid in-
duced flow. The dynamics for a given disk i at position
ri is obtained by integrating the following overdamped
equation of motion, appropriate for colloidal particles or
for disks on a frictional surface for which inertial effects
can be neglected:

η
dri
dt

=

N∑
i 6=j

Finij + Fd . (1)
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FIG. 1: (a) The average disk velocities 〈Vx〉, (b) fraction of
disks in a cluster Cl, and (c) average contact number Z versus
time in simulation time steps for 2D bidisperse disks moving
through a square periodic obstacle array with total disk den-
sity φt = 0.54, lattice constant a = 3.0, and constant external
drive Fd = 0.025 applied in the positive x-direction. We il-
lustrate three cases: steady state flow (blue), full clogging
(red), and partial clogging (green). (d) Distribution P (φ) of
local disk density φ in 2× 2 spatial regions in the initial state
(blue) and after reaching a clogged state (red), averaged over
40 clogged realizations.

Here N = Ns + Nl + Np is the total number of disks
and the damping constant η determining the proportion-
ality between the disk velocity and the forces acting on
the disk is set to unity. The external driving force is
given by Fd = Fd(cos(θ)x̂ + sin(θ)ŷ), where θ is the an-
gle of the driving direction with respect to the positive
x axis. We take Fd = 0.025 but, provided Fd is suffi-
ciently small, our results are not sensitive to the choice
of Fd. In the absence of obstacles, all the disks move in
the driving direction at a speed of Fd/η. The total disk
density φt is the area fraction covered by the free disks
and obstacles, φt = 1

4π(Nlσ
2
l + (Ns + Np)σ

2
s)/L2. To

quantify the clogging transition, we monitor the average
velocity of the mobile disks along the x and y directions,

〈Vx,y〉 = (Ns +Nl)
−1 ∑Ns+Nl

i=1 vi · (x̂, ŷ), where vi is the
velocity of disk i. To ensure that the system has reached
a steady state, we run all simulations for 3× 108 simula-
tion time steps and average the values of 〈Vx〉 and 〈Vy〉
over 105 simulation time steps. Generally we find that
clogging occurs within 1×107 simulation time steps. We
define Pc to be the probability that the system will reach
a clogged state with 〈Vx〉 = 0.0 after a total of 3 × 108

simulation time steps, and perform 100 realizations for
each value of φt and a.

Results— We first consider the θ = 0 case with the ex-
ternal drive applied along the x direction. For a = 3.0 we

find that the clogging probability Pc = 1.0 for φt > 0.62,
Pc ≈ 0 for φt < 0.52, and Pc = 0.31 at φt = 0.54. We il-
lustrate three representative realizations of the φt = 0.54
sample in Fig. 1(a,b,c) showing steady state flow, com-
plete clogging, and partial clogging in which at least
three-quarters of the disks are no longer moving. The
plot of 〈Vx〉 versus time in Fig. 1(a) indicates that in re-
alizations that reach a clogged state, the system does not
pass instantly from a flowing to a non-flowing state, but
instead exhibits a series of steps in which a progressively
larger number of disks become clogged, with 〈Vx〉 con-
tinuing to diminish until it reaches zero. This behavior
is different from that typically observed in hopper flows,
where a single event brings the flow to a sudden and com-
plete halt. The red curve in Fig. 1(a) contains time in-
tervals during which the number of flowing grains, which
is directly proportional to the value of 〈Vx〉, temporar-
ily increases prior to the system reaching a final clogged
state with 〈Vx〉 = 0 after 2.5×107 simulation time steps.
Since there are no thermal fluctuations or external vibra-
tions, once the system is completely clogged, all of the
dynamical fluctuations disappear and the system is per-
manently absorbed into a clogged state. There can also
be a steady flowing state in which the disks no longer
undergo any collisions and remain unclogged. When col-
lisions produce nonequilibrium fluctuations, it is possible
that if we were to consider a longer time interval, some
of the flowing or partially clogged states could fully clog.
In Fig. 1(b) we plot the fraction Cl of mobile disks that
are in the largest connected cluster versus time, while in
Fig. 1(c) we show the corresponding average disk con-
tact number Z. For the realization that fully clogs, Cl
gradually increases with time, indicating that there is
a single growing cluster, while Z also increases. When
〈Vx〉 reaches zero, Cl = 0.98, indicating that almost all
the disks have formed a single cluster, while Z = 3.25,
which is well below the critical value Zc = 4.0 expected
at the obstacle-free jamming transition. In contrast, for
the system that remains flowing, 〈Vx〉 = 0.025, indicat-
ing that almost all of the mobile grains are freely flowing.
At the same time, Cl is close to zero and Z = 2.0 since
the disks tend to form effectively one-dimensional chains.
Changing the system size changes the time required to
reach a clogged state, but the nature of the clogged state
remains the same.

In Fig. 2(a) we show an image of the initial uniform
density disk configuration for the system in Fig. 1(a)
which reaches a clogged state, while we show the final
〈Vx〉 = 0 clogged state in Fig. 2(b). The mobile disks
phase separate into a high density connected cluster sur-
rounded by empty regions. In contrast, Fig. 2(c) shows
a late time image of the sample from Fig. 1(a) that re-
mains flowing. Here the overall disk density is uniform
and the motion is confined in one-dimensional (1D) chan-
nels that run between the rows of obstacles. For the
partially clogged sample at late times, Fig. 1(b) indi-
cates that the cluster fraction Cl = 0.84 is lower than
the value Cl = 0.98 observed in the fully clogged state,
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FIG. 2: Images of the obstacle locations (green circles) and
the mobile disks (large disks: blue; small disks: orange) for
the samples shown in Fig. 1 with a = 3.0 and φt = 0.54.
(a) Initial configuration of the sample that clogs. (b) Final
clogged configuration of the same sample. (c) Late time con-
figuration of the flowing sample. (d) Late time configuration
of the partially clogged sample.

and Fig. 2(d) shows that a large jammed cluster forms,
while in the middle of the sample there is a region of
uniform disk density through which the grains flow in
1D channels. The partially clogged state thus combines
features of the clogged and flowing states in Fig. 2(b,c).

In Fig. 1(d) we plot the distribution P (φ) of the local
packing density φ at initial and late times for a sample
that reaches a clogged state. To measure φ, we divide the
sample into squares of size 2×2 and find the area fraction
of each square covered by free disks and obstacles. In the
initial state, there is a peak in P (φ) centered at the total
disk density of φt = 0.54. In contrast, in the clogged state
P (φ) has multiple peaks centered at φ = 0 from empty
regions, φ = 0.2 from the obstacle density, and φ = 0.82
from clogged regions, which have a density close to the
free disk jamming density.

In Fig. 3(a) we plot the clogging probability Pc ver-
sus φt for samples with obstacle lattice constant ranging
from a = 2.5 to a = 3.33 obtained from 100 realiza-
tions for each value of φt. When a = 3.33, Pc = 0 for
φt < 0.79, and there is a sharp increase to Pc = 1.0 at
φt = 0.8, indicating that when the spacing between ob-
stacles is large, a high density of mobile particles must
be introduced in order for the system to clog. We de-
fine the critical density φct as the value of φt at which
Pc passes through Pc = 0.5. As a decreases, φct also de-
creases, and at a = 2.5, φct = 0.49. For some values of a

FIG. 3: (a) The clogging probability Pc vs φt for varied ob-
stacle lattice constant a = 2.5 (dark blue circles), 2.609 (light
blue squares), 2.727 (light green diamonds), 2.857 (dark green
up triangles), 3.0 (orange left triangles), 3.158 (red down tri-
angles), and 3.33 (magenta right triangles). (b) The average
value of Z for realizations that clog vs a increases monoton-
ically. (c) Angles θs (red squares) and θl (blue diamonds) at
which x-direction channeling is lost for the small and large
disks, respectively, vs a. For driving angles falling within the
green shaded region, size-dependent clogging can occur.

there are particular combinations of disk configurations
that can better fit in the constraint of a square obsta-
cle lattice, so φct does not decrease strictly monotonically
with a. The combination of our finite sample size and
the square symmetry of our obstacle lattice constrains
us to a discrete set of values for a. When we average
the contact number Z over only realizations that clog,
we find a monotonic increase in Z with a, as shown in
Fig. 3(b), where Z increases from Z = 2.9 at a = 2.5 to
Z = 3.6 at a = 3.33. In principle, Z will approach the
value Z = 4.0 for very large values of a or in the limit of
a single obstacle when φt = φj ≈ 0.84; however, the time
required to reach clogged states at large a increases well
beyond our simulation time window. We can compare
the ratios Rlc = a/σl and Rsc = a/σs to the critical pore
size Rc for hopper flow clogging identified in Ref. [23].
At a = 3.33 we have Rlc = 3.33 and Rsc = 2.37, giving an
average value of Rc = 2.85, close to the value Rc = 2.5
to 3.5 for vibrated hoppers in Ref. [23] and to the value
Rc = 3.0 for hopper flow in Ref. [24].

Directional dependence and size dependent clogging—
We next consider the effect of changing the direction θ
of the drive relative to the x axis symmetry direction of
the square obstacle array. In Fig. 4(a) we plot Pc versus
θ in samples with φt = 0.527 and a = 2.857. For each
value of θ, we perform 100 realizations. Here, Pc = 0 for
θ = 0, consistent with Fig. 3(a). As θ increases, a local
maximum in Pc with Pc = 0.3 appears near θ = 10. This
is followed by a drop to Pc = 0 over the range 15◦ < θ <
25◦, and an increase to Pc = 0.98 for 25◦ ≤ θ < 40◦,
with a dip to Pc = 0.72 occurring near θ = 45◦. Due the
symmetry of the obstacle lattice, the same features repeat
over the range 45◦ < θ < 90◦. The increase of Pc near
θ = 10◦ occurs due to a breakdown of the 1D channeling
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FIG. 4: (a) Pc vs θ, the driving direction angle, in samples
with φt = 0.5272 and a = 2.857. Pc is enhanced for θ > 25◦.
(b) 〈Vx〉 vs time in simulation time steps for the large disks
only (red), the small disks only (blue), and all disks (purple)
for a driving angle of θ = 20◦. We find a size dependence, with
only the smaller disks becoming clogged while the large disks
continue to flow. (c) The disk configuration in the clogged
state at θ = 320 from panel (a). (d) The disk configuration
for the size-dependent clogged state from panel (b).

that arises for the θ = 0◦ flow. Similarly, the dip in
Pc near θ = 45◦ appears when the disks follow 1D flow
channels along the diagonal direction. Angles such as
θ = 0◦ and θ = 45◦ allow 1D channeling motion, whereas
for 25◦ < θ < 40◦ there is no easy flow direction so the
disks are forced to collide with the obstacles, producing
an increase in Pc. In Fig. 4(c) we illustrate a clogged
state that is aligned with the driving angle of θ = 32◦.

For 20◦ ≤ θ ≤ 24◦ we observe a size-dependent clog-
ging behavior in which the smaller disks become com-
pletely clogged while a portion of the larger disks con-
tinue to flow. In Fig. 4(b) we plot 〈Vx〉 for the large
and small disks separately and for all disks combined
for a driving angle of θ = 20◦. After 2 × 107 simulation
time steps, 〈Vx〉 = 0 for the small disks, which clog com-
pletely, while the larger disks saturate to a steady state
flow. This result is counter-intuitive since it might be ex-
pected that the larger disks would clog first. In Fig. 4(d)
we show a snapshot of the size-dependent clogged state
from Fig. 4(b). All of the smaller disks are jammed
in a cluster along with a portion of the larger disks,
while in the lower density regions there are a number
of larger disks undergoing channeling motion along the
x-direction. The size-dependent clogging can be under-

stood as a consequence of a directional locking effect [19–
22, 25] in which the flow of the larger disks remains locked
to the θ = 0◦ direction of the obstacle lattice while the
flow of the smaller disks follows the angle of the drive,
which increases the chance for the smaller disks to be-
come clogged. According to a simple geometric argument
[26], the driving angle θm at which a disk of size σm ceases
to channel along the x direction between obstacles and
begins to move in the driving direction is given by the real

root of tan−1
[

(cos(θm)−sin(θm))
2a/(σm+σs)−(sin(θm)+cos(θm))

]
−θm = 0. At

a = 2.857 the solutions are θs = 20.49◦ and θl = 24.84◦

for the small and large disks respectively, giving a window
of size-dependent clogging that agrees with the numerical
results. The variation of this window with a appears as a
shaded region in Fig. 3(c). The directional locking effect,
in which particles preferentially move along lattice sym-
metry directions, has been observed for colloids [19–22]
and superconducting vortices [25] moving over periodic
substrates. It can be used to perform particle separation
by having one species lock to a symmetry direction while
the other does not. In our case, the disk size that does not
undergo directional locking ends up in a clogged state,
suggesting that species separation by selective clogging
could be a new method for particle separation.
Conclusion— We have investigated the clogging tran-

sition for a bidisperse assembly of frictionless disks mov-
ing through a two-dimensional square obstacle array. We
find that the probability of clogging during a fixed time
interval increases with increasing total disk density φt
and decreases with the obstacle spacing a. For disk den-
sities well below the obstacle-free jamming density, the
clogged states are phase separated and consist of a con-
nected high density jammed cluster surrounded by a low
density disk-free region. In the clogged state, the contact
number Z increases monotonically with decreasing ob-
stacle density. We also find that the clogging probability
has a strong dependence on the angle between the driving
direction and the symmetry axes of the square obstacle
array. The clogging is enhanced for incommensurate an-
gles at which the 1D channeling flow of the disks between
the obstacles is suppressed. For a window of drive an-
gles, a size-dependent clogging effect arises in which the
smaller disks become completely clogged while a portion
of the larger disks remain mobile. Here the motion of the
larger disks remains locked along the x-axis of the obsta-
cle array whereas the smaller disks move in the driving
direction. This suggests that selective clogging could be
used as a particle separation method.
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