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We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in
a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed
mapping so that it ensures equivalence of not only the averages, but also optimal representation
of fluctuations in currents and density. Our mapping leads to a natural decomposition of the
entropy production in stochastic pumps similar to the “housekeeping” heat. As a consequence of
the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic
pumps are shown to satisfy a universal bound determined by the steady state entropy production.

Nonequilibrium steady states are an essential
paradigm for describing nanoscale biological ma-
chines, such as molecular motors that extract work
from chemical gradients [1]. When a system is cou-
pled to reservoirs with different chemical potentials,
the dynamics breaks detailed balance and persistent,
directed motion can be used to perform mechani-
cal work. Such a system is typically described as
a Markov process with time-independent rates that
depend both on the external chemical gradient and
internal dynamics.

Promising applications across many disciplines
have motivated efforts to design artificial molecu-
lar machines that behave like those in biological set-
tings. Nonequilibrium steady states, however, have
proved difficult to engineer [2]. Time-dependent ex-
ternal perturbations offer an alternative route to
breaking detailed balance. Indeed, many synthetic
nanoscale machines are implemented as “stochastic
pumps,” in which currents are generated by periodi-
cally varying an external potential [3–7]. A stochas-
tic pump can be modeled as a non-homogeneous
Markov jump process with instantaneous Arrhenius
rates that are determined by time-dependent energy
levels and barrier heights [8–10].

Recently, Raz et al. [10] proposed a mapping be-
tween time-independent steady states and periodi-
cally driven stochastic pumps that offers a set of de-
sign principles for engineering biomimetic nanode-
vices. While the mapping ensures that the aver-
age properties are asymptotically equivalent in both
representations, it makes no guarantees about the
fluctuations. At the nanoscale, however, fluctua-
tions play a crucial role in determining character-
istics like work and efficiency in finite-time mea-
surements [11, 12]. Indeed, fluctuations in both ef-
ficiency and current have become a central focus
in nonequilibrium statistical mechanics: theoreti-
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FIG. 1. (a) A schematic of the stochastic pump under
consideration. Symmetric barriers Bij and energy levels
Ei parametrize Arrhenius rates and are varied periodi-
cally in time to generate a current. The corresponding
nonequilibrium steady state representation of the pump
has no time-dependence, but rather rates that break de-
tailed balance. (b) The time periodic steady state prob-
abilities for each site on the graph are shown over an en-
tire period τ . The solid lines show the time-dependent
occupation of the pump. The dashed lines show the av-
erage occupancy per period, a property matched by the
corresponding steady state.

cal developments have predicted universal properties
of fluctuating nanoscale machines [11, 13–15] and
experimental realizations of nanoscale engines have
drawn particular attention to the impact of fluctua-
tions on measurements of efficiency [7, 16].

Translating between nonequilibrium steady states
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and stochastic pumps relies on the so-called
“dynamical equivalence principle” of Zia and
Schmittmann [17]. This principle stipulates that
nonequilibrium steady states are characterized by
the average currents and the average density. For
Markov jump processes, the asymptotic fluctuations
of a nonequilibrium steady state, however, are not
dictated by these average properties alone.

Developments in large deviation theory, in partic-
ular the Level-2.5 formalism, have provided a gen-
eral characterization of fluctuations away from the
average behavior in Markov jump processes and dif-
fusions [18–20]. In this framework, both the average
currents and their fluctuations are uniquely deter-
mined by the empirical density,

ρx =
1

tobs

∫ tobs

0

dt δz(t),x, (1)

with z(t) denoting the state at time t, and the em-
pirical flow,

qyx =
1

tobs

∫ tobs

0

dt δz(t−),xδz(t+),y, (2)

which, roughly, counts the number hops from state
x to y. It is important to note that the empirical
flow contains more information than the empirical
current; the latter specifies only the difference be-
tween the flow in the forward and reverse directions
jxy = qxy − qyx. For example, the empirical current
would not distinguish between a trajectory in which
there are 100 x → y hops and 80 y → x hops from
one in which there are 20 x → y hops and 0 in the
opposite direction, while the flows would be dramat-
ically different. The large deviation rate function,
I(ρ, q), quantifies the rate of decay of probability of
a joint observation of density and flow,

P (ρ, q) � exp(−tobsI(ρ, q)). (3)

The symbol � indicates a logarithmic equivalence
between I(ρ, q) and limtobs→∞−1/tobs lnP (ρ, q).
For both jump processes and diffusions, the rate
function I can be calculated explicitly [18, 19]. Once
the joint rate function for empirical density and em-
pirical flow is known, fluctuations in currents can be
computed via the contraction principle [21].

The large deviation formalism suggests a stricter
requirement for dynamical equivalence among jump
processes: if the asymptotic form of the fluctuations
is to be accurately captured, then it is not the aver-
age currents, but rather the average flows that must
be used to describe the dynamics of a nonequilibrium
steady state; a detailed discussion is provided in the
Supplemental Material [22]. This is a more rigid pre-
scription, as detailed below. Further, these insights

motivate a solution to the mapping problem between
stochastic pumps and nonequilibrium steady states
that preserves the fluctuations. Interestingly, in or-
der to optimally describe current fluctuations of a
stochastic pump, the corresponding nonequilibrium
steady state must have a lower average entropy pro-
duction rate than that of the pump. The origin of
this “excess” entropy production can be explained
with a simple decomposition of the entropy produc-
tion of the stochastic pump [23–25].

The nonequilibrium steady state representation of
the pump satisfies a universal lower bound on the
magnitude of its current fluctuations, dictated by
the total entropy production less the excess [14, 15,
26]. As a consequence of this splitting, we demon-
strate that, in a perturbative limit, stochastic pumps
satisfy a universal bound on their current fluctua-
tions, dictated by the entropy production of the cor-
responding steady state. We also probe the break
down of this limit under strong driving, as discussed
further in the Supplemental Material [22]. Taken to-
gether, these insights offer a powerful set of design
principles for translating between stochastic pumps
and steady states as well as a potentially useful tech-
nique for theoretical analysis of systems under time-
dependent driving.

To illustrate our mapping, we consider a simple
model of a stochastic pump: a single particle hop-
ping with Arrhenius rates on a four state graph. We
vary two energy levels and one barrier periodically in
time, which provides a time-dependent perturbation
that generates a non-vanishing current, as permit-
ted by the no-pumping theorem [4–6]. This setup is
depicted in Fig. 1 (a).

The pump achieves a periodic steady state, which
can be calculated numerically by integrating,

ppsi (t+ s) =

∫ s

t

Wij(t+ t′)ppsj (t+ t′)dt′. (4)

Here ppsi (t) is the probability of being in state i at
time t and W (t) is the continuous time rate matrix
for the dynamics at time t. The periodic steady state
satisfies

ppsi (t+ τ) = ppsi (t), (5)

where τ is the period of the pumping protocol. Note
that, by construction, W (t) satisfies detailed bal-
ance at each point in time. The Arrhenius rates
determine the instantaneous rate matrix

Wij(t) = e−β
(
Bij(t)−Ej(t)

)
for i 6= j

Wii(t) = −
∑
i 6=j

Wij(t)

where Ej(t) denotes the energy level of state j and
Bij(t) = Bji(t) is the barrier height. In our example,
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the only time-dependent quantities are

E3(t) = sin(2πt/τ) + 1,

E4(t) = sin(4πt/τ),

B13(t) = sin(2πt/τ).

(6)

The periodic solution is plotted in Fig. 1 (b).
We aim to find a time-independent rate matrix

W ss that mimics the stochastic pump and matches
its fluctuations. Following [17], we let W ij = W ss

ij p̂j
where p̂j is the average occupancy in the periodic
steady state and write

W ij = Sij +Aij , (7)

where S is a symmetric, stochastic matrix and A
is an antisymmetric matrix. The symmetric part of
this decomposition is related to the “activity” of a
trajectory [27, 28]. The continuous time rate matrix
for the dynamics is then given by

W ss = (S +A)P−1, (8)

where P is a diagonal matrix with Pii = p̂i, the
steady state probability of site i. If we further impose
the constraint that the steady state currents agree
with the periodic average current along each edge,

ĵij =

∫ τ

0

dt Wij(t)p
ps
j (t)−Wji(t)p

ps
i (t), (9)

then the antisymmetric part of the rate matrix is
uniquely identified,

Aij =
1

2
ĵij . (10)

The rate matrix W ss describes a probability conserv-
ing stochastic process, and, as a result, the form of
S is constrained, but only weakly. In particular, it
must be the case that

Sij ≥ |Aij | (11)

and ∑
j

Sij = 0, (12)

which ensures that W ss is a stochastic matrix.
Though the rate matrix is not uniquely specified,

any valid choice of S results in a stochastic process
with identical average currents and average occu-
pancy statistics. The same cannot be said for the
fluctuations. The freedom in S can be directly rep-
resented by noting that any valid off-diagonal entry
in the matrix can be written,

Sij = cij |Aij |, cij > 1. (13)

Due to symmetry, there are N(N − 1)/2 choices to
make. Indeed, the rate matrices resulting from dif-
ferent choices of S yield different average entropy
production rates, given by,

σ̂ij = ĵij ln
cij |ĵij |+ ĵij

cij |ĵij | − ĵij
. (14)

The cij values can be varied independently so long
as they meet the constraint cij ≥ 1, meaning that
the total entropy production can be made arbitrarily
small by taking cij large.

Raz et al. [10] suggest choosing S so that the av-
erage entropy production rate along each edge is the
same in the stochastic pump and the nonequilibrium
steady state representations. This choice, which we
denote S〈σ〉 uniquely specifies a rate matrix and also
guarantees that the average current, occupancy, and
entropy production rates are preserved by the map.
However, the asymptotic fluctuations in entropy pro-
duction and current are dramatically different.

To demonstrate this, we computed the entropy
production and current large deviation rate func-
tions for both the stochastic pump and the nonequi-
librium steady state representation, shown in Fig. 2.
To calculate the rate functions, we first compute
the scaled cumulant generating functions for entropy
production ω and current j,

ψω(λ) = lim
t→∞

1

t
ln〈e−λω〉, ψj(s) = lim

t→∞

1

t
ln〈e−sj〉.

(15)

For the nonequilibrium steady state representation,
the cumulant generating functions can be calculated
exactly by Cramér tilting [21]. In the case of the
stochastic pump, the averages in (15) can be di-
rectly evaluated in the time-periodic steady state,
meaning that the cumulant generating function can
be numerically computed as,

ψω(λ) =
1

τ
ln
∑
j

∫ τ

0

Wij(t;λ)ppsj (t), (16)

where W (t;λ) is the tilted rate matrix for entropy
production [29]. We use the Gärtner-Ellis theorem
to compute the large deviation rate functions by
first computing the scaled cumulant generating func-
tion and then performing a Legendre-Fenchel trans-
form [21].

Fig. 2 (b) shows the entropy production rate func-
tion with W ss =

(
S〈σ〉 +A

)
P−1. Note that, while

the averages agree, the nature of the entropy pro-
duction fluctuations is quite different. The steady
state with the matching average entropy production
has a notably fatter tail for large entropy production
rates.
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FIG. 2. (a) The large deviation rate function for the
current around the upper cycle (see Fig. 1) 1 → 3 →
4 → 1 is shown for the stochastic pump (blue / dark
gray) the nonequilibrium steady state with the same av-
erage entropy production along each edge as the pump
(green / light gray), and the nonequilibrium steady state
with the same average flow along each edge as the pump
(red dots). While the nonequilibrium steady state with
S〈σ〉 has the same average current, the character and ex-
tent of its fluctuations are extremely different. Choosing
S〈q〉 preserves even very rare fluctuations in current. (b)
The large deviation rate functions for entropy produc-
tion reveal that the steady state that recapitulates the
current fluctuations has a smaller average entropy pro-
duction. Furthermore, the extent of entropy production
fluctuations in the corresponding steady state is much
less pronounced (red innermost curve). The pump is
shown in blue (dark gray) and has fluctuations that are
intermediate in magnitude between the two representa-
tions. S〈σ〉, on the other hand, leads to greatly enhanced
entropy production fluctuations, as shown in the green
/ light gray outermost curve.

Excess entropy production.— In order to match

the fluctuations in current, we instead choose S so
that the average empirical flows are accurately cap-
tured by the dynamics. In particular, we let

S〈q〉 = q̂ij −
1

2
ĵij ⇐⇒ W ij = q̂ij , (17)

where q̂ij denotes the average flow along edge ij in
the periodic steady state. This choice has the ad-
ditional advantage of simplicity: the dynamics pro-
duces the correct average number of hops in both
directions along each edge of the network. We note
that for high-dimensional networks, measuring all
of the detailed edge currents or flows could be a
formidable challenge. Nevertheless, biological mo-
tors have been successfully modeled as Markov jump
processes with a small number of distinct ligation
states [30] and engineered nanodevices typically have
only a few states [31]. Because S does not affect
the antisymmetric part of the rate matrix, the aver-
age currents along each edge are equivalent in both
the stochastic pump and the nonequilibrium steady
state. As illustrated by Fig. 2 (a), choosing S〈q〉
leads to striking agreement between the current fluc-
tuations of the stochastic pump and the correspond-
ing steady state.

However, with the choice of S〈q〉, both the av-
erage entropy production rate and its fluctuations
in the nonequilibrium steady state representation
differ markedly from the corresponding stochastic
pump, as shown in Fig. 2 (b). The “excess” en-
tropy production has a physical origin and can be ex-
plained with a natural decomposition of the stochas-
tic pump entropy production. Unlike nonequilib-
rium steady states, which can only produce entropy
around closed cycles, stochastic pumps can produce
entropy without completing a cycle [32]. We decom-
pose the total stochastic pump entropy production
rate into a contribution from the steady state, akin
to the “housekeeping heat”, and the excess associ-
ated with the pumping protocol [23, 24],

σpump = σss + σex, (18)

where,

σss
ij = ĵij ln

q̂ij
q̂ji
, (19)

and,

σex
ij =

1

τ

∫ τ

0

jij

(
ln
qij
qji
− ln

q̂ij
q̂ji

)
. (20)

The Second Law of Thermodynamics ensures that
both σpump and σss are non-negative on aver-
age. This decomposition is analogous to the de-
composition of entropy production used to de-
scribe the “housekeeping heat”, i.e., the amount of
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heat required to maintain a nonequilibrium steady
state [23–25].

The excess entropy produced by the stochastic
pump, σex is also non-negative. The inequality,

1

τ

∫ τ

0

jij ln
qij
qji
≥ ĵij ln

q̂ij
q̂ji
. (21)

is known as the log-sum inequality and follows di-
rectly from Jensen’s inequality, because qij(t) > 0
and x lnx is a convex function, as detailed in the sup-
plementary information [33]. In the adiabatic limit,
the system remains in the instantaneous equilibrium
distribution and σex vanishes. In this limiting case,
S〈σ〉 = S〈ω〉. That is, for slow driving, entropy is
only produced in the long time limit if probability is
pumped through the network on average. While one
might hope to match both the current and entropy
production fluctuations when mapping a stochastic
pump to a nonequilibrium steady state, or vice versa,
this can only be achieved if the pumping protocol is
adiabatic. As a consequence, in the inverse map-
ping problem, a pump protocol cannot generally be
designed to mimic both current and entropy produc-
tion fluctuations because the average entropy pro-
ductions only agree in the adiabatic limit. Choos-
ing the time-independent rate matrix so that it gives
the steady state entropy production of the stochastic
pump, that is, choosing Sq, yields a coarse-graining
that is consistent with the physical mechanism by
which entropy is produced in the pump.

In a stochastic pump, the hopping statistics along
each edge need not be Poissonian, even in the adi-
abatic limit [34]. Therefore, the instantaneous dy-
namics of the nonequilibrium steady state, for which
all transitions are purely Poissonian, may not per-
fectly recapitulate the behavior of the pump. An
effective dynamics can be constructed by a periodic
solution via Floquet Theory, an analysis performed
in the Supplemental Material [22]. In the limit that
time-periodic perturbations to the hopping rates are

small, the nonequilibrium steady state representa-
tion describes the dynamics of the pump at all times,
but for sufficiently strong driving the correspondence
in fluctuations weakens. Numerical simulations us-
ing the kinetic Monte Carlo technique provide addi-
tional support that this correspondence is neverthe-
less robust, see the Supplemental Material [22], and
emphasize that statistics converge to the large devi-
ation form on timescales that can easily be accessed
in simulations and experiments.

The mapping determined by the choice (17) yields
a universal bound on current fluctuations in weakly
driven stochastic pumps, akin to the thermody-
namic uncertainty relations recently discovered for
nonequilibrium steady states [14, 15, 26, 35, 36]. Dis-
tinct behavior can be achieved with random driving:
Barato and Seifert recently showed that, through the
use of a driving protocol that changes at stochastic
times, current fluctuations can be suppressed with-
out incurring significant dissipation [37]. For the
deterministic protocols considered here, in the per-
turbative limit, the rate function for any generalized
current j is subject to a quadratic bound determined
by the steady state entropy production rate,

Ipump(j) ≤ (j − ĵ)2

4ĵ2/σss
. (22)

The bound is maximally tight because incorporat-
ing the excess entropy production only reduces the
curvature of the quadratic form. The lack of Pois-
son statistics for the pump suggests that the bound
should not hold in full generality, but numerical ev-
idence demonstrates that it is quite robust.
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