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Abstract

The Green-Kubo method is a commonly used approach for predicting transport properties in

a system from equilibrium molecular dynamics simulations. The approach is founded on the

fluctuation dissipation theorem and relates the property of interest to the lifetime of fluctuations

in its thermodynamic driving potential. For heat transport, the lattice thermal conductivity is

related to the integral of the autocorrelation of the instantaneous heat flux. A principal source

of error in these calculations is that the autocorrelation function requires a long averaging time

to reduce remnant noise. Integrating the noise in the tail of the autocorrelation function becomes

conflated with physically important slow relaxation processes. In this paper we present a method

to quantify the uncertainty on transport properties computed using the Green-Kubo formulation

based on recognizing that the integrated noise is a random walk, with a growing envelope of

uncertainty. By characterizing the noise we can choose integration conditions to best trade off

systematic truncation error with unbiased integration noise, to minimize uncertainty for a given

allocation of computational resources.

∗ Also at Mechanical Engineering Department, University of California, Riverside.
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I. INTRODUCTION

Transport properties are ubiquitous in materials science and engineering. Heat sinks and

thermal barrier coatings are two obvious examples where thermal conductivity is paramount

for materials’ performance, but there are also a huge number of materials applications in

which transport properties are folded in with a number of other properties to dictate per-

formance. Nanofluids are a promising new material for numerous applications [1–3] that

include heat dissipation [2, 3] for which, in addition to thermal transport, viscosity calcula-

tions are necessary to better our understanding of heat transfer mechanisms. Moreover, the

rheological characterization of fluid materials has numerous engineering applications beyond

cooling (e.g. lubrication [4], sheathing [5], or hydraulics [6]), as well as applications in other

fields (e.g. medicine [7], geophysics [8]). Viscous ionic electrolytes in batteries are an ex-

ample where viscosity, diffusion and ionic conductivity [9] all play an important role in the

materials’ eventual performance. In short, the ability to reliably predict transport proper-

ties is essential in the search for new materials for a wide variety of applications. Molecular

dynamics (MD) simulations provide a powerful approach for quickly obtaining atomistic

level insight into the physics of mass, momentum or energy transport processes in materials.

Two approaches are possible: MD can be used to (1) simulate systems in equilibrium or (2)

perturb and drive systems out of equilibrium to then measure their response.

Equilibrium molecular dynamics (EMD) calculations are performed using the well estab-

lished Green–Kubo formalism [10, 11], which relates transport quantities to the duration

of fluctuations in a microscopic state of the system — the underlying principle is that the

processes that dissipate small local fluctuations are the same that are responsible for a ma-

terial’s feedback to a stimulus. Mathematically this is achieved by integrating the current

autocorrelation function as is shown in the general expression for the Green–Kubo method:

γ = α

∫ ∞
0

〈A(t)A(t+ τ)〉 dτ, (1)

where γ is the transport property of interest and A the current that drives it. The expres-

sion 〈A(t)A(t+ τ)〉 is the autocorrelation function of quantity A and α is a temperature

dependent coefficient. For instance, for thermal conductivity, κ, the Green–Kubo expression

becomes

κ =
V

3kBT 2

∫ ∞
0

〈J(t)J(t+ τ)〉 dτ, (2)
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where kB is Boltzmann’s constant, T the temperature, and V the volume of the simulated

region, J is the heat-flux, and 〈J(t)J(t+ τ)〉 is the non-normalized heat current autocor-

relation function (HCACF). This method is widely used by materials scientists, chemists

and physicists. In addition to thermal conductivity calculations [12–15], it has been used to

calculate viscosity [4, 8, 16], diffusivity [17, 18] and ionic conductivity [9] for a wide range

of materials, by integrating the pressure tensor, velocity and ionic flux autocorrelation func-

tions (ACFs), in that order.

There are clear advantages to using an equilibrium approach: while both equilibrium and

non-equilibrium methods suffer from size artifacts, the use of periodic boundary conditions in

EMD allows for a smaller system size; for anisotropic systems, one EMD simulation suffices

to compute the full transport tensor; and EMD can be used irregardless of the linearity of the

transport regime with system size. There is, however, also one major pitfall. Fully converging

the autocorrelation function requires very long simulation times, and often a compromise has

to be made between including the contribution of slow processes and introducing a random

error, or excluding these processes and introducing a systematic truncation error. In this

paper, by recognizing that the integrated ACF error mimics a random walk, we propose a

method that allows researchers to evaluate this trade off on-the-fly and make better informed

decisions about where to truncate the ACF and how to optimize computational resources. In

the remainder of the paper, we will focus exclusively on thermal transport. It is left for the

reader to draw the obvious parallels with other transport properties. The next paragraphs

concern the origin of the oscillations, existing approaches to integrate the autocorrelation

function, and the introduction of the concept of a random walk in the HCACF. Our proposed

method and its implementation to an example data set are described next, followed by the

discussion and conclusion remarks.

A. The oscillatory behavior of the autocorrelation function

The HCACF, 〈J(t)J(t+ τ)〉, can be numerically computed as

〈JnJn+m〉 ≡
N−m∑
n=0

JnJn+m
N −m

, (3)

where Jn is the value of J at the nth time step, i.e. Jn = J(tn), for n = 0, 1, 2, ..., N ,

and Jn+m is J at the (n + m)th time step, or J(tn + τm), for m = 0, 1, 2, ...,M . N and
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M are, respectively, the maximum number of steps in the simulation and in the HCACF.

Analytically, the autocorrelation function is computed as the inverse Fourier transform of the

same transform of the current multiplied by its complex conjugate, averaged over N −m.

It follows that to obtain good statistical averaging M must be significantly less than N ,

and that the error associated with the HCACF increases over time for fixed N. This is

applicable to other transport properties. For a system in equilibrium the average current of

any property is zero, and the ACF is expected to decay to zero given sufficient time. Instead,

large oscillations with a significant contribution to the integral have been observed [15, 19–

22]. Fig. 1 a) depicts an example of fluctuating HCACFs and the growing error in the

corresponding integrals, and Fig. 1 b) the longevity of the fluctuations.

If we were able to sample an infinite system for infinite time, we should find the system’s

true ACF and thus a fixed true transport quantity. It follows that, for the thermal transport

example we have been using, κ, computed with Eqn. 2, is

κ = κtrue ±∆κ = (4)

α lim
t→∞

∫ ∞
0

〈J(t)J(t+ τ)〉 dτ ± α
∫ τmax

0

η(τ) dτ,

where τmax is the maximum time for which the HCACF is computed, and α = V
3kBT 2 . The

first term in the equation is the true integrated HCACF, and the second term the integral

of the HCACF noise that comes about due to insufficient averaging. As shall be discussed

more thoroughly in due course, at least two sets of different frequency oscillations can be

distinguished that mirror the fast and slow fluctuations in the heat current.

Accurately predicting the ACF is critical for transport predictions using the Green–Kubo

method. Notwithstanding, there is little consensus in the literature as to what approach to

take to mitigate the noise and the cumulative quality of the integrated noise has seldom been

used to inform the choice of ACF integration approach. The next paragraphs reference some

of the most common ACF integration approaches and a few less common strategies found in

the literature. While it has been shown that the Green–Kubo approach can be successfully

used with quantum-based calculations [23, 24], simulation size and length present a major

difficulty in using EMD approaches within ab initio, and other methods [25, 26] continue to

offer greater advantages. However, as computers become faster, DFT MD transport calcu-

lations could become more common, and error estimation more important. Within classical

MD, the evolution of computing means averaging large enough systems for longer will be-
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come less of an issue, thus reducing or even eliminating the error from these calculations.

However, there is an increasing trend to develop high-throughput approaches for the rapid

screening of materials, which in turn require quick, on-the-fly approaches for uncertainty

quantification. The method introduced herein meets these requirements.

B. Common autocorrelation function integration approaches

A common strategy to reduce the noise in the ACF is to fit an exponential to the first few

picoseconds (τ < 10) [20, 21]. The system depicted in Fig. 1 exhibits a rapid decay associated

with high frequency phonons and a slower decay associated with lower frequency phonons;

similar two- or three-stage decay is observed in many single element materials and different

authors have modeled κ by fitting the HCACF to the sum of two or more exponentials [20, 21,

27]. This approach captures multiple relaxation processes and is therefore more physically

meaningful than a single exponential fit, but it is ineffective when the HCACF can not

be represented by an exponential fit [12, 22, 28] and it forces a behavior description of

the HCACF that might not be accurate. The same is true of shear relaxation times in

viscosity calculations. For ionic liquids’ calculations, authors have also fit the pressure tensor

autocorrelation function to Kohlrausch’s law [29, 30] and/or applied weighing factors to their

fits [31, 32]. Fits to the frequency domain are also a solution, depending on the resulting

ACF for given data [12, 28]. Some strategies include direct integration of the ACF truncated

to various cutoffs. Whether direct integration is performed or a fit is applied, the cutoffs are

oftentimes arbitrarily selected [33–35]. They can also be more systematically determined,

for instance by taking the running mean of the integrated autocorrelation at its plateauing

region [36, 37]. Recently, Chen et al. have proposed a noise sensitive mathematical approach:

to truncate the HCACF when the scale of the fluctuations becomes the same as the mean, i.e.

when
∣∣ σ
E

∣∣ > 1, where σ is the standard deviation and E the expected value of the HCACF in

an interval (τ , τ + δτ) [38]. Chen et al. further suggest including a fixed offset term, Y0, to

the exponential fitting approach (e.g. A1e
−τ/t1 +A2e

−τ/t2 +Y0) to the normalized HCACF. In

a study concerning thermal transport in irradiated graphite, we implemented and compared

this and other methods [22]. The method of Chen et al. is a useful, systematic approach,

but it neglects the growing nature of the uncertainty that results from integrating over the

noise. Other approaches that acknowledge the incremental error of the HCACF integral have
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been proposed [31, 39]. For instance, Zhang et al. [31] use a time decomposition method to

compute a growing standard deviation to which they suggest fitting a power law, and from

which a cutoff can be selected based on a desired % error. With the insight gained from

the graphitic systems studied, we develop here a new approach to quantify and mitigate the

noise introduced with the Green–Kubo. This approach is based on recognizing that the ACF

fluctuations around zero integrate into Brownian noise, i.e. for each simulation a random

walk is effectively added to the integral of the true ACF. Before proceeding , it is perhaps

useful to briefly introduce the notion of a random walk and how it relates to the noise in

the HCACF.

C. Random walk

A random walk is a succession of Markovian (uncorrelated) random steps. This has

the property that the expected root mean square (RMS) displacement after N steps is

〈xN〉 = σd
√
N , where σd is the standard deviation of the magnitude of the steps (i.e. the

displacement). Here we argue that the noise in the HCACF has the statistical properties of

a stream of uncorrelated fluctuations or excursions from zero. Although these fluctuations

have a characteristic duration the time integral of a fluctuation equates to one jump in a

random walk. If one determines the timescale over which the HCACF noise is uncorrelated

(the jump frequency δt) and the typical integrated excursion (jump magnitude, d) then

one can equate the accumulation of noise integration error to the RMS displacement of

the equivalent random walk. The equivalence of the HCACF to a stream of uncorrelated

fluctuations that when integrated yield a random walk is demonstrated in Figs. 2 a)–c). In

these simulations the average step size is σvδt, where σv is the standard deviation of the

noise velocity (d/δt), i.e. the velocity at which the random walk occurs through time. The

standard deviation of the velocity (σv) is effectively that of the steps. The total number

of Markovian steps over time t is N = t/δt, and so the expected uncertainty U(t) after

integrating to time t is given by:

U(t) = δtσv

√
t

δt
= σv

√
tδt (5)

In this relationship computing σv is straight forward, and so the remaining challenge is to

determine the uncorrelated fluctuation time δt.
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By characterizing the integrated HCACF noise as a random walk, or as a sum of random

walks, in terms of δt and σv, we propose that one can use Eqn. 5 to compute an uncertainty

envelope that informs on how quickly the integrated noise error in a single simulation grows.

From the uncertainty envelope of a single simulation one can compute the expected uncer-

tainty in the average of any number of simulations. The crucial point is that information

about the distribution of error in many simulations can be obtained from a first, short (a

few hundred picoseconds) simulation, and thus after the first simulation has been performed,

one can decide on an optimal computational strategy for minimizing uncertainty.

Upon quick inspection, the HCACFs shown in Fig. 1 appear to be converged by 20 ps.

Fig. 2 e) shows the result of integrating random fluctuations in the 20–50 ps interval of the

HCACF tail. To parallel Figs. 2 a) and b), which depict an example of fluctuations (in a))

that give rise to a random walk (in b)), a single HCACF tail is depicted in Fig. 2 d), but the

integrals of 18 HCACFs’ tails are plotted in Fig. 2 e). The noise in this data (Fig. 2 b)) is

not uncorrelated from point to point along the data stream but instead has some memory

of itself. To predict the uncertainty from this noise we must compute the lifetime for this

memory to find the timescale at which the noise becomes uncorrelated. Instead of a jump

(or walk) at every interval in the autocorrelation, jumps are better described by (some of)

its peaks (see the line in magenta in Fig. 2 d)). The distribution in Fig. 2 f) corresponds to

the compound HCACF tails for the 18 simulations. Fig. 2 g) was obtained from the peaks

as exemplified in Fig. 2 d). A normal distribution with the standard deviation for each

case and mean zero is shown in red, and the distributions with the correct mean in black

and magenta for the whole set of tails and peaks, respectively, in Figs. 2 f) and g). The

distributions will again be addressed in the Results section.

The method developed to quantify the uncertainty that results from the Green–Kubo

approach by treating the noise in the autocorrelation function as a random walk is introduced

in the Methods section, but not before a more detailed explanation of the dataset used for

Figs. 1 and 2 is offered.

II. METHODS

All simulations used to perform error analysis were obtained with the large-scale equilib-

rium classical molecular dynamics software LAMMPS [40], using the adaptive intermolecular
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reactive empirical bond-order (AIREBO) potential function formulated by Stuart et al. [41].

The simulations correspond to a size-converged 11 × 11 × 11 perfectly crystalline graphite

supercell with 10648 atoms and a 27.05 × 46.86 × 73.79 Å3 volume in the x, y, and z di-

rections, respectively. Previous work has shown that this system is large enough to be size

converged for thermal conductivity [22]. We use data from nine simulations that were relaxed

and equilibrated in the microcanonical ensemble (NVE), using a standard Velocity-Verlet

quadrature scheme, for 50 ps after being given a thermal energy equivalent to 300 K before

starting to record the HCACF. Each of the nine runs was simulated for an additional 0.6

ns with a 0.2 fs time step and periodic boundary conditions. Because κ can be computed

in all lattice directions from a single simulation using the Green–Kubo formalism, there are

18 HCACFs along the basal plane of the graphite supercell with which to perform data

analysis (nine each along x, and y, that is [21̄1̄0], and [011̄0]). This data was obtained for

a previous publication on the thermal conductivity of irradiated graphite [22]. A longer 8.0

ns simulation with a 0.4 fs time step was also performed, under the same conditions. Based

on the premise that the noise of the integrated HCACF is akin to a random walk, we can

use Eqn. 5 to compute the root mean squared of the noise integrated up to time τmax. This

is the expected deviation (or error) from the mean for each random walk, and we can thus

compute the standard deviation of said error at time τmax in an average of N random walks,

with the same characteristic δt and σv, as SN = σv

√
τmaxδt
N

.

Decomposing the noise into uncorrelated fluctuations is the first step, required to discern

between a single random walk or the sum of varying frequency random walks. Then, to char-

acterize the random walks one must determine the standard deviation of these fluctuations

and the average interval between them. If the random fluctuations occurred at the same

interval that the HCACF is recorded, the expected noise uncertainty envelope would be as

indicated in Fig. 3 c), in the dashed red line. This largely underestimates the integrated

noise. A moving average low pass filter with a 0.4 ps window applied to the noise reveals

that at least two distinct sets of noise frequencies are present (see Fig. 3 a)). This indicates

that instead of a single random walk with the same time step as that of the HCACF, the

noise is best described by the sum of different frequency random walks. Finding the contri-

bution of each random walk to the expected error can be difficult, but a series of frequency

passes (see Fig. 4) can help examine the contribution of varying frequencies in the noise to

the expected error. The subsequent analysis is performed with the separate sets of noise

8



identified as having the largest contribution to the expected error and shown in Fig. 3 a).

While the noise behaves similarly to a random walk, the system has a memory of itself and

the fluctuations should be correlated with each other. The correlation time obtained from

the autocorrelation function of the noise gives the average time interval, δt, at which the

fluctuations are Markovian. This method is applied to a single simulation as detailed in the

following steps, with the aid of Fig. 3:

i The first step is to isolate the noise from the data. This is easily done by selecting a

portion of the tail, if it is clear the HCACF is converged after some time. Otherwise, a

fit could be used to extract the noise. Using the tail of the HCACF to analyze the noise

is generally preferable to using a fit, as it removes the uncertainty that arises from

guessing the behavior of the HCACF. The choice of interval (30–50 ps) to characterize

the noise is explained in the Results.

ii The second step is to filter the noise for different frequencies. This step is exemplified

in Fig. 3 a). A low pass filter allows us to distinguish two main sets of oscillations,

in red and in blue. While only one pass, separating frequencies below and above 2.5

THz, is illustrated in Fig. 3 a), more could be applied (see Fig. 4) to gain a better

understanding of the noise. This is discussed more throughly in the Results. The

contribution of each set of data is considered as described next.

iii The third step consists in computing the autocorrelation of the different frequency

noise components. For the low and high frequency noise found in step ii and depicted

in Fig. 3 a), the ACFs are shown in red and blue, respectively, in Fig. 3 b).

iv The fourth step is to fit a single exponential aie
− t
τ to each of the above autocorrelations.

The fits are shown in magenta and cyan, for the low and high frequency cases, in that

order. The fitting parameter τ provides an estimate of the interval of our near-random

walk noise. The autocorrelation of the low frequency noise (in red) is comparable to

that of the whole system (in black). It is already clear that the contribution of the

low frequency HCACF noise explains most of the random walk uncertainty.

v The fifth step is to compute the standard deviation, σ, of each of the noise contribu-

tions.
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vi The sixth and final step is to compute the uncertainty envelope by using the calculated

τ and σ in Eqn. 5. In Fig. 3 c), the magenta uncertainty envelope corresponds to

the low frequency oscillations, and the cyan envelope to the contribution of the high

frequency noise. As anticipated, the high frequency noise envelope is not much greater

than the envelope calculated with the HCACF interval (in dashed red). The combined

error of high and low frequency noise (in dashed black) is barely distinguishable from

that of the low frequency noise (in magenta). As expected, the contribution of low

frequency oscillations largely explains the noise.

τ and σ are all that is necessary to characterize the random walk. This means a simulation

could be undergoing and its data used to evolve the uncertainty envelope on-the-fly. An

example of this is shown in the results. For the present data set, the low frequency oscillations

explain nearly all of the noise, and it would suffice to consider the autocorrelation of the

whole, unfiltered noise, to obtain an estimate for the integrated noise envelope. A more

thorough discussion of the filtering is offered in the Results. Also in the Results, this

approach is applied to the 18 HCACFs, thus allowing us to obtain an error estimate of

the uncertainty envelope. We also show that a frequency decomposition analysis similar to

that applied to the HCACF can be used directly on the heat-flux to determine a suitable

simulation time-step to optimize HCACF convergence.

III. RESULTS

We applied steps i–vi to all HCACFs. The second step involves identifying different

noise frequencies. It is worthwhile to remark on the difficulty of extricating individual

random walks from a sum of random walks. For instance, applying a filter (as in Fig. 4)

can syphon out data that belongs to a lower frequency random walk. In Fig. 4, frequency

filters are applied with windows ranging between 0.04 and 0.56 ps at a 0.04 ps interval.

Each time, the data filtered is removed from the overall noise. One might be tempted to

say, from evaluation of Fig. 4, that there are multiple high frequency random walks, with

time fluctuations τ = 0.04, 0.08, and 0.12 ps, for instance, and that might be correct or

the sets of filtered data might belong to a single random walk. If the former is true, the

contribution of the independent sets of high frequency data were calculated to be negligible

compared to the low frequency data, in the same way the high frequency data obtained with
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a single (0.4 ps) filter, as shown in Fig. 3 a), does not significantly contribute to the overall

noise (see Fig. 3 c)). Similarly, the low frequency noise could be resumed to the sum of its

parts, but this would remove the underlaying characteristics of the noise. For this reason,

having identified distinct frequency ranges in the noise, and having determined that their

contribution is remarkably unequal we proceed with the analysis performed as described in

steps i–vi.

For all simulations, τ was computed as to minimize the standard deviation, with the

caveat that the maximum allowed value for τ was limited by the lowest intercept with zero

between all noise autocorrelation functions. This is because we fit to the natural logarithm

of the noise autocorrelation. This does convene us, however, in that we aim to calculate

the effect of the fast rate of decay of the systems’ memory reflected in the noise. Moreover,

a similar argument to there being a true autocorrelation function for the heat–flux can be

made with regards to the noise. If the frequency of the noise is the same across samples,

there is one true autocorrelation function that describes the interval for which the noise is

correlated, i.e., before it becomes random. For the high frequency noise, τH = 0.27 ± 0.02

ps and is one order of magnitude greater than the interval of the HCACF (δt = 0.02 ps),

but, as depicted in Fig. 3 c) for the calculated uncertainty envelope of a single HCACF tail,

it has a low impact in the overall uncertainty envelope. For the low frequency noise, τL is

4.6± 0.78 ps. The standard deviation for the high frequency noise, σH , is 8.06± .11× 10−8

eV 2/Å4ps2 and for the low frequency noise σL is 2.89 ± 16 × 10−7 eV 2/Å4ps2. Figure 5 a)

shows how the noise integrals compare to the envelope (in cyan) computed from the mean

τL and σL obtained from the 18 HCACF tails, using Eqn. 5, including the error (in blue)

obtained by propagating the standard error of each quantity; the above stated uncertainties

for τH , τL, σH and σL are the standard error. In Fig. 5 b) in the inset the envelope is

compared with the full HCACF integrals. The standard error computed over of the 18

HCACF integrals is also depicted in Fig. 5 b) (in solid green), including in the inset, as is

the standard error computed over the set of 216 sets of 50 ps HCACF integrals to which the

18 sets can be reduced (in dashed green) by splitting each 600 ps set of J values in 12 sets of

50 ps. This method of splitting the heat current data into many small parcels and computing

the HCACF independently for each parcel means that the individual HCACF’s are more

noisy, but there are more data sets from which to infer the standard error in the integral.

This method predicts an uncertainty slightly smaller that the random walk method. The
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approach is appealing because it is simple and it appears to provide a narrow estimate of

uncertainty. Unfortunately, the tails of HCACFs computed from neighboring data windows

is found to be correlated and so the approach underestimates the error providing a false

degree of certainty. It can be seen in Fig. 5 b) that nearing 30 ps the error defined as the

standard error of the HCACF integrals becomes more ill defined. Again, this is because

over time each of the HCACFs has less data to average over. The possibility that J is still

correlated after the length of the HCACF implies that, unlike the method proposed herein,

a correct noise estimate with the standard error approach requires multiple simulations with

differing starting points. As seen in Fig 10, with the random walk approach a few hundred

picoseconds suffice to characterize the error and obtain an uncertainty envelope.

In Figs. 2 f) and g) it can be observed that for the 20–50 ps interval selected the HCACF

tails have a non-zero mean. This suggests that the HCACFs might not have been fully

relaxed by 20 ps. In Fig. 6 we consider the distributions of J (Fig. 6 a)), the noise in the 30–

50 ps interval for the entire data (Fig. 6 b)), and for the case where the peaks are computed

from a moving average with a 1 ps interval (Fig. 6 c)) as shown in Fig. 2 d). Figures 6 b) and

c) correspond to Figs. 2 e) and f) for the smaller interval. Figure 6 reassures us that over all

simulations the system is close to relaxed by 30 ps. However, not all individual simulations

seem to have converged by 30 ps. While the distribution of J for each simulation reveals a

consistently normal distribution with mean zero, the mean of the distribution of individual

HCACF tails fluctuates around but is not consistently at zero. This is not an issue because

the random walk approach to estimate the uncertainty of the Green-Kubo method is largely

insensitive to prevailing steady deviations from zero and it considers these variations as real

slow decay processes.

Figure 7 evidences that the random walk method is robust to slow decay processes af-

fecting the characterization of the noise. Upon first impression the integral in purple, in

Figs. 5 b) and 7 a), stands out as having a large noise — it is well above the mean of all

integrals (shown in red in the inset in Fig. 5 b)). Yet, since its value is large, the error is

a smaller fraction of the total integral value. There are possibly three factors at play here.

(1) A random walk is, well, random, and the uncertainty envelope is merely an estimate of

the expected value of any random walk for a given σ and τ . (2) Figure 7 a) includes the

individual uncertainty envelopes computed with the random walk approach for each simu-

lation. In both cases σL ≈ 2.9× 10−7 eV2.Å−4.ps2. However, τL is 1.24 ps for the simulation
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(in brown), and 6.32 ps for the simulation in purple, so some of the error does seems to be

due to a lower noise frequency and it is accounted for in the envelope. (3) A closer look

at this HCACF reveals that it is not yet converged (see Fig. 7 b)). In this particular case,

the noise due to the random walk is not the main cause for the discrepancy between this

HCACF integral and the remainder. This is in agreement with the above discussion of the

individual simulations’ distribution. The uncertainty envelope for this simulation being be-

low the integrated HCACF is thus consistent with the random walk method being broadly

agnostic to slow decay processes. To reinforce this idea, we computed τL after displacing the

HCACF tail by the mean so it oscillates around zero and it equals 6.28 ps, not noticeably

different from τL = 6.32 ps as calculated above. In other words, because we’re interested in

the rapid decay process of the HCACFs, slow rate processes in the HCACF are not mistaken

for noise.

The random walk uncertainty quantification approach could be a valuable tool for guiding

researchers on how the noise varies over time or across simulations. To test this, a simulation

of the same system was performed along x and y for 8.0 ns. For the 8.0 ns simulation data

was collected at 0.04 ps intervals. The set of 18 simulations of 600 ps each adds to 10.8 ns, or

5.4 ns if we consider the x and y independently, with data collected every 0.02 ps. A total of

200,000 data points are available for averaging over the single simulation, and 270,000 for a

9 simulations set. As expected, the final HCACF for the 8.0 ns simulation is much smoother

than any of the HCACFs from the 600 ps simulations, but as shown in Fig. 8 it continues

to retain some of its oscillatory features. In Fig. 8, the integrated mean HCACFs for x and

y for each of the two sets of 9 simulations are compared to the x and y HCACF integrals

obtained from the 8.0 ns simulation and their corresponding uncertainty envelopes. Fig. 8

a) also shows the impact of a single outlier on the integrated HCACF average. Strikingly,

the noise obtained from a single large simulation with fewer data points is lower than that

obtained by averaging multiple simulations over a greater number of data points.

Recall that each simulation was performed from scratch by replicating a unit cell and con-

ferring each system a temperature using individual seeds for each simulation. To determine

if the discrepancy between the cross-autocorrelation averaging and the single-simulation au-

tocorrelation averaging was maintained over a similar simulation length for the same seed,

we subdivided the 8 ns simulation into a set of 10 800 ps simulations and averaged over

them (see Fig. 9). Cross-simulation averaging with the same amount of data actually seems
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to reduce the error slightly. Most importantly, the smaller interval selected for a larger

simulation is a worthwhile tradeoff.

An example of an on-the-fly application of the suggested approach is given in Fig. 10

a), which shows the running mean of the evolving random walk uncertainty envelope as the

simulation progresses. The correlation (R) between τ and the evolving envelope is 0.52, and

that between σ and the envelope is 0.56, both with a zero P value. This indicates a strong

dependence of the envelope variance on both variables. The % error is computed throughout

the simulation as the ratio between the envelope and the integral of the HCACF (see Fig. 10

b)). It is interesting to notice that around 4 ns there is a steep decrease in the expected

HCACF integrated noise, after which point the variation in the uncertainty diminishes.

To determine if there was an apparent direct correspondence between the system’s Lya-

punov memory and the system’s energy fluctuation memory, we computed the Lyapunov

instability, λ, which was found to be around 0.55 THz. Several simulation intervals for the

system size were considered, including the 0.2 fs interval used for our simulations. The sys-

tems lose coherence between 15–20 ps. The distance, d(t), between systems was computed

as |(X)A−(X)B|, where (X)A are the coordinates of system A, started an approximate 10−5

Å distance away from system B.

To evaluate the hypothesis that the origin of the noise in the tails results from larger

peaks in J that have not been averaged out due to insufficient data, we performed an

autocorrelation through J with both a gradual and a rough cut-off of these peaks (see

Fig. 11 a)). The results obtained (see Fig. 11 b)–e)) indicate otherwise. A cut, soft — i.e.,

such that the value of J is reduced by a higher fraction the further away from zero J it is

— or abrupt — i.e., removing peaks above and below a cut-off — through J reveals the

importance of the peaks to set the shape of the HCACF (see Fig. 11 b)), but it provides

evidence contrary to our hypothesis that the correlation between a few wider peaks were at

the origin of the random walk type noise. If we consider a moving average (in red) through J,

we find that it perfectly captures the trend of the HCACF (see Fig. 11 b)). The normalized

HCACF obviates that the trend of the data is more acutely captured by the moving average.

The normalized HCACF discrepancy between the moving average and the actual data could

be omitted by normalizing the moving average autocorrelation function by the first element

of the true HCACF.

If we, conversely, only consider the data from the highest peaks, setting all other data

14



to zero (in blue in Fig. 12), some of the noise fades away, but so does the overall trend of

the HCACF. A cut through the data increases the noise as expected (in yellow in Fig. 12),

by reducing the amount of data to average over. In as far as we can ascertain, the noise is

coupled to the overall fluctuations of J.

IV. CONCLUSION

In this paper we propose a method for quantifying the uncertainty of the autocorrelation

function and thus that of transport properties computed using the Green-Kubo approach.

This method is based on the premise that the noise of the autocorrelation function is akin

to discrete white noise and it integrates into a random walk. The value of this method

goes beyond estimating the error of a single simulation and it can be used to determine

the minimum duration of a simulation to achieve a desired error threshold, as evidenced in

Fig. 10. Most valuably, for a stipulated error, this method can be used to determine the

optimal simulation time on-the-fly. While we have not found conclusive evidence for the

origin of the noise, we have determined it is coupled to the overall trend of the measured

flux, and that the error is largely the result of fluctuations at frequencies below terahertz.

Moreover, our results indicate that it is preferable to trade off a smaller time step for a

longer total simulation time with a wider time step, to smooth the long-term oscillatory

behavior of the HCACF, provided the time step is large enough to account for the relevant

physics of the simulated system. Transport properties computed with equilibrium MD can

be optimized by combining (1) performing a single simulation to determine the minimum

required simulation time to reach a desired Markovian error with (2) performing multiple

independent simulations with which to obtain a robust average autocorrelation function

and standard error. The suggested approach can also be used to determine if slow decay

processes are present in the autocorrelation by comparing the noise distribution to a normal

with the mean and standard deviation found to characterize the noise. The method herein is

suitable for high-throughput approaches for which expeditious simulations and uncertainty

quantification are paramount.
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FIG. 1. Panel a) shows the HCACFs (the decaying functions) plotted along side their integrals

(the curves that rise to a plateau) computed from 9 separate simulations of a 10648 atom perfectly

crystalline and periodically contiguous block of graphite. The data was taken from a study to

determine the influence of Wigner defects on thermal transport in graphite [22]. The dashed lines

correspond to the heat flux along the [21̄1̄0] direction and the solid lines to the heat flux along

[011̄0]. The system was found to be converged for size, and κ is expected to be the same in

both directions along the basal plane. This plot illustrates the increasingly diverging noise of the

HCACF integrals, present even after 50 ps. To the eye, the ACFs look nicely converged after 10–15

ps. Plot b) shows the gradual convergence of the HCACF with increasing averaging time during a

single simulation. The amplitude of the fluctuations in the tail of the HCACF decays over time,

but it is notable that continued averaging does not remove the pattern of the fluctuations.
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FIG. 2. a) corresponds to the step or velocity fluctuations that give rise to a random walk; b) a set

of 10 random walks is shown in black and the expected root mean square translation distance at

time t is plotted in red; c) is the distribution of the random walks shown in b). d) corresponds to the

tail of a HCACF, depicting the noise fluctuations that integrate to a large error akin to a random

walk, shown in e) for all HCACF tails. The black lines correspond to heat-flux measurements

along the x-direction ([21̄1̄0]), and the blue ones along the y-direction ([011̄0]). Both values were

measured along the basal plane, and this distinction should not matter. The data set is explained

in the Methods section. For the selected 20–50 ps interval, the distribution of all data points across

the multiple simulation tails is shown in f). A 1 ps moving average was used along with a peak

find algorithm to plot major peaks in the HCACF tails, as shown in d), in magenta. The peak

distribution for all data is offered in g). The dashed red lines in f) and g) correspond to a normal

distribution with the standard deviation of each of the distributions and mean zero. A normal

distribution with the mean for each of the data sets is shown in the solid lines for each case.
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FIG. 3. The noise of a HCACF tail in the 30–50 ps interval is shown in a) decomposed into

high frequency (in blue) and low frequency (in red) noise. The autocorrelations of the noise (in

black), the high frequency (in blue) and low frequency (in red) components of the noise are shown

in b), along with fits through the high frequency (in cyan) and the low frequency (in magenta)

autocorrelations. In c) the integrated tail appears in black, the uncertainty envelope for δt equal

to the interval of the HCACFs is shown in dashed red; the uncertainty envelopes corresponding

to the high frequency and low frequency noise are in cyan and magenta, respectively. The dashed

black line that follows along the magenta is the combined uncertainty envelope of the high and low

frequency noises, i.e. the square root of the sum of their squares.
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FIG. 4. This graph shows the application of multiple pass filters to isolate existing frequencies in

the HCACF noise. The first filter applied selects out data below a 0.04 ps interval (the blue high

frequency line at the bottom of the graph) and leaves the remaining frequencies. The next filter

has a 0.08 ps window and is used to filter the low frequency data remnant from the first pass. This

procedure is performed for 0.04 ps intervals up to a filter with a 0.56 ps window.
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FIG. 5. In a) the tail of the HCACFs, their integral, the uncertainty envelope (cyan) calculated

as described in the text and its error (in blue) are all plotted. On the inset in b), instead of only

considering the noisy tails of the HCACFs, the whole HCACFs are represented. In both a) and

the inset in b) the solid black lines correspond to results along the y-direction, and the dashed

black lines to results along the x-direction. The bold red line in the inset in b) is the integral of

the average of the HCACFs; the solid green line is the standard error computed for the 18 HCACF

integrals; and the dashed green line is the standard error of the 216 50 ps HCACF integrals that

can be obtained from the 18 sets of data with 600 ps each. These lines are shown in the inset in

b) for perspective, but also in the larger plot in b) for a clearer distinction between them and the

cyan line, which shows the uncertainty calculated as described in the text, using the random walk

approach.

FIG. 6. Figure a) is the normal distribution over all J. Figure b) is the distribution of the noise

from the tails in the 30–50 ps interval. Figure c) is the distribution of the peaks fit to the noise

from the tails in the 30–50 ps interval, as shown in Fig. 2 d).
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FIG. 7. Figure a) shows two extremes both in terms of their total integrated value, and the interval,

τL, of their low frequency oscillations. The uncertainty envelope for the integrated HCACF in

purple is slightly above the maximum standard error (in blue), whereas that of the HCACF integral

in brown is below. The corresponding noise, and noise integrals for these extrema are shown in

Fig. b).

FIG. 8. Figure a) shows the averaged HCACFs for all simulations along x (in cyan) and y (in

magenta), the HCAFCs for x (in blue) and y (in red) for the large, 8 ns, simulation and the

corresponding integrals in the same color. To observe the effect of a single outlier, all HCACFs

except the purple one (see Fig. 7) are averaged. The resulting HCACF and integral are plotted in

dashed yellow. Figure b) shows the integrals (using the same color scheme as in Fig. a)) with the

corresponding uncertainty envelope around them.
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FIG. 9. This Fig. shows the integrated HCACF average for all simulations along x (in cyan) and y

(in magenta) for the subset of 800 ps simulations resulting from the 8 ns simulation, the integrated

HCAFCs for x (in blue) and y (in red) for the large, 8 ns, simulation and the corresponding

uncertainty envelope around them.

FIG. 10. In a), in addition to the HCACF, the moving average of the uncertainty envelope com-

puted using the random walk approach is also propagated through the simulation time. In b) the

% error is computed as the uncertainty envelope over the total integral.
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FIG. 11. The heat-flux (in black), J, a 0.4 ps moving average of J (in red), and a gradual cut-off

of the higher peaks of J (in green) are shown in Fig. a). The HCACF and integral for each of the

above cases is shown in Fig. b) as is, and is normalized in Fig. c). Figures d) and e) are a zoom

in on Figs. b) and c) in that order. The color coding is maintained throughout the figures.
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FIG. 12. Figure a) shows J (in black), a transform on J that keeps its higher peaks and replaces

data between the peaks with a zero value (in blue), and a line at 550 ps representing a cut-off of

the J data above it. Figure b) shows the normalized HCACF for the above cases, and including

those depicted in Fig. 11 a). The HCACF as is is shown in Fig. c). The color code is kept constant

between Figs. 11 and 12.
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[37] J.-F. Danel, L. Kazandjian, and G. Zérah, Physical Review E 85, 066701 (2012).

[38] J. Chen, G. Zhang, and B. Li, Physics Letters A 374, 2392 (2010).

[39] D. Alfe, G. Kresse, and M. Gillan, Physical Review B 61, 132 (2000).

27



[40] S. Plimpton, Journal of Computational Physics 117, 1 (1995).

[41] S. J. Stuart, A. B. Tutein, and J. A. Harrison, The Journal of chemical physics 112, 6472

(2000).

28


