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Proposals to reach the next generation of laser intensities through Raman or Brillouin backscat-
tering have centered on optical frequencies. Higher frequencies are beyond the range of such methods
mainly due to the wave damping that accompanies the higher density plasmas necessary for com-
pressing higher frequency lasers. However, we find that an external magnetic field transverse to the
direction of laser propagation can reduce the required plasma density. Using parametric interactions
in magnetized plasmas to mediate pulse compression both reduces the wave damping and alleviates
instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher
intensity and longer duration. In addition to these theoretical advantages, our new method, in which
strong uniform magnetic fields lessen the need for high-density uniform plasmas, also lessens key
engineering challenges, or at least exchanges them for different challenges.

Extremely high intensity lasers could have manifold
applications, such as inertial confinement fusion [1] and
single molecule imaging [2]. To achieve extreme inten-
sities, parametric compressions have been proposed us-
ing plasmas, with waves such as the Langmuir wave and
the ion acoustic wave mediating the compression [3–5].
At optical frequencies, a window exists in the plasma
density-temperature space wherein neither the plasma
waves nor the lasers are heavily damped. However, for
higher frequency lasers, higher density plasmas are re-
quired to mediate the interaction, and at higher density
these waves tend to be heavily damped. Here we propose,
by utilizing waves in magnetized plasmas, to extend the
frequency and intensity range of laser pulse compression.
In magnetized plasmas, waves that can be utilized are the
electrostatic waves, including hybrid waves and Bernstein
waves. These waves provide resonances in which contri-
butions from plasma density are partially replaced by
more controllable contributions from the external mag-
netic field. The reduced dependence on plasma density
alleviates wave damping as well as deleterious instabili-
ties [6], expanding the operation window of pulse com-
pression to produce output pulses at both higher inten-
sity and longer duration.

In this letter, we show the advantage of applying a
transverse magnetic field by examining pulse compression
mediated by the upper-hybrid (UH ) wave. The trans-
verse geometry differs from recent considerations of axial
magnetic fields, which affect other aspects of propaga-
tion and amplification [7]. Consider the case where the
lasers propagate exactly perpendicular to the external
magnetic field, which lends itself naturally to the main
application where the amplified pulse is focused onto a
distant target (Fig. 1). For propagation perpendicular
to the magnetic field, the linear wave eigenmodes are
well known [8]. One electromagnetic eigenmode is the O
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wave, with electric field parallel to the external magnetic
field, obeying the dispersion relation n2

⊥ = 1 − ω2
p/ω

2.
Here n⊥ = ck⊥/ω is the refractive index and ωp is the
plasma frequency. The other electromagnetic eigenmode
is the X wave, which hybridizes with the electrostatic
eigenmode, the UH wave, obeying the dispersion rela-
tion n2

⊥ = 2RL/(R+L). Here R,L = 1−ω2
p/[ω(ω±Ω)],

where Ω = eB0/me is the electron gyrofrequency. The
electric field of both the X wave and the UH wave are in
the plane perpendicular to the magnetic field. While an
X wave and an O wave couple only weakly, two X waves
or two O waves couple strongly through the UH wave.

What we show here is that compression of these elec-
tromagnetic waves mediated by the UH wave is described
by the same equations that describe mediation by the
Langmuir wave, except for the coupling coefficient. How-
ever, because less density is sufficient to accomplish the
resonance, key deleterious effects become less competi-
tive. The result is an expansion of the parameter regime
of operation, allowing extension even to the x-ray regime
whenever fields of several hundred megagauss to a giga-
gauss become available. While such fields are challenging,
at the cusp of present feasibility, our new method at least

FIG. 1. Amplifying and focusing a seed pulse by stimulated
backscattering of a pump laser in magnetized plasma.
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provides a theoretical opportunity to compress lasers that
otherwise could not be compressed. In addition, at lower
frequencies, more readily available magnetic fields may
also confer advantages.

To see this, consider the resonant coupling between
the pump laser (with frequency ω1) and the seed pulse
(with frequency ω2) through the mediating UH wave

(with frequency ω3 =
√
ω2
p + Ω2). This interaction can

be described by the three-wave equations [9]. Using the
three-wave resonance conditions, it can be shown that
in the limit ω0 := ω1 ' ω2 � ω3, both electromagnetic
eigenmodes are transverse with little dispersion, and the
UH wave is almost longitudinal with approximately zero
group velocity. Consequently, the three-wave interaction
in the magnetized case has one-to-one correspondence
with that in the cold unmagnetized case:

(∂t + c∂x)a1 =
ωp

2
a2a3,

(∂t − c∂x)a2 = −ωp

2
a1a
∗
3, (1)

∂ta3 = −ω0ωp

2ω3
a1a
∗
2.

The electric field amplitude of the pump and the seed are
normalized by a1,2 = eE1,2/mecω1,2, and the amplitude
of the UH wave is normalized by a3 = eE3/mecωp. The
linear growth rate, i.e., for negligible pump depletion, is

ΓR =

√
ω3ω0

2
|a1|γ−1

B , (2)

where γB := ω3/ωp > 1 measures the extent to which
plasma density is replaced by magnetic field in the UH
resonance. Except for the above modification, the solu-
tion in the nonlinear stage is the same as the unmagne-
tized cases. However, the physical processes that limit
pulse compression are different. What is of critical im-
portance is that these physical processes lead to different
constraints on the possible amplification regimes.

The first limiting effect is wavebreaking, which lim-
its the maximum pump intensity that can be used for
amplifying the pulse. In magnetized plasmas, the wave-
breaking intensity is modified by the Lorentz force, and
the UH wave breaks when the electron quiver velocity
in the k3-direction vq ' eE3ω3/meω

2
p exceeds the wave

phase velocity vp = ω3/k3 ' cω3/2ω0 [10]. The condition
vq <∼ vp, which guarantees that the UH wave remains un-
broken, can be rewritten in terms of a constraint on the
pump intensity I1 = 8Ic|a1|2 using the Manley-Rowe re-
lation, which constrains the maximum amplitude of the
UH wave to be |a3| ≤

√
ω0/ω3|a1|. The resultant suffi-

cient condition that the UH wave remains unbroken is

I1 <∼ Ic
(ω3

ω0

)3

γ−2
B , (3)

where Ic = ncmec
3/16, and nc = ε0meω

2
0/e

2 is the crit-
ical density. When more plasma density is replaced by
magnetic field in ω3, less energy can be contained in the

UH wave, giving rise to the γ−2
B reduction. For given

laser parameters, wavebreaking constrains the minimum
plasma density, as well as the maximum magnetic field.

The second limiting effect is the modulational instabil-
ity, with growth rate [3, 6]

ΓM =
ω2

3

8ω0
|a|2γ−2

B . (4)

The maximum time that the pulse can be amplified by
the pump is limited to a few inverse growth rates. Since
ΓM � ΓR even at the wavebreaking intensity, this insta-
bility does not prevent the amplification from reaching
the nonlinear stage, which can continue until

tM ≈ (12δΛ2
0)1/3 γ

4/3
B

ω3a
4/3
10

, (5)

where δ =
∫

ΓMdt ∼ 1 is the accumulated phase
shift, Λ0 is the number of linear exponentiations be-
fore the nonlinear stage is reached, and a10 is the
initial pump amplitude. The largest pulse compres-
sion is attained at the maximum compression time tM ,
which gives the highest leading spike intensity I2 ≈
16Ic(3δ/Λ0)2/3(2a10)4/3γ

2/3
B ω0/ω3 and the shortest spike

duration ∆t2 ≈ 2(2Λ0/3δ)
1/3a

−2/3
10 γ

2/3
B /ω0. Ramping

up the pump intensity while keeping plasma parameters
fixed, the maximum output intensity is reached using the
most intense pump allowed by wavebreaking, which gives

I2 ≤ 16Ic(3δ/2Λ0)2/3γ
−2/3
B ω3/ω0. Alternatively, opti-

mizing plasma parameters while keeping lasers fixed, the
maximum output intensity is reached using the small-
est possible ω3 allowed by wavebreaking, which gives
I2 ≤ 8Ic(3δa10/2Λ0)2/3, independent of γB . Note that
this output intensity could have been achieved using un-
magnetized plasmas, if wavebreaking and longitudinal
modulational instability were the only limiting effects.

The third limiting effect is the collisionless damping of
the UH wave. While linear collisionless damping van-
ishes when the wave propagates exactly perpendicular to
the magnetic field [8, 11], nonlinear collisionless damping
persists due to surfatron acceleration [12] and stochastic
heating [13]. To give a conservative estimation, note that
the UH frequency is typically comparable to the gyrofre-
quency. Hence an electron having perpendicular velocity
close to vp sees an almost constant wave electric field. In
such an electric field, the electron may gain or loss energy
to the wave, depending on the relative phase of wave mo-
tion and gyromotion. The phase mixing process causes
the UH wave to damp on a Maxwellian background with
rate νL ≈

√
π(vp/vT )3 exp(−v2

p/v
2
T )ω2

p/ω3, where vT is
the thermal velocity. Since linear wave requires vp > vT ,
the sufficient condition that collisionless damping is weak
may be approximated as

νL
ω3
≈
√
π(3/2)3/2e−v

2
p/v

2
T γ−2

B � 1. (6)

As ω3 → |Ω|, the electron density vanishes, so there are
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FIG. 2. Operation windows in pump laser parameter space
(colored regions). Regions I-III are excluded by limiting ef-
fects and fluid model constraints. (a) The operation win-
dow when B0 = 0. The color scale compares the maximum
output achievable in the magnetized case Im2 versus that in
the unmagnetized case Iu2 . The dashed contours (in units of
1020 cm−3) are plasma density necessary for achieving Iu2 . (b)
The expanded operation window when B0 ≥ 0. The color
scale is the gain Im2 /I1. By applying minimal magnetic fields
(solid contours), plasma densities (dashed contours) necessary
for achieving Im2 are reduced.

fewer electrons to participate in phase mixing, and colli-
sionless damping consequently diminishes.

The fourth limiting effect is collisional damping of
both the lasers and the UH wave, whose rates decrease
rapidly when plasma density decrease. Collisional damp-
ing arises since the electron quiver motion is randomized
by electron-ion collisions, thermalizing the wave energy
carried by electrons. The collisional damping rate of the
UH wave and lasers can be put as ν3 ≈ νei(1− ω2

p/2ω
2
3)

and ν0 ≈ νeiω
2
p/2ω

2
0 . The collision frequency νei ≈

neZ
2e4Λ/(4πε0)2m2

ev
3, where Z is the ion charge, Λ is

the Coulomb logarithm, and v is the characteristic ve-
locity of electrons, containing contributions from both
thermal motion and wave motion. Ignoring wave mo-
tion, an upper bound of the collision frequency can be
obtained. This upper bound gives sufficient conditions
that collisional damping is weak:

ν3∆t2 <∼ 1, ν0tM/2 <∼ 1. (7)

The first condition ensures that the UH wave remains
weakly damped during the seed transient time. The sec-
ond condition ensures that the lasers can penetrate the
plasma with little energy loss. These two conditions com-
bined are more strict than ν0ν3 < Γ2

R, the condition that
the parametric instability can be excited, if Λ0 ≥ 2. By

replacing ne with B0 in ω3, the collisional damping con-
straints on the UH wave and the lasers are alleviated by

γ
−4/3
B and γ

−8/3
B , respectively, when pulse compression

uses the maximum time tM . When less time is used,
the pulse duration becomes longer, so the constraints be-
come more strict for the UH wave while less strict for the
lasers. For given laser frequencies, the reduction of wave
damping results in higher pulse compression efficiency.

These four limiting effects define an operation win-
dow within which efficient pulse compression is theoret-
ically possible. By adjusting the extra parameter γB ,
the unmagnetized operation window can be expanded.
First, consider expansion of the operation window in ω0-
I1 space. For example, consider pulse compression in
hydrogen plasmas (Fig. 2) and replace conditions of the
type x � y by x/y < 0.1. The unmagnetized operation
window (a) can be maximally expanded to (b), when ex-
ternal magnetic fields (black contours) are applied. In
these figures, region I is excluded because collisionless
damping becomes strong while keeping the plasma con-
dition neλ

3
D � 1; region II is excluded, because both

damping mechanisms are strong; region III is excluded
because the wavebreaking limit is exceeded while keep-
ing ω3 � ω0. Second, note the increase of the maximum
achievable output intensity from Iu2 in the unmagnetized
case to Im2 in the magnetized case. This improvement is
enabled by the alleviation of the modulational instability
and wave damping, because the requisite plasma density
(dashed contours) is now smaller.

To illustrate the expanded regime made possible
through magnetized plasma, consider the very ambitious,
and speculative, compression of soft x ray pulses. For
example, x-ray pulses produced at the Linac Coherent
Light Source have 2-6 mJ in energy, 5-500 fs in duration,
and focal spot ∼ 10 µm2 [14], corresponding to intensity

∼ 1018 W/cm
2
. Since the photon energy in these pulses

is in the range 250 eV-10 KeV, efficient pulse compres-
sion using unmagnetized plasmas is not possible (Fig. 2).
However, the inefficient compression using unmagnetized
plasmas [15] can be made efficient, by applying a mag-
netic field on the order of gigagauss (Fig. 3a) using hydro-
gen plasmas. Such a field is of course huge, but in prin-
ciple achievable over the small volumes; for compressing
a 500 fs pulse, a plasma length of only 0.3 mm is needed.
The strong magnetic field reduces necessary plasma den-
sity and therefor reduces wave damping, making it the-
oretically possible to compress picosecond x ray pulses
to femtosecond (Table I). In this example, the magnetic
field opens up the otherwise closed operation window.

To illustrate the use of magnetized plasma in a more
practicable example, consider the compression of KrF
pulses. For example, KrF pulses produced at the Nike
laser facility have kilojoules energy with nanoseconds du-
ration [16]. These pulses can be focused on a spot of

size ∼ 0.01cm2, reaching peak intensity ∼ 1014W/cm
2
.

The average intensity, however, falls in the range 1012 −
1013W/cm

2
. Since the photon energy of the KrF laser is

∼ 5 eV, the unmagnetized operation window is about to
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FIG. 3. Operation windows in plasma parameter space (white
regions). The colored regions, possibly overlapping, are ex-
cluded by wavebreaking (blue-i), collisionless (orange-ii) or
collisional damping (red-iii), and ω3/ω0 > 0.1 (yellow-iv).
The exclusions in unmagnetized plasmas (left) are larger than
those in magnetized plasmas (right). (a) Soft x ray laser with
I1 = 1018 W/cm2 and ω0h̄ = 250 eV. B0 = 1.5 GG. (b) KrF
laser with I1 = 1013 W/cm2 and ω0h̄ = 5 eV. B0 = 5 MG.
n19 and n22 are ne in the units of 1019cm−3 and 1022cm−3.

close when the laser intensity is at the lower end (Fig. 2).
However, the narrow unmagnetized window can be ex-
panded by applying a megagauss magnetic field (Fig.3b),
when hydrocarbon plasmas (C3H8, Zeff≈ 2.36) are used.
In the expanded operation window, the minimum plasma
density is reduced, which enables the output pulse to
have larger intensity and longer duration (Table I). In
this example, less density is required and more intense
output can be produced using magnetized plasma.

Apart from the direct benefit of an expanded operating
window, note that replacing plasma density by magnetic
field is advantageous becuase the magnetic field unifor-
mity is much more controllable. This technological ad-
vantage makes it beneficial to use magnetized plasma
within the region where Im2 = Iu2 (Fig. 2), even when
it does not improve the maximum output intensity.

To achieve resonant parametric pulse compression in
experiments, it is necessary to produce plasma targets
not only with specific density and temperature, but also
with sufficient uniformity. Unmagnetized targets satisfy-
ing these requirements are in principle attainable but in
practice challenging. The laboratory standard is to ionize
a gas jet [17]. This is appropriate for plasma targets with
density less than 1020cm−3, temperature ∼ 101 eV, and

size ∼ 1 mm. Producing unmagnetized targets of higher
density has been envisioned using a dense aerosol jet [18].
But reaching high temperature and uniformity with these
targets are yet to be demonstrated experimentally.

The technological challenge in making high-density
uniform plasmas is reduced if we compress pulses using
magnetized plasmas instead, in which the requisite den-
sity is smaller. Moreover, the constancy of ω3 depends
less on the uniformity of plasma density, which is usually
harder to control compared to external magnetic fields.
One technique generates magnetic field by driving ca-
pacitor coil targets with intense lasers. In a number of
experiments [19], generation of megagauss magnetic field,
which is uniform on millimeter scale and quasi-static on
nanosecond scale, has been demonstrated. Another tech-
nique generates magnetic field by ablating solid targets
with intense laser pulses [20]. This technique can pro-
duce plasmas with ∼ 1021cm−3 density and magnetic
fields on the order of gigagauss, when picoseconds pulses
with ∼ 1 µm wavelength and ∼ 1020W/cm

2
intensity are

used in experiments. The density and magnetic field pro-
duced near the solid surfaces are uniform on micrometer
scale and quasi-static on picosecond scale. The usefulness
of strong magnetic fields justifies further development of
these technologies.

To summarize, our new method enables compression
of powerful lasers beyond the reach of currently envi-
sioned methods. By substituting the requirement for
high plasma density with one for an external magnetic
field, the mediating wave is then the upper-hybrid wave
rather than the Langmuir wave. Deleterious physical ef-
fects associated with high plasma density are alleviated
and the engineering requirements of producing high and
uniform plasma densities can be relaxed. Thus, using
magnetized plasmas, we can significantly expand the op-
eration window, and achieve efficient pulse compression
for higher frequency and lower intensity pumps, produc-
ing pulses of both higher intensity and longer duration.

The work is supported by NNSA Grant No. DE-
NA0002948, AFOSR Grant No. FA9550-15-1-0391, and
DOE Research Grant No. DEAC02-09CH11466.

Pump
Plasma Pulse Compression

B0 minne max I2/I1 ∆t2 γB tM ω3/ω0

250eV, I18 1.5GG 8.1n22 2.3×103 0.5fs 1.9 0.9ps 8.1%

5eV, I13
0 G 8.9n18 1.9×104 54fs 1.0 0.8ns 2.2%

5 MG 3.6n18 2.7×104 65fs 1.3 1.3ns 1.8%

TABLE I. Key parameters for examples given in Fig. 3, as-
suming the initial pulse duration is not much longer than ∆t2,
and the initial pulse intensity is such that Λ0 ≈ 6. For soft
x ray pulses, applying magnetic field opens up the otherwise
closed operation window. For KrF pulses, applying magnetic
field reduces the necessary plasma density and enables more
intense and longer outputs.
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