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Scaling properties of a 2d plasma physical current-sheet simulation model involving a full set of
magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The
current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic
flux containing plasma at boundaries of the simulation domain. A balance is reached between load-
ing and annihilation of the magnetic flux through reconnection at the current sheet; the transport of
magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches
exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized crit-
icality (SOC) by verifying an extended set of scaling laws related to both global and local properties
of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric
exponents). The critical exponents obtained from this analysis suggest that the model operates
in a slowly-driven SOC state similar to the mean-field state of the directed stochastic sandpile
model. We also investigate multiscale correlations in the velocity field and find them numerically
indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on
physical conditions for SOC behavior in a broad class of plasma systems with propagating instabil-
ities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously
in astrophysical and space plasmas.

PACS numbers: 1,2,3,4,5

A. Introduction

Historically, the exploration of self-organized criticality
(SOC) [1, 2] has been based on cellular automata such
as sandpile and forest fire models. Although very in-
structive and convenient for theoretical analyses, these
automata represent toy models rather than real-world
physical SOC systems. In the meantime, a large body of
observational evidence has been accumulated indicating
the existence of such systems in a broad range of settings
(e.g., [3–9]). To understand critical dynamics in such
systems, it is not enough to know basic universal princi-
ples controlling the SOC state - it is essential to describe
how specifically these principles work in the particular
physical environment.

In this paper, we investigate a plasma-physical model
that exhibits robust critical dynamics described in terms
of measurable plasma parameters coupled through a
continuum system of resistive magnetohydrodynamic
(MHD) equations. To simulate avalanche dynamics, we
use the idea of modeling toppling events in a continuum
diffusive system proposed by E. Lu [10] and adapt it for
the case of current-driven magnetic diffusivity. We show
the model possesses important hallmarks of SOC behav-
ior such as critical scaling of susceptibility and finite-size
scaling of avalanche statistics. At the same time, it ex-
hibits signatures of intermittent turbulence in the veloc-
ity field satisfying the hierarchical model by She and Lev-
eque [11]. We suggest that the co-existence between SOC
and intermittent turbulence is a generic signature of con-
tinuum avalanching systems, and predict its appearance
in a large class of slowly driven active media.

Our current sheet model is motivated by Earth’s mag-

netotail, which is the main driver for high-latitude geo-
magnetic activity revealing signatures of SOC dynamics
[12]. The magnetotail is subject to loading of magnetic
flux into its lobe regions, transport of the flux through
its plasma sheet, and unloading in the earthward and
tailward directions. Its global configuration includes a
thin cross-tail current sheet [13] separating the reversed
magnetic fields of the northern and southern lobes. The
energy stored in the current sheet can be transported
throughout anomalous resistivity regions created by lo-
calized kinetic instabilities [14] and removed from the
system as a result of the reconnection process in the neu-
tral plane of the current sheet [15].

I. THE CURRENT SHEET MODEL

We consider the current sheet to be the key structure
responsible for avalanching transport and dissipation of
magnetic free energy in the tail of a planetary magneto-
sphere. To model this process, we supplement the full set
of 2d resistive MHD equations with an evolution equa-
tion for magnetic diffusivity that is written in the form
first introduced by E. Lu [10] who discussed a sandpile
model based on a continuum diffusion equation with dif-
fusion coefficient coupled to a field gradient equivalent to
the local current density in the MHD fluid [16]:

∂tρ+∇ · (ρV ) = 0 (1)

∂tV + (V · ∇)V = −(4πρ)−1∇A(∆A) − ρ−1∇P (2)

∂tA+ (V · ∇)A = D∆A (3)

∂tP + V · ∇P + γP (∇ · V ) = (γ − 1)(4π)−1D(∆A)2 (4)
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Q = Dmin, |J | < βJc Dmax, |J | > Jc (5)

∂tD = (Q(|J |)−D)/τ (6)

The equations are written in dimensionless form. Pa-
rameters ρ, P and V are respectively plasma density,
pressure and velocity, A is the y-component of the vector
potential defining the magnetic field B in the studied 2d
geometry, J = −∆A/

√
8π is the scalar current density,

γ = 5/3 is the adiabatic index, D is the diffusivity trig-
gered by spatially distributed excitation parameter Q,
and β is a numerical parameter explained below.
At any position, Q depends on the local current den-

sity and can take one of two values, Dmin or Dmax. The
transition from Dmin to Dmax represents the excitation
and saturation of a cross-field current-driven instability
[17, 18] when J exceeds a critical current density Jc; the
reverse transition is a consequent quenching of the insta-
bility at a lower current density βJc, where 0 < β < 1 is a
numerical parameter controlling the width of the hystere-
sis loop. The instability evolves over kinetic time-scales
below the resolution of the MHD component, and so the
Q transitions are assumed instantaneous. The diffusiv-
ity D follows these jumps in a continuous fashion with
a characteristic delay time τ which is about 104 times
longer than the simulation time step.
We solve the equations in the x − z plane under the

assumption of zero spatial derivatives in the y− direc-
tion. The model is driven by a steady, uniform inflow
of plasma through the upper and lower boundaries at
z = ±1 where we require Bz ≡ ∂xBx ≡ 0. One of per-
pendicular boundaries is closed and another one is open
for the plasma. The initial and the driving conditions en-
sure that the field geometry is antisymmetric with respect
to z = 0. We have obtained numerical solutions of the
current sheet model on a 400× 400 grid with Dmin ≪ 1
such that wherever D = Dmin the evolution is indistin-
guishable from ideal MHD over the observed time scales.
A complete description of the simulation setup can be
found in [16].
The inflowing plasma carries magnetic flux with it,

consequently increasing the strength of the spatial field-
reversal and of its supporting current sheet. The current
density inevitably reaches Jc at some position thereby
initiating an avalanche of magnetic flux toward the re-
gion near z = 0 where it is annihilated and converted to
plasma kinetic and thermal energy [19, 20]. This conver-
sion process drives the plasma out of the simulation re-
gion through the open boundary. A small portion (10−3 -
10−2) of the input magnetic energy is carried out through
this boundary as well.
Eventually, the simulated plasma reaches a statistically

stationary state in which the rates of magnetic energy
and plasma mass flowing into the region are balanced,
over long time scales, by the field annihilation rate and
the outflow at the open boundary. After about 103 Alfven
traversal times, this state takes the form shown in Fig.
1 of large scale global cycles made of long laminar peri-
ods during which plasma is loaded into the system but
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FIG. 1: Time series of the number of unstable grid sites
with Q = Dmax through several cycles, and the corresponding
time series of the total magnetic energy dissipation. Statis-
tics shown in Figs. 4, 6 are obtained from the unloading
cycles. Those separate quiet, laminar periods with no energy
dissipation where the velocity field is smooth. Note that large
scale loading and unloading do not occur for cellular automata
models, such as the BTW sandpile, or for many models of IT
– but do happen e.g. in magnetospheric dynamics [12].

no active grid sites (with Q = Dmax) are generated, fol-
lowed by highly erratic unloading periods during which
the magnetic field undergoes local transitions between
frozen and unfrozen states analogous to stick-slip behav-
ior of SOC models [21–24]. As shown in Fig. 1, en-
ergy dissipation occurs only during the unloading phases.
Equal time snapshots of the magnetic field configuration,
velocity field and dissipation regions during an unloading
time interval are shown in Fig. 2. Although the magnetic
field appears smooth, the corresponding velocity field for
the plasma is highly intermittent while at the same time,
well defined regions of intense dissipation appear.

A. Critical susceptibility

The global equilibrium conditions for a SOC state can
be obtained in a mean-field approximation [25, 26]. For
sandpile models, these conditions have been formulated
in terms of the probability h per unit time that a grid
site will receive a grain of energy, the probability ǫ that
a unit of energy will be dissipated by an unstable site,
and the time-averaged fraction ρa of active sites. The
infinite time scale separation of standard sandpile mod-
els is recovered in the regime h/ǫ → 0 where the total
susceptibility of the system [26]

χǫ = ∂ρa/∂h|h=0 = 1/ǫ (7)

diverges as ǫ → 0 and the SOC limit is approached. Cen-
tral to obtaining this result is the existence of a steady
state in which the average input energy flux is in equilib-
rium with the dissipated flux.
To identify such state in the current-sheet model, we

have used Faraday’s law to describe the equilibrium be-
tween magnetic flux inflow and dissipation through an-
nihilation. Written in dimensionless variables [16], the
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FIG. 2: Numerical simulation of a current sheet and its qual-
itative behavior (see [16] for details). The model is driven
by a steady, uniform plasma inflow at the top and bottom
boundaries as shown by arrows. The left boundary is closed,
while the right is open. Plasma energized through annihila-
tion in the spatial magnetic field reversal leaves the region
at the right. Inset: (Top) A snapshot of regions where the
diffusive Poynting flux (see text) exceeds a threshold, used
to define avalanches. (Bottom) At the same time, the corre-
sponding velocity field (vx) in the system. Note that while the
magnetic field lines appear smooth at this scale, the plasma
velocity field is highly intermittent.

x component of Faraday’s equation in the given current
sheet configuration with ∂/∂y ≡ 0 reduces to ∂Bx/∂t =
∂Ey/∂z for any x position. In the long-term limit, the
dynamic equilibrium and the associated input - output
balance of the electromagnetic energy are mainly con-
trolled by the loading of oppositely directed magnetic
fluxes at z = ±1 and their annihilation at z = 0. Below
we express this condition in terms of the active site den-
sity ρa used in (7), thus obtaining the MHD equivalent
of critical susceptibility in SOC sandpiles.
The dynamic equilibrium of the current sheet assumes

that the time-averaged flux remains unchanged so that
〈

∫ 1

0
Bzdx

〉

t
= const, or equivalently 〈Ey(z = 1)〉t =

〈Ey(z = 0)〉t. To the first approximation, the generalized
Ohm’s law for the electric field in the plasma frame yields
Ey = DJy − (V ×B)y = DJy − VxBz − VzBx. Due to
the applied boundary conditions, Vx(z = 1) = 0, Vz(z =
1) = −Vb, Bx(z = 1) = Bb (the subscript b denotes
boundary values), and the current density J(z = 1) never
reaches the critical level Jc so that D(z = 1) = Dmin ≈ 0.
At z = 0, Bx ≡ 0 due to the anti-symmetric field con-
figuration, and the term VxBz describing magnetic flux
transport toward the open boundary is negligibly small
compared to DJ .
Taking the above into account and averaging over x,

we obtain the condition for the global steady-state of the
model

〈VbBb〉x,t = 〈D(z = 0)J(z = 0)〉x,t ≈ Jc 〈D(z = 0)〉x,t
(8)

where we used a numerical result J(z = 0) ≈ Jc.
Be applying the Laplace method it is easy to show [27]

the the formal initial-value solution to Eq. 6 is given by

D(t) = D(t = 0)e−t/τ +
1

τ

∫ t

0

Q(s)e−(t−s)/τds, (9)

which implies that 〈D〉t = 〈Q〉t at any position, including
z = 0, and therefore 〈D(z = 0)〉x,t = 〈Q(z = 0)〉x,t.
Finally, we define active grid sites in our model as those

for which Q = Dmax and introduce ρaf for the time-
averaged density of active grid sites. Assuming that the
time average of Q(z = 0) is proportional to the total
spatiotemporal average of this variable [27] and using the
fact that Dmax ≫ Dmin, we arrive at

〈Q (z = 0)〉x,t = ξ 〈Q〉x,z,t ≃ ξρafDmax (10)

in which ξ is a numerical factor that is discussed below,
and thus

ρaf =
〈VbBb〉x,t
ξJcDmax

=
hf

ξǫf
(11)

where hf and ǫf are the averaged rates at which the
magnetic flux is respectively added and dissipated.
Note that if ξ 6= ξ(hf , ǫf ), then ∂ρaf/∂hf ∼ ǫ−1

f , and
the global susceptibility of the model diverges in accor-
dance with the mean-field SOC behavior [26].
We have carried out a series of numerical simulations

of the current-sheet model to examine the behavior of
ξ (hf , ǫf ) with changes of both control parameters over
approximately two orders of magnitude. Holding Dmax

fixed, ǫf was varied by varying Jc. For each of 7 cho-
sen values of Jc, several runs for different hf allowed for
estimates of ∂ρaf/∂h|h=0 through linear fits to ρaf (h),
including the point ρaf (h = 0) = 0. Since SOC state im-
plies clear time separation between driving and dissipa-
tion time scales, we required that hf/ǫf was sufficiently
small so that the behavior of the model consisted of ac-
tive periods of fast dissipation separated by quiet periods
during which slow magnetic flux inflow gradually refills
the system.
Over the entire collection of simulation results satis-

fying this condition, no significant dependence of ξ on
either hf or ǫf has been found, and the total suscepti-

bility followed the mean-field SOC scaling χǫ ∼ ǫ−γ
f with

γ ≈ 1 (Fig. 3).

B. Energy avalanches

The critical divergence of current sheet susceptibility
is supported by complex and violent unloading events
(see inset in Fig. 3) which involve multiple avalanches of
magnetic energy dissipation associated with propagating
unstable regions.
Neglecting the convective contribution, the magnetic

energy transported when a site becomes active is given
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FIG. 3: For several Jc values ranging over a factor of 102, the
quantity ξ (triangles, right axis) measured at different driving
rates hf , the susceptibility χ (stars, left axis), and the power-
law fit to the susceptibility values providing the exponent γ.
Inset shows an example of stochastic evolution of the number
of unstable grid sites during a single global unloading.

by the magnitude Sd(x, z) = (c/4π)η|J × B| of the lo-
cal diffusive Poynting flux [16], in which η = 2πD/c2 is
the anomalous resistivity, and c is the speed of light. To
observe avalanches, we used an automated technique for
detecting and tracing regions having grid sites with Sd

above a certain threshold. In analogy with avalanches
in 2d sandpiles, we treat the events as 2+1 dimensional
spatiotemporal objects. Avalanches were identified by
applying a floating activity threshold Sth(t) = 〈Sd〉+k ·σ
adjusted to the average value 〈Sd〉 and the standard de-
viation σ of the Poynting flux at every time step. The
floating threshold allows improved statistics considering
the time variation during unloading cycles. The time
evolution of avalanches was obtained by checking the in-
tersections of spatial regions above Sth(t) in consecutive
pairs of Sd(x, z) snapshots.

Each avalanche was characterized by its lifetime T and
its total Poynting flux, E, obtained from the integra-
tion of Sd over its spatiotemporal domain – grid sites
with Sd(x, z, t) > Sth(t) taking part in the avalanche.
The linear dimensions lx and lz of avalanches were esti-
mated by determining standard deviations of the x and
z coordinates over all the grid sites involved in each
avalanche (equally weighted). In addition the geometric
mean lxz ≡ (lxlz)

1/2, as well as the total area s, rep-
resenting the total number of distinct pixels involved in
the avalanche, were estimated. The statistics reported
here were obtained using k = 3.0 and have also been
reproduced in the range k = 1.5− 4.0.

The probability distribution for lengths, time, area,
and energy of avalanches all obey scale free statistics.
The first group of critical exponents was estimated based
on analyses of probability distributions p(T, smax) and
p(E, smax) constructed from subsets with s ≤ smax, in
which smax is defined to be the maximum area (number
of pixels) of events included in the subset used to make

the histogram. The normalized probability distributions
were studied using the scaling ansatz

p(X, smax) = X−τXfX(X/Xc), Xc ∼ sλX

max (12)

where X ∈ {E, T } and fX are scaling functions that are
approximately constant for X < Xc and drop rapidly for
X > Xc.
Assuming Eq. 12, we have plotted the distributions in

the rescaled coordinates
(

X/sλX

max, p(X)XτX
)

and iden-
tified the combination of τE , τT , λE and λT exponents
that provides the best data collapse (Fig. 4). The result-
ing values τE = 1.48 ± 0.02 and τT = 1.95 ± 0.03 coin-
cide with those reported earlier in [16]. The exponents
λE = 1.47±0.03 and λT = 0.68±0.04 are consistent with
the regression analyses for the expected values of energy
and lifetime for avalanches with a given avalanche size
s, within statistical error. These values also preserve the
scaling relation λT (τT − 1) = λE(τE − 1).
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FIG. 4: Data collapse using Eq. 12 for avalanches with
different maximum area smax with τT = 1.95, λT = 0.68,
τE = 1.48, and λE = 1.47. Insets: anisotropic scaling of
E and T with the maximum avalanche extent l in x and z
directions.

The anisotropy of the model leads to different growth
rates of avalanches in the x and z directions. Hence
〈s〉lx ∼ (lx)

dx and 〈s〉lz ∼ (lz)
dz with dx = 1.40±0.03 and

dz = 3.11± 0.06. The geometric mean lxz is related to s
through another scaling relation, 〈s〉lxz

∼ (lxz)
dxz , with

dxz = 1.97 ± 0.05 indicating that avalanches are com-
pact. The exponent values obtained are consistent with
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d−1
x +d−1

z = 2d−1
xz . We also studied E and T as functions

of lx and lz and found that 〈E〉lx ∼ lµx

x , 〈T 〉lx ∼ lνxx ,
〈E〉lz ∼ lµz

z and 〈T 〉lz ∼ lνzz with scaling exponents
µx = 1.87 ± 0.04, νx = 1.13 ± 0.01, µz = 3.50 ± 0.04
and νz = 1.97 ± 0.06 (see the insets in Fig. 4). The
ratios µx/µz and νx/νz are close to dx/dz as expected.
All these results indicate that with respect to bursts

of energy dissipation above background, the system op-
erates at or near a SOC state. Based one the values of
the distribution exponents τE and τT one can conjecture
that the model operates near the mean-field limit. This is
not typical for non-directed SOC sandpiles whose upper
critical dimension du is usually higher than 2. However,
it is possible that the avalanching dynamics in our model
can be mapped onto the universality class of non-Abelian
directed sandpiles with irreversible topplings [28] which
exhibit the mean-field exponents starting from du = 2.

C. Velocity fluctuations

Energy avalanches in the model are accompanied by
complex multiscale plasma flows. Fig. 5 shows the ini-
tial expansion of a Poynting flux avalanche in back of an
outward propagating current wave as well as the associ-
ated transition from laminar to turbulent plasma flow at
and in the interior of the expanding wave.

FIG. 5: The neighborhood of an initial site of instability
shortly after the initiation of an unloading event. (a) Poynt-
ing flux due to slipping magnetic flux in the interior of the
outward expanding current wave. (b) Transition from lami-
nar to turbulent velocity field due to J × B acceleration at
the current wave as it propagates through the magnetic field.

To analyze turbulence of the velocity field, we have fol-
lowed the usual procedure by computing a set of equal
time structure functions defined as Sq(l) = 〈|δvl|q〉,
where δvl = (v(r + l) − v(r)) · l/l is the increment of
the velocity v in the direction l (parallel to x or z axes),
q is the order of the structure function, l ≡ |l| is the
spatial displacement, and averaging indicated by 〈· · ·〉 is
performed over all positions r and times during an un-
loading phase. For turbulent phenomena, Sq(l) ∼ lζ(q)

with ζ(q) defined by the turbulent regime under study.

To extend the scaling range and improve the accuracy
of this analysis, we have applied the method of extended
self similarity (ESS) [29] by plotting Sq(l) versus S3(l).
The resulting structure functions (Fig. 6) exhibit ESS

over the entire range of scales available. The error bars
shown are for ζ(q)/ζ(3) in x direction; the errors in the
z direction are about three times smaller. The values
obtained in both directions are the same up to these er-
rors. The dependence of ζ(q)/ζ(3) on the order q shows a
systematic departure from the Kolmogorov law ζ = q/3,
signaling intermittency. It can be fitted by the hierar-
chical model ζ(q) = (1− γ)q/g +C(1− [1− γ/C]q/g], in
which C is the codimension of the most singular dissi-
pative structures, g and γ are defined by δz ∼ ℓ1/g and
te ∼ ℓγ , with te being the energy transfer time at the
smallest inertial scales ℓ [30].
By choosing either g = 4, γ = 1/2, C = 1 (Iroshnikov-

Kraichnan theory (IK) [31]) or g = 3, γ = 2/3, C = 2
(She and Leveque (SL) theory [11]) one can obtain rather
accurate fits to the data. However, these results should
be treated with care because physical conditions for tur-
bulence in our model are different from those in any of the
listed hierarchical models. In the current sheet model,
the intense current at leading energy avalanche fronts
accelerates the fluid through the j×B force. These cur-
rent structures play the role of energy sources rather than
energy sinks (as would be the case in classical turbulence
models). As we have shown in the previous section, the
avalanches are scale-free, and thus this driving mecha-
nism appears at all scales as opposed to the standard
picture of the direct turbulent cascade. To the best of
our knowledge, at this point there is no IT theory that
could predict the relationship between the magnetic en-
ergy avalanches and the intermittency in the velocity field
(e.g. in the form of an “exact law” [32]), although it is
evident that the resulting behavior is different fromMHD
turbulence [33].

D. Conclusions

Therefore, we have identified a slow driving rate regime
in which the global susceptibility of the current sheet
model diverges as the SOC limit is approached in agree-
ment with the mean field theory of SOC. The bursty
transport of magnetic flux/energy into the field reversal
region of the current sheet exhibits scale-free avalanche
statistics over broad ranges of scales. We have demon-
strated the finite size scaling of these statistics to confirm
their intrinsic scale-free nature, and revealed its intrinsic
anisotropy reflecting the geometrical configuration of the
current sheet.
The results obtained suggest that the model operates

in a slowly-driven SOC state similar to the mean-field
state of sandpile models. The geometric exponents in
the direction parallel to the current sheet plane are close
to the exponents of stochastic directed sandpiles above
the upper critical dimension [28]. In the transverse di-
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FIG. 6: Left: ESS plots of velocity structure functions with
l parallel to z axis. The inset shows the same functions with
subtracted average slopes. Right: Dependence of ζ(q)/ζ(3)
on the order q for our current sheet model (CSM, with error
bars), hierarchical models of IT mentioned in the text, Müller
and Biskamp (MB) [34] model (g = 3, γ = 2/3, C = 1),
Kolmogorov model (K41) [35], as well as the exponents from
2d ideal MHD simulations [36].

rection they are reminiscent of isotropic SOC models op-
erating in the mean-field such as the prototypical Bak-
Tang-Wiesenfeld model [1].
Our simulation demonstrates that SOC behavior can

be observed in a broad class of plasma models based
on the full MHD system, plus our interpretation of
the Lu [10] component in terms of a generic cross-field
current-driven instability producing interconnected “top-
pling events” that can propagate throughout the system
as avalanches. In particular, this mechanism can be re-
sponsible for the scale-free statistics of dissipation events
in Earths’s magnetotail which are described by a similar
set of exponents (τE = 1.5, τT = 2.1, λE = 1.4, λT = 0.7
[37–39]), as well as for a variety of other effects associated
with intermittent turbulence in space plasma.
We found the spatial scaling of higher-order structure

functions of the velocity field constructed using ESS to

be in a formal agreement with some hierarchical mod-
els of turbulence, although no available IT model can
adequately describe the simulated avalanching behavior.
Our velocity analysis results point at an intricate connec-
tion between turbulent flows and energy avalanches that
can play an important part in in many classes of contin-
uum systems with bursty dissipation [40–44], especially
those involving reconnecting current sheets (see e.g. [45–
47]). The results obtained also reinforce a prior observa-
tion of coexisting signatures of SOC and IT in a single
data set of ultraviolet images of the solar corona [33, 48],
and suggest that SOC and IT may be simultaneously
measurable complementary phenomena in many astro-
physical systems.

Finally, it is worth mentioning that temporal magnetic
field reversals left outside the scope of our study can
also lead to complex solutions. Temporal magnetic re-
versals play an important part in many natural systems,
including the geodynamo and other planetary dynamos
[49]. By breaking the symmetry of the flow, the mag-
netic field in such systems becomes oscillatory and can
lead to a turbulent cascade described by universal scal-
ing laws [49, 50]. The von Karman Sodium experiment
(see e.g. Monchaux et al. [51], Boisson et al. [52]) has
demonstrated a variety of chaotic dynamo regimes when
the flow forcing was not symmetric, including magnetic
field reversals. In the future studies, it would be of in-
terest to investigate critical turbulent properties of such
dynamically reversed systems and to compare them with
the spatial reversal dynamics explored here.
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