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Abstract

Using molecular dynamics simulations, we study the transient response of a binary Lennard-

Jones glass subjected to periodic shear deformation. The amorphous solid is modelled as the

three-dimensional Kob-Andersen binary mixture at a low temperature. The cyclic loading is ap-

plied to slowly annealed, quiescent samples, which induces irreversible particle rearrangements at

large strain amplitudes, leading to stress-strain hysteresis and a drift of the potential energy towards

higher values. We find that the initial response to cyclic shear near the critical strain amplitude

involves disconnected clusters of atoms with large nonaffine displacements. In contrast, the ampli-

tude of shear stress oscillations decreases after a certain number of cycles, which is accompanied

by the initiation and subsequent growth of a shear band.

PACS numbers: 62.20.F-, 61.43.Fs, 83.10.Rs
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I. INTRODUCTION

The development of advanced thermomechanical processing techniques for metallic glasses

might provide access to a broader range of states and thus permit exploitation of the im-

proved material properties [1]. It has been long realized that an elementary plastic event

in deformed glasses involves a collective rearrangement of a small group of atoms, known

as a shear transformation zone [2–4]. Recently, it was argued that the mechanical yield in

amorphous solids does not necessarily result in structural changes but rather represents a

transition from a constrained set to a vast number of available configurations [5]. At suffi-

ciently small shear rates, glassy materials exhibit shear localization in the form of fluidized

shear bands running across the sample [6, 7]. Under a constant strain rate, the plastic

flow follows the formation of a percolating cluster of mobile regions characterized by large

nonaffine displacements [8, 9]. However, shear band initiation and evolution during more

complex time-dependent deformation protocols remain relatively unexplored.

In the last several years, the microscopic mechanism of deformation of amorphous mate-

rials during periodic shear was studied extensively using atomistic simulations [10–20] and

experimental measurements [21–30]. In particular, it was shown that during cyclic load-

ing at small strain amplitudes below the yielding transition, particle trajectories remain

reversible over consecutive cycles [11–13, 15], and, notably, some atoms undergo repetitive

nonaffine displacements with amplitudes that are comparable to the cage size [16, 18, 29].

It was also found that more slowly cooled glasses undergo smaller particle rearrangements

and become more reversible under athermal, quasistatic cyclic shear [20]. In the absence

of thermal fluctuations, a sharp onset of particle diffusion is detected at the critical strain

amplitude [11–13, 15, 17], which can be interpreted as a nonequilibrium first-order dynamic

phase transition [19]. Rather interestingly, the results of numerical simulations indicate that

the yielding transition in oscillatory shear is not accompanied by changes in microscopic

structure [19].

At finite temperatures, nonaffine rearrangements in glasses arise both from thermal mo-

tion of atoms and from the imposed shear deformation, and, thus, shear-induced activation

of irreversible structural rearrangements is assisted by thermal noise [8, 18]. Under cyclic

loading, atoms with large nonaffine displacements are spatially organized into clusters, which

become comparable with the system size near the yield strain [16, 18]. Moreover, upon in-
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creasing strain amplitude, spatial correlations of nonaffinity become extended over longer

range, although they remain present even in the absence of mechanical deformation due

to thermal fluctuations [18]. It was further shown that over many deformation cycles, the

structural relaxation dynamics is spatially and temporally heterogeneous; namely, mobile

particles, or cage jumps, tend to aggregate into transient clusters [10, 14]. Furthermore,

during cyclic shear near the yield strain, a cluster of atoms with large reversible nonaffine

displacements induces a long-range, time-dependent elastic field that in turn might trigger

secondary structural rearrangements. This situation was considered separately in recent

studies [31, 32], where it was found that a local reversible shear transformation in a quies-

cent system induces irreversible cage jumps, and their density is larger in the cases of weaker

damping or slower shear transformation.

More recently, the fatigue mechanism in bulk metallic glasses subjected to tension-

compression cyclic loading was investigated using molecular dynamics (MD) simulations [33]

and finite element modeling [34]. It was found that the amplitude of stress oscillations is

reduced after the first several cycles, which is associated with the formation of a dominant

shear band across the whole system [33, 34]. In this process, the initiation of a shear band

is preceded by an accumulation of shear transformation zones at the surface of the material.

Moreover, it was shown that higher cycling frequency leads to a larger number of cycles to

failure [33, 34]. Nevertheless, the microscopic details of the relaxation process in amorphous

materials under various types of loading conditions remain not fully understood.

In this paper, molecular dynamics simulations are carried out to investigate the tran-

sient response of a binary glass to large-amplitude oscillatory shear deformation. It will

be shown that above the yield strain, the structural relaxation process involves irreversible

rearrangements of particles within a shear band, which leads to stress-strain hysteresis and

increase of the potential energy over consecutive cycles. Near the critical strain amplitude,

the formation of a shear band is delayed for a number of cycles and it coincides with the

increase of the potential energy and a distinct drop in the shear stress amplitude.

The rest of the paper is organized as follows. The details of molecular dynamics simula-

tions and the deformation protocol are described in the next section. The variation of the

potential energy and shear stress, as well as stress-strain hysteresis and spatial configurations

of particle with large nonaffine displacements at different strain amplitudes are presented in
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Sec. III. The results are briefly summarized in the last section.

II. MOLECULAR DYNAMICS SIMULATIONS

In order to study the deformation dynamics of amorphous materials, we consider the

standard Kob-Andersen (KA) (80:20) binary mixture model [36] that was originally designed

to reproduce the properties of the metal alloy Ni80P20 [37]. In our setup, the system consists

of NA = 48 000 large atoms of type A and NB = 12 000 small atoms of type B that are

confined in a three-dimensional periodic cell. A snapshot of the equilibrated system of

N = 60 000 atoms is presented in Fig. 1. In the KA model, any two atoms α, β = A,B

interact via the truncated Lennard-Jones (LJ) potential as follows:

Vαβ(r) = 4 εαβ

[(σαβ

r

)12

−

(σαβ

r

)6 ]

, (1)

where the interaction parameters are fixed to εAA = 1.0, εAB = 1.5, εBB = 0.5, σAB = 0.8,

σBB = 0.88, and mA = mB [36]. This choice of parameters defines a highly non-additive

LJ potential that prevents crystallization at low temperatures [36]. The cutoff radius is

rc, αβ = 2.5 σαβ and the units of length, mass, energy, and time are set to σ = σAA, m =

mA, ε = εAA, and τ = σ
√

m/ε, respectively. The equations of motion for each atom

were integrated using the Verlet algorithm [35, 38] with the time step △tMD = 0.005 τ .

The molecular dynamics simulations were conducted using the efficient parallel program

LAMMPS developed at Sandia National Laboratories [35].

Each individual sample was carefully prepared by first placing the atoms in the cubic

box and assigning random velocities at the temperature 1.1 ε/kB, which is above the critical

temperature Tc ≈ 0.435 ε/kB [36]. Here kB is the Boltzmann constant. The dimensions

of the cubic box of linear size L = 36.84 σ were kept constant in all simulations, and the

corresponding density is ρ = ρA + ρB = 1.2 σ−3. Second, in the absence of mechanical

deformation, the temperature of the system was gradually reduced with a computationally

slow rate of 10−5 ε/kBτ to the final temperature TLJ = 10−2 ε/kB. The data were collected

in five independent samples.

Followed by the equilibration procedure, the material was subjected to periodic shear

deformation along the xz plane as shown in Fig. 1. The applied shear strain was varied
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periodically according to

γ(t) = γ0 sin(2πt/T ), (2)

where γ0 is the strain amplitude and T is the oscillation period. In what follows, the os-

cillation period was fixed to T = 5000 τ and, correspondingly, the oscillation frequency is

ω = 2π/T = 1.26×10−3 τ−1. The Lees-Edwards periodic boundary conditions [38] were em-

ployed in the xz plane. The non-equilibrium MD simulations were performed in the constant

NVT ensemble, where the temperature was controlled by the dissipative particle dynamics

(DPD) thermostat [39]. The DPD thermostat is based on the relative atom velocities and

thus the particle dynamics is not coupled to a flow profile, and, as a result, the formation

of shear bands or other flow inhomogeneities are not suppressed during deformation of the

material [8, 39].

III. RESULTS

The initial response of amorphous materials to mechanical deformation depends strongly

on the preparation history [1]. In particular, it is well recognized that more slowly annealed

glasses acquire a state with a lower potential energy and exhibit higher yield stress [1]. On the

other hand, it was shown that large strain cycles cause irreversible relaxations in the material

and relocate the system to shallower energy minima, thus, leading to rejuvenation [40]. In

the present study, the potential energy per particle in one representative sample is plotted

in Fig. 2 during 40 cycles for the strain amplitudes γ0 = 0.07, 0.08, 0.09, 0.10, 0.12, 0.16, and

0.20. It can be seen that at the strain amplitude γ0 = 0.07, the variation of the potential

energy is periodic with superimposed noise due to thermal fluctuations. Remarkably, at

γ0 = 0.08, the potential energy first gradually increases on average during about 20 cycles

and then levels off rapidly to a new regime of oscillations with a smaller amplitude. This

dynamic transition marks the onset of large-scale irreversible structural rearrangements that

will be identified more directly below. As shown in Fig. 2, with further increasing strain

amplitude, the potential energy per particle increases more rapidly over consecutive cycles.

The typical Lissajous curves of shear stress versus strain are displayed in Fig. 3 for the

selected strain amplitudes γ0 = 0.07, 0.08, 0.10, and 0.20. It can be seen that a small

hysteresis, and, therefore, energy dissipation appear already at γ0 = 0.07, when the system

dynamics is nearly reversible as suggested by the periodic variation of the potential energy
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shown in Fig. 2. The finite loop area at γ0 = 0.07 is masked by the initial response and

thermal fluctuations over many cycles. To resolve the hysteresis curve more clearly, the

variation of shear stress as a function of strain during the last cycle is also presented in

Fig. 3 (a). With increasing strain amplitude, the area of the hysteresis loop increases while

the amplitude of shear stress remains the same (about 0.72 εσ−3) in steady state. Most

interestingly, in Fig. 3 (b) one can observe a transition from initially small to large hysteresis

after several cycles at the strain amplitude γ0 = 0.08, which points at enhanced energy

dissipation after about 20 cycles. Finally, pronounced shear stress overshoots arise during

the first cycle followed by hysteresis loops with large areas at higher strain amplitudes

γ0 = 0.10 and 0.20 as shown in Fig. 3 (c) and (d), respectively.

The variation of shear stress during forty cycles is presented in Fig. 4 for different strain

amplitudes. It can be observed that at the strain amplitude γ0 = 0.07, the amplitude of

shear stress oscillations remains unchanged, which is consistent with the periodic behavior

of the potential energy reported in Fig. 2. By contrast, at γ0 = 0.08 in Fig. 4, the shear

stress amplitude is nearly constant for about 18 cycles and then it decreases to a smaller

value, which occurs at the same time when the potential energy grows rapidly (see Fig. 2).

This response to applied periodic shear implies a formation of extended fluidized regions

that determine the stress amplitude of 0.72± 0.06 εσ−3. This value correlates well with the

post-yield shear stress σSS = 0.68±0.04 εσ−3 averaged over five samples under steady shear

at the strain rate γ̇τ = 10−4 (not shown). Furthermore, it can be seen in Fig. 4 that the

shear stress reaches steady-state oscillations after three cycles at γ0 = 0.09 and after the

first cycle at γ0 > 0.09.

It should be noted that the trends identified in Figures 2, 3 and 4 were observed in all

five independent samples, although the number of cycles until the dynamic transition at

the strain amplitude γ0 = 0.08 varies from 15 to 59. These results agree qualitatively with

recent numerical simulations of metallic glasses under tension-compression cyclic loading,

where it was shown that after a certain number of cycles, the stress amplitude is reduced

concomitantly with the initiation of a shear band across the sample [33, 34]. We also

comment that the transition from reversible dynamics at γ0 = 0.07 to the plastic regime at

γ0 = 0.08 occurs at higher strain amplitudes than the critical value γ0 = 0.06 reported in the

previous MD study [10], where simulations were performed at the higher oscillation frequency
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ωτ = 0.02 and higher temperature TLJ = 0.1 ε/kB. At the same time, our results are in

agreement with the critical strain amplitude γ0 = 0.07, which marks the onset of energy

dissipation and particle diffusion in a binary glass under oscillatory athermal quasistatic

shear deformation [11, 17].

To show the initial response more clearly, the time dependence of the shear stress during

the first quarter of the cycle is presented in Fig. 5 for different strain amplitudes. It can be

seen that the yield stress becomes apparent at γ0 > 0.08. As expected, the overshoot stress

increases with increasing strain amplitude or average strain rate. Typical strain rates at

t = 0 are γ̇τ = 7.54 × 10−5 for γ0 = 0.06 and γ̇τ = 2.51 × 10−4 for γ0 = 0.20. The inset in

Fig. 5 shows the averaged value of the overshoot stress as a function of the strain amplitude.

We next perform a more detailed microscopic analysis that involves spatial configurations

of atoms with large relative displacements during periodic shear. In general, a combination

of a linear transformation and a translation define the so-called affine deformation of the

material. In turn, a deviation from the linear strain field can be described by a nonaffine

component of displacement of atoms relative to their neighbors. The nonaffine measure is

defined via the transformation matrix Ji [4] that best maps all bonds between the i-th atom

and neighboring atoms during the time interval ∆t as follows:

D2(t,∆t) =
1

Ni

Ni
∑

j=1

{

rj(t+∆t)− ri(t +∆t)− Ji

[

rj(t)− ri(t)
]

}2

, (3)

where the sum is taken over Ni nearest-neighbor atoms within the distance 1.5 σ from ri(t).

In what follows, the quantity D2(t,∆t) was evaluated during ∆t = T with respect to atomic

configurations at zero strain. Note that in the definition of the nonaffine measure, Eq. (3),

D2 is normalized by the number of neighbors in the first shell, and, therefore, the value

D2
≈ 0.01 σ2 corresponds approximately to a displacement of the atom ri on the order of

the cage size with respect to its neighbors.

The probability distribution function of the nonaffine measure is plotted in Fig. 6 for

the selected strain amplitudes. The quantity D2(t, T ) was computed after each cycle with

respect to zero strain, i.e., at t = 0, T, ..., 39 T . The data in Fig. 6 were averaged over five

independent samples and 40 oscillation cycles. It is evident that at the strain amplitudes γ0 =

0.06 and 0.07, the distribution function decays rapidly at small values of D2, which implies

that most of the atoms return to their cages after each cycle. We comment that some atoms
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with D2 > 0.01 σ2 after one cycle might return back to their cages after several cycles, which

does not necessarily lead to structural relaxation of the material. Examples of reversible

cage jumps during 50 oscillation cycles were reported in the previous MD study [16]. With

increasing strain amplitude, γ0 > 0.08, the shape of the probability distribution function

becomes more broad, and it acquires a local maximum at D2 > 0.1 σ2 and γ0 > 0.18. The

appearance of large nonaffine displacements at γ0 > 0.08 indicates a large number of cage

breaking events and it suggests that at least a part of the material becomes fluidized. These

conclusions are consistent with the abrupt change of the mean square displacement from a

subdiffusive plateau at small strain amplitudes γ0 6 0.07 to a diffusive behavior at γ0 > 0.08,

which is shown in the inset of Fig. 6.

Further insight into the structural relaxation process can be gained by examining the

spatial configurations of atoms with large nonaffine displacements. Examples of particle

positions with D2(t, T ) > 0.01 σ2 are presented in Figures 7, 8, 9, and 10 for different strain

amplitudes. In each case, the quantity D2(t, T ) was evaluated for each atom after a full

back-and-forth cycle with respect to the selected reference times that correspond to zero

strain. It can be observed in Fig. 7 that during cyclic loading at the strain amplitude

γ0 = 0.07, atoms with large nonaffine displacements tend to aggregate into disconnected

clusters. Interestingly, the number of atoms with D2(0, T ) > 0.01 σ2 is larger after the

first cycle, indicating significant rearrangements of atoms with respect to their equilibrium

positions in the annealed sample, which is followed by a steady process with smaller scattered

clusters. A similar trend with the initial decrease of the number of rearrangements with large

irreversible displacements was observed in periodically sheared suspensions below the strain

threshold [21].

The most striking observation from the sequence of snapshots shown in Fig. 8 for the

strain amplitude γ0 = 0.08 is the transition from initial non-percolating clusters of atoms

with D2 > 0.01 σ2 to the formation of the shear band across the whole system after 20th

cycle. Note that this dynamic transition correlates well with the drop in amplitude of the

shear stress oscillations for γ0 = 0.08 shown in Fig. 4 and with the increase in the potential

energy in Fig. 2. Thus, once the system-spanning shear band is formed, the maximum shear

stress during periodic loading is determined by the fluidized region. We observed that the

orientation of a shear band is parallel to either yz or xy planes in different samples. This
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is consistent with the formation of shear bands parallel or perpendicular to the shear flow

direction in binary LJ glasses subjected to a constant strain rate [8]. It also should be

mentioned that a discontinuous transition from a reversible dynamics to a diffusive behavior

upon increasing strain amplitude resembles a first order phase transition; however, the

appearance of a percolating cluster of mobile atoms in a form of a shear band is a signature

of a continuous transition.

As is evident from Fig. 9, the shear band is formed parallel to the xy plane during the

first oscillation cycle at the strain amplitude γ0 = 0.10. Over the next 40 cycles, the width of

the shear band gradually increases, however, it remains smaller than the system size. Note

that a single shear band is extended in the ẑ direction via periodic boundary conditions in

Fig. 9 (c) and (d). Furthermore, as shown in Fig. 10, the shear band appears at the first cycle

for the strain amplitude γ0 = 0.16, and the whole sample becomes fluidized after 30th cycle

[see Fig. 10 (d)]. With further increasing strain amplitude, the number of cycles required for

atoms with large nonaffine displacements to be distributed uniformly throughout the system

decreases (not shown).

Taken together, the results in this study for the potential energy, stress-strain hysteresis,

shear stress, and spatial distribution of nonaffine displacements indicate that the yielding

transition occurs at strain amplitudes 0.07 < γ0 < 0.08. This is consistent with the crossover

from exponential to power-law decay (when the strain amplitude is varied from γ0 = 0.07 to

0.08) of the spatial correlation function of nonaffine displacements reported in the previous

study [18]. At larger strain amplitudes, the cyclic deformation induces irreversible nonaffine

rearrangements of atoms within a shear band that reduce the amplitude of shear stress

oscillations. We finally comment that in accordance with the nucleation picture of the

yielding transition, where the formation of a shear band delays the onset of plastic flow, the

critical strain amplitude at very low shear rates can be significantly lower than the value

γ0 = 0.08.

IV. CONCLUSIONS

In summary, the dynamic response of binary LJ glasses to oscillatory shear was inves-

tigated using molecular dynamics simulations. The periodic shear strain was applied to

quiescent samples that were prepared by cooling down with a computationally slow rate to
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a temperature well below the glass transition. It should be emphasized that temperature

was regulated by the dissipative particle dynamics thermostat that avoids profile biasing

and thus represents a good choice for studying problems that involve flow localization.

It was found that during cyclic loading near the critical strain amplitude, the relaxation

process involves transient, non-percolating clusters of atoms with large nonaffine displace-

ments for a number of cycles, which are followed by the formation of a shear band running

across the sample. The appearance of the shear band causes a noticeable drop in the shear

stress amplitude and marks the onset of irreversible particle rearrangements leading to a

sharp increase of the potential energy. With increasing strain amplitude, the stress-strain

hysteresis becomes more pronounced and the plastic flow develops in the whole sample.

In the future, it will be interesting to determine more precisely the critical strain ampli-

tude that sets irreversible nonaffine displacements and to explore its dependence on temper-

ature, oscillation frequency, system size and preparation history.
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FIG. 1: (Color online) A snapshot of the instantaneous atomic configuration of the binary Lennard-

Jones glass at the temperature TLJ = 10−2 ε/kB during periodic shear deformation along the xz

plane (indicated by the black arrows) with the strain amplitude γ0 = 0.10. The atoms of type A

are denoted by large blue circles and atoms of type B are shown by small red circles. Atoms are

not drawn to scale. The total number of atoms is N = 60000.

15



0 10 20 30 40

t /T

-8.3

-8.28

-8.26

-8.24

-8.22

-8.2

U

FIG. 2: (Color online) The variation of the potential energy per particle U (in units of ε) in one

sample during the first 40 oscillation cycles for the strain amplitudes γ0 = 0.07, 0.08, 0.09, 0.10,

0.12, 0.16, and 0.20 (from bottom to top). The oscillation period is T = 5000 τ .
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FIG. 3: (Color online) The shear stress σxz (in units of εσ−3) versus shear strain γ during 40 cycles

for the strain amplitudes (a) γ0 = 0.07, (b) γ0 = 0.08, (c) γ0 = 0.10, and (d) γ0 = 0.20. The data

for the last cycle at γ0 = 0.07 are included in the panel (a) and displaced for clarity (black curve).
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FIG. 4: (Color online) The shear stress σxz (in units of εσ−3) during the first 40 oscillation cycles

for the strain amplitudes γ0 = 0.07 (brown), 0.08 (red), 0.09 (blue), 0.10 (green), 0.12 (orange),

0.16 (turquoise), and 0.20 (indigo). The period of oscillation is T = 5000 τ .
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FIG. 5: (Color online) The shear stress σxz (in units of εσ−3) during the first cycle for the strain

amplitudes γ0 = 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.14, 0.16, 0.18, and 0.20 (from right to

left). The period of oscillation is T = 5000 τ . The data are taken in one sample. The inset shows

the value of the overshoot stress averaged over five samples as a function of the strain amplitude.
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FIG. 6: (Color online) The normalized probability distribution function of D2(t, T ) after one cycle

for the strain amplitudes γ0 = 0.06, 0.07, 0.08, 0.09, 0.10, 0.12, 0.14, 0.16, 0.18, and 0.20 (from left

to right). The inset shows the mean square displacement of atoms for the same strain amplitudes

(from bottom to top). The straight dashed line with unit slope is plotted for reference.
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FIG. 7: (Color online) Instantaneous atomic configurations for the strain amplitude γ0 = 0.07 and

the nonaffine measure (a) D2(0, T ) > 0.01σ2, (b) D2(9T, T ) > 0.01σ2, (c) D2(19T, T ) > 0.01σ2

and (d) D2(39T, T ) > 0.01σ2. The atoms of types A and B are marked by blue and red circles,

respectively.
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FIG. 8: (Color online) Snapshots of atom positions for the strain amplitude γ0 = 0.08 and the

nonaffine measure (a) D2(0, T ) > 0.01σ2, (b) D2(9T, T ) > 0.01σ2, (c) D2(19T, T ) > 0.01σ2 and

(d) D2(39T, T ) > 0.01σ2.
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FIG. 9: (Color online) Configurations of atoms of types A and B for the strain amplitude γ0 = 0.10

and the nonaffine measure (a) D2(0, T ) > 0.01σ2, (b) D2(9T, T ) > 0.01σ2, (c) D2(19T, T ) >

0.01σ2 and (d) D2(39T, T ) > 0.01σ2.
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FIG. 10: (Color online) Positions of atoms A and B for the strain amplitude γ0 = 0.16 and the

nonaffine measure (a) D2(0, T ) > 0.01σ2, (b) D2(9T, T ) > 0.01σ2, (c) D2(19T, T ) > 0.01σ2 and

(d) D2(29T, T ) > 0.01σ2.
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