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We report on the existence of discrete breathers in a one-dimensional, mass-in-mass chain with
linear intersite coupling and nonlinear, precompressed Hertzian local resonators, which is motivated
by recent studies of the dynamics of microspheres adhered to elastic substrates. After predicting
theoretically the existence of the discrete breathers in the continuum and anticontinuum limits of
intersite coupling, we use numerical continuation to compute a family of breathers interpolating
between the two regimes in a finite chain, where the displacement profiles of the breathers are
localized around one or two lattice sites. We then analyze the frequency-amplitude dependence of
the breathers by performing numerical continuation on a linear eigenmode (vanishing amplitude)
solution of the system near the upper band gap edge. Finally, we use direct numerical integration
of the equations of motion to demonstrate the formation and evolution of the identified localized
modes in energy-conserving and dissipative scenarios, including within settings that may be relevant
to future experimental studies.

I. INTRODUCTION

Materials bearing local resonators are known to sup-
port unique dynamic phenomena, such as negative,
highly anisotropic, and extreme effective properties [1, 2].
Systems exhibiting these phenomena are commonly re-
ferred to as “locally resonant metamaterials,” and are
often described using linear dynamical models. One well-
known model is a chain of “mass-in-mass” unit cells,
which consists of a lattice of interconnected lumped
masses, each with coupled local resonators [3]. By incor-
porating nonlinearity into locally resonant metamateri-
als, their dynamics become more complex. For example,
metamaterials for both acoustic [2, 4] and electromag-
netic [4] waves have demonstrated numerous nonlinear
phenomena, including tunability, harmonic generation,
and the existence of nonlinear localized modes.

A promising means to create nonlinear acoustic meta-
materials is provided by granular media, which consist
of closely packed systems of particles that interact elasti-
cally. Granular media have been shown to support a wide
range of nonlinear dynamic phenomena not encountered
in conventional materials [5–8]. In granular materials,
the microstructural geometric nonlinearity that stems
from the shape of particles in contact (commonly mod-
eled using Hertzian contact mechanics [9]) results in an
effective macroscopic nonlinear material response. Previ-
ous works on granular media have demonstrated numer-
ous nonlinear effects, including solitary waves, shocks,
discrete breathers, tunable band gaps, frequency conver-
sion, and non-reciprocal wave propagation [5–8].

Recent theoretical and experimental works have com-
bined the concepts of locally resonant metamaterials with
granular media. Relevant contexts include, but are not
limited to, frequency shifting, harmonic generation, and
localized band gap modes [10], traveling waves, including
ones with non-vanishing tails [11, 12], wave interaction
[13], and localized and extended modes [14], as well as

temporally periodic breathing states [15, 16] (to which
we will return in what follows). In each of these exam-
ples, the granular media provided a nonlinear intersite
coupling, while the local resonators were linear. Less at-
tention has been paid to cases in which granular particles
play the role of nonlinear local resonators.

In this work, we consider a one-dimensional, mass-in-
mass system with linear intersite coupling and nonlinear
local resonators that follow the Hertzian contact model
with precompression. One motivation for considering
this model is its relevance in describing a granular meta-
material consisting of a monolayer of microscale spheres
adhered to a substrate, wherein surface localized elastic
waves, such as Rayleigh surface acoustic waves (SAWs)
and Lamb modes, have been shown to hybridize with the
contact resonances of the microspheres in thick [17, 18]
and thin [19] substrates, respectively. Within this con-
text, we imagine the portion of the substrate through
which the localized elastic wave is traveling as a linearly
coupled chain that is locally coupled to an array of non-
linear resonators representing the microspheres.

Systems similar to the one-dimensional, linearly cou-
pled chain with nonlinear local resonators considered
here have been previously explored. For example,
amplitude-dependent band-gaps have been studied in a
one-dimensional linear chain with local resonators con-
taining a cubic nonlinearity [20]. Other relevant works
have also considered linear chains with nonlinear coupling
to a rigid foundation [21], or a nonlinear local attachment
[22], demonstrating heavily enriched dynamics caused by
small nonlinear perturbations.

The structure of interest in the present work is the
discrete breather (DB). Discrete breathers are solutions
that are periodically oscillating in time and exponen-
tially localized in space [23, 24] that have been stud-
ied theoretically and experimentally in many settings,
involving a wide array of physical mechanisms [25, 26].
More recently, DBs have been demonstrated in theoret-
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ical [27, 28] and experimental [29–31] studies of ordered
granular chains without local resonators, and theoreti-
cally in the presence of linear local resonators [15, 16],
as well as in nonlinear, locally resonant magnetic meta-
materials [32–34] and systems of electromechanical res-
onators [35].

We use our model to describe a locally resonant gran-
ular metamaterial for Rayleigh SAWs, consisting of a
monolayer of microspheres adhered to a thick elastic sub-
strate. The two independent model parameters are fit
to an experimental system used in past work [17], so as
to provide realistic parameter values to the model wher-
ever possible. Beginning with the Hamiltonian version
of our model, we predict the existence of DBs in the ex-
treme limits of vanishing and strong intersite coupling,
numerically compute a family of DBs connecting the two
regimes, and examine the frequency-energy dependence
of the DBs along the relevant branch of solutions. We
then study the formation and evolution of the DBs via
direct numerical simulations, considering both energy-
conserving and dissipative cases, including within con-
texts that may be relevant to future experimental studies.
While these results are presented in the context of a spe-
cific microscale system, we note that our model is given
in dimensionless form, such that the results presented
herein can be applied and extended to related systems via
a suitable choice of parameters (for example, one could
create a model macroscale, locally-resonant chain similar
to the one studied in Ref. [10], but instead use linear
springs to connect the main chain and Hertzian contacts
in the internal resonators).

II. MODEL

A. Motivating Physical Scenario

Our chosen motivating physical scenario is shown in
the schematic of Fig. 1(a), which describes sagittally-
polarized, plane SAWs traveling along the surface of a
thick substrate. Rayleigh SAWs are surface localized
elastic waves that travel along a solid surface (repre-
sented as an elastic half space in theoretical descrip-
tions), and have both in- and out-of-plane (with respect
to the sample surface plane) displacement components
[36]. Previous studies on monolayers of microspheres
adhered to thick substrates have shown that Rayleigh
SAWs in the substrate hybridize with, and excite, mi-
crosphere contact resonances having translational out-of-
plane [17], and coupled, in-plane, translational and rota-
tional motion [18, 37]. The hybridization with each of
these resonances leads to classic “avoided crossing” phe-
nomena [38] characteristic of locally resonant metamate-
rials and mass-in-mass chains. For the analysis herein,
we focus on the avoided crossing with the contact res-
onance having solely out-of-plane motion [17, 18, 37].
Because a plane SAW is confined to the surface of the
medium, it can be considered as traveling in one dimen-

sion, and as such, we represent the portion of the sub-
strate through which the SAW is traveling as an infinite
lattice of lumped masses m1 connected by springs with
linear stiffness k1. Because the contact-based modes of
the microspheres [17, 18, 39, 40] have frequencies much
lower than the intrinsic spheroidal vibrational frequen-
cies of the isolated spheres [41] (e.g. for the microspheres
studied in Ref. [17], the out-of-plane contact resonance
was measured to be 215 MHz, while the spheroidal reso-
nance was predicted to be 2.9 GHz), we model the micro-
spheres as point masses (of mass m2) connected to the
main chain by nonlinear springs modeling Hertzian con-
tact with a static adhesive load. The resulting discrete
model of our locally resonant granular metamaterial is
shown in Fig. 1(b). As can be seen in Fig. 1(b), the
chain elements are both drawn such that their motion
is in the horizontal direction. We note that this depic-
tion simply represents the coupling between a substrate
(or chain) and a resonator, each having a single degree
of freedom with the same, albeit arbitrary, direction of
motion. Within the context of the previously described
physical scenario, this degree of freedom represents out-
of-plane motion of the substrate and the microsphere, as
the SAWs propagate along the sample surface indexed by
j.

(a)

(b)

Direction of Propagation

FIG. 1. (a) Granular metamaterial composed of a monolayer
of microspheres on an elastic halfspace. (b) Schematic of the
1D, discrete granular metamaterial model.

B. Hamiltonian 1D Discrete Model

In dimensionless form, the associated Hamiltonian
equations of motion of the system shown in Fig. 1(b)
read

Müj +K (−uj+1 + 2uj − uj−1)

+
2

3

(
[uj − vj + 1]

3/2
+ − 1

)
= 0 (1)

v̈j −
2

3

(
[uj − vj + 1]

3/2
+ − 1

)
= 0, (2)
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where uj and vj are, respectively, the displacements from
equilibrium of the main chain and resonators, M = m1

m2
,

K = k1
(3/2)A

√
δ0

characterizes the relative strength of the

elastic and Hertzian terms, where the Hertzian coefficient
A depends on the geometry and material properties of
the particles in contact [9], and δ0 is the static overlap
induced by the adhesive force at equilibrium. The dimen-
sionless time variable τ is defined in terms of the physical

time t by τ = ωhs0 t, where ωhs0 =
√

(3/2)A
√
δ0/m2 is the

resonant frequency of the local oscillator on the elastic
halfspace (measured as 215 MHz for the system in Ref.
[17]), and the displacements uj and vj are normalized to
δ0. The subscript [ ]+ indicates that the contact force
vanishes for resonators that lose contact with the main
chain, i.e. when the relative displacement vj−uj exceeds
the static overlap. The Hamiltonian (energy) correspond-
ing to Eqs. (1) and (2) is

H =
∑
j

[
M
u̇j

2

2
+
v̇j

2

2
+
K

2
(u2j+1 − 2uj+1uj + u2j )+

2

3

(
2

5
[uj − vj + 1]

5/2
+ − (uj − vj)

)
− 4

15

]
. (3)

Upon linearization, this system is identical to the one-
dimensional mass-in-mass chain discussed in [3]. Its dis-
persion relation is given by

M

(
ω

ωhs0

)4

−[2K(1− cos (kD)) +M + 1]

(
ω

ωhs0

)2

+2K(1− cos (kD)) = 0, (4)

where k is the Bloch wave number, ω is the angular fre-
quency, and D is the unit cell width, taken from the
physical system as the width of the granular particles.

C. Parameter Fitting

The resulting model, as can be inferred from Eqs. (1)-
(2), possesses two effective lumped parameters, namely
M and K. We now attempt to fit these discrete model
parameters to describe the microgranular metamaterial
of Ref. [17], using the material and geometric proper-
ties specified therein. We are intending for the discrete
model to provide an adequate representation of dynam-
ical evolution for wavelengths significantly larger than
the sphere diameter, such that the dispersion relations
for our discrete model and the model with a continu-
ous substrate from Ref. [17] are in close agreement at
long wavelengths, and effects found at the Brillouin zone
boundary [42] are avoided [3]. The dispersion relations
for a continuous substrate (from Eq. (2) of Ref. [17]) and
the discrete model of Eqs. (1) and (2) are superimposed
in Fig. 2. We first choose the ratio K/M such that the
long-wavelength sound speed of the discrete lattice, given
by D

√
K/M [42], matches the speed of Rayleigh waves

in the substrate for the model from Ref. [17]. This can be

seen graphically in Fig. 2, as the lower branches of the
two dispersion relations have equal slopes at the origin.
Second, making use of the analytical expression for the
dispersion relation of the continuous system in Ref. [17],
we select K, such that the dispersion relations coincide
at the intersection with the line of slope cT , where cT
is the transverse sound speed of the substrate material.
Using these two criteria, we find the approximate fitted
values M = 30 and K = 160.

The physical significance of these parameter values, M
and K, is as follows. For large mass ratios (M >> 1),
waves in the main chain (corresponding to Rayleigh
SAWs in the substrate) are only perturbed at frequen-
cies very close to the local resonance; this is confirmed in
Fig. 2, by the relatively narrow band gap encompassing
ω/ωhs0 = 1. The large stiffness ratio (K >> 1) indicates
strong coupling between lattice sites, compared to the
coupling between the main chain and the resonators. In-
tuitively, parameters much greater than unity are indeed
expected for this system. This is because the spheres
are much smaller and less massive than the region of the
substrate beneath them that is influenced by Rayleigh
waves, whose displacements decay exponentially from the
surface with a characteristic decay length on the order of
one wavelength [36]. Similarly, the effective stiffness for
the region of bulk material of the substrate influenced
by the Rayleigh wave can be thought to have a signifi-
cantly greater effective stiffness than the relatively soft
microsphere-substrate Hertzian contact. While the fitted
constants depend on material and geometric properties,
a simple estimate can be used to show that M and K are
generally larger than unity when considering long waves
in realistic materials, as described in Appendices A and
B.

Both of the dispersion relations shown in Fig. 2 are
split, as a result of the hybridization with the local reso-
nance, into two branches: the lower (“acoustic”) branch,
in which the vertical motions of the substrate surface
and the spheres are in phase, and the upper (“optical”)
branch, in which the motions are out of phase. The two
branches of the discrete model are separated by a band
gap of width ∆ω, given by

∆ω= ωhs0

(√
1 +M

M
(5)

−

√
4K +M + 1−

√
(4K +M + 1)2 − 16KM

2M

 .

For the parameters values M and K used herein, this
band gap results in an upper cutoff frequency of the
acoustic branch 0.08% below ωhs0 and a lower cutoff fre-
quency of the optical branch 1.65% above ωhs0 . In the
continuous model, for phase velocities greater than the
sound speed of transverse bulk waves (cT ) in the sub-
strate, the optical branch terminates; this is because
the modes above that phase velocity are so-called “leaky
modes.” Such leaky modes have complex frequency,
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FIG. 2. Blue solid and red dotted curves denote the disper-
sion relations for the model with a continuous substrate from
Ref. [17] and our discrete granular metamaterial model, re-
spectively. Black dash-dotted lines have slopes equal to the
transverse (cT ) and Rayleigh (cR) wave sound speeds of the
substrate. The black dashed line denotes the linear natu-
ral frequency of the Hertzian local resonators. The discrete
model uses the fitted parameters M = 30 and K = 160.

which represents the radiation of energy into the bulk
[17, 43, 44], and are a major source of dissipation in
this system. Despite the presence of leaky modes, the
one-dimensional, discrete model used in this work was
chosen over continuous and/or higher-dimensional mod-
els because it captures many of the important features
of the dispersion relation (linear dispersion at long wave-
lengths and a band gap created by a local resonance),
facilitates theoretical prediction and numerical computa-
tion of discrete breathers, and can easily be adapted to
account for dissipation in a chosen experimental system
(as will be demonstrated in Sec. V).

III. THEORY

A. Anticontinuum Limit

We start our analysis by considering the so-called anti-
continuum (AC) limit of vanishing coupling. This ap-
proach, pioneered by MacKay and Aubry in [45], is based
on the limit K → 0, corresponding to uncoupled oscilla-
tors. While this limit is of limited physical relevance for
our considerations herein, it is a particularly useful math-
ematical tool as a starting point for considering differ-
ent breather-type configurations. This enables a natural
starting point to seed continuation algorithms, which are
then continued in the parameter K in order to identify
solutions for different values of the relevant parameter.

In the AC limit our system has the form

Müj =− 2
3

(
[uj − vj + 1]

3/2
+ − 1

)
(6)

v̈j = 2
3

(
[uj − vj + 1]

3/2
+ − 1

)
. (7)

We obtain a single oscillator by defining z = uj − vj ,
where

z̈ = −2

3
ω̃2
0

(
[z + 1]

3/2
+ − 1

)
, ω̃2

0 =
1 +M

M
. (8)

In addition to the trivial solution z = 0, there are
non-trivial solutions of Eq. (8) which are the level curves

of the energy E(z, ż) = 1
2 ż

2 + 4(1+M)
15M

(
[1 + z]

5/2
+ − 5

2z
)

.

To construct a solution along the infinite lattice, each
node is given as z = 0 or the periodic function (say with
frequency ω̃b) satisfying (8). In this paper, we consider
the simplest such configuration, namely the one consist-
ing of zeros at every node with the exception of one
(see Fig. 3(a)). Due to Ref. [45] we know this solu-
tion will persist for nonzero K as long as the so-called
non-resonance condition ω̃b 6= nω̃∗0 , n ∈ Z is satisfied,
where ω̃∗0 ∈ {0, ω̃0} is the frequency of solutions of the
linearized equations at K = 0. While any such value
of ω̃b will yield a persistent breather solution, we chose
0 < ω̃b < ω̃0. Note that the two branches of the dis-
persion curves given by Eq. (4) bifurcate from 0 and ω̃0

as the coupling K becomes nonzero. Thus, by choos-
ing 0 < ω̃b < ω̃0 we are able to construct a band-gap
breather. The numerical continuation (see Sec. IV) sug-
gests that the solution constructed in the AC limit per-
sists to the opposite limit K → ∞. In this limit, other
analytical techniques are available for the analysis of the
solutions, which we explore next.

B. Continuum Limit and NLS Approximation

For the purposes of the analysis, we consider small
amplitude solutions (i.e. |uj − vj | � 1). Thus, it is
reasonable to expand the nonlinearity in a Taylor series

[1 + x]
3/2

= 1 +
3

2
x+

3

8
x2 − 3

48
x3 + h.o.t.

In addition, if we formally consider K = 1/D2 where D
is the lattice spacing and we let D → 0, then Eqs. (1)
and (2) become

M∂ττu− ∂xxu

+(u− v) +
1

4
(u− v)2 − 1

24
(u− v)3 = 0 (9)

∂ττv − (u− v)− 1

4
(u− v)2 +

1

24
(u− v)3 = 0. (10)

We approximate solutions of the above set of equations
with the ansatz

uan = εA(X,T )E(x, τ) + c.c.+ h.o.t.,



5

where X = ε(x − cτ), T = ε2τ , A = A(X,T ), and
E = E(x, τ) = ei(kx+ω̃τ), where k is the Bloch wave
number, ω̃ = ω/ωhs0 , and ε is some small, positive pa-
rameter. Substitution of the ansatz into Eqs. (9) and
(10) and equating the various orders of ε yields a hier-
archy of solvability conditions. The particular choice of
ansatz is well known to yield a Nonlinear Schrödinger
(NLS) equation for the envelope function A(X,T ) in the
theory of nonlinear waves [46]. For our system, in order
to derive the NLS equation we need several higher order
terms:

uan = εAE + ε2a2A1E
2 + ε3a4A3E

3 + ε3a6A5 +

ε3a8A7E
2 + ε3a10A9E + c.c.(11)

van = εa1AE + ε2a3A2E
2 + ε3a5A4E

3 + ε2a7A6E +

ε3a9A8E
2 + ε3a11A10E + c.c.+ ε2a12AĀ,(12)

where each Ai = Ai(X,T ) and the ai are real or complex
coefficients. In particular, we will use the following,

A1 = A2 = A2, A3 = A3 = A4, A5 = Ā∂XA,

A6 = ∂XA, A7 = A∂XA = A8, A9 = ∂TA, A10 = ∂2XA.

These relations are obtained through the solvability con-
ditions, which can be found in Appendix C. We highlight
here that at O(εE) the solvability condition is the dis-
persion relation,

Mω̃4 −
[
k2 +M + 1

]
ω̃2 + k2 = 0. (13)

The connection between this dispersion relation and the
one in Eq. (4) can be seen by Taylor expanding the co-
sine terms of Eq. (4). The Nonlinear Schrödinger (NLS)
equation appears at O(ε3E),(

(Mω̃2 − k2 − 1)a10 − 2iMω̃
)
∂TA =(

Mc2 − a11 − 1
)
∂2XA +(

(1− a1)

2
(a2 − a3 − a12) +

(1− a1)3

8

)
|A|2A. (14)

Closed form analytical solutions of the NLS equation (14)
can be found via the inverse scattering transform [46].
One well known solution is the so-called bright soliton,
and is given by

A(X,T ) =
√
γα sech (

√
γβX) e−iγT , (15)

where α and β are ε independent coefficients that de-
pend on the coefficients of the NLS equation (14) (see
Appendix C) and γ > 0 is an arbitrary parameter. Such
solutions arise when the coefficient of the dispersion term
and that of the nonlinearity have the same sign, which is
the case for the parameter values chosen here.

Thus, at first order, we have the following approxima-
tion

u(x, τ) ≈ ε√γα sech (β
√
γX) e−iγT ei(kx+ω̃τ) + c.c., (16)

which is traveling plane wave that is modulated by a
small amplitude, long wavelength and slowly varying lo-
calized function. For k = 0, this approximation reduces
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FIG. 3. (a) Single site solution in the AC limit (K = 0) with
ω̃b = 1.01. (b) Breather profiles of frequency ω̃b = 1.01 from
NLS ansatz (black solid curve) and numerical solution (red
circle markers) with K = 160. Here, we use M = 30.

to

u(x, τ) ≈ ε√γα sech (βε
√
γx) ei(ω̃0−γε2)τ + c.c., (17)

which represents a standing breather with frequency
ω̃b = ω̃0 − γε2, see Fig. 3(b). Here ω̃2

0 = (M + 1)/M
represents the lower cutoff of the optical branch of the
dispersion relation (see Eq. (4) with k = 0). Since ε is
a small parameter, the breather frequency ω̃b is near the
lower cutoff of the optical branch, but within the gap.
Note the amplitude and width of the breather are both
O(ε
√
γ). Hence smaller amplitude and wider breathers

are found closer to the optical branch band edge. Recall-
ing the results of the previous section on the AC limit,
we were able to construct a breather solution with fre-
quency ω̃b < ω̃0. If we define γε2 = ω̃0 − ω̃b, then our
NLS approximation (17) (which is valid for large K) will
have, to first order, the same frequency, as the AC limit
breather (which is relevant for small K). In the next
section, we will perform parametric continuation in K in
order to connect the approximations in the two opposing
limits K = 0 and K →∞.

IV. NUMERICAL INVESTIGATION OF
BREATHERS

A. Continuation in Intersite Coupling Stiffness, K

The analysis above allows us to describe breather so-
lutions of Eqs. (1) and (2) in the limits K → 0 and
K →∞. In order to connect these two pictures, we iden-
tify periodic orbits and explore their parametric continu-
ation [47]. Our seed solution (initial guess) will be the AC
limit solution with a single excited site, (see Fig. 3(a)).
For the example considered in this section, we use the
fitted value M = 30 from section II C, and we choose
the breather frequency ω̃b = 1.01. Note that in this case
ω̃0 =

√
1 + 1/30 > 1.01. For a fixed breather period

Tb = 2π/ω̃b, we use the fact that uj(0) = uj(Tb) and
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vj(0) = vj(Tb) to construct the Poincaré map

P ([u0, v0];Tb) =

[
u(0;u0, v0)
v(0;u0, v0)

]
−
[
u(Tb;u0, v0)
v(Tb;u0, v0)

]
(18)

where u(τ ;u0, v0) = {un(τ)}n∈[0,N ] and v(τ ;u0, v0) =
{vn(τ)}n∈[0,N ] is the solution to Eqs. (1) and (2) with
initial condition u(0) = u0 and v(0) = v0. Therefore,
a periodic solution with period Tb of Eqs. (1) and (2)
will be a root to (18). A Newton-Raphson algorithm is
used to approximate the roots of P [24]. The Jacobian
is J = I − V (Tb), where V (Tb) is the monodromy ma-
trix. The eigenvalues of V (Tb) are the Floquet multipli-
ers of the periodic solution. The breather is considered
(spectrally) stable if all Floquet multipliers lie on the
unit circle. Since the system is Hamiltonian, any Flo-
quet multiplier lying off the unit circle signals instability
[24].

The solution for a frequency (ω̃b = 1.01) is found for
K close to 0 (here K = 0.01). Parameter continuation in
K is performed and is plotted against the Hamiltonian
energy of Eq. (3), as is shown in Fig. 4. In this way, we
are able to trace out a branch of solutions that emanates
from the AC limit and approaches the continuum limit
solution, which is well described by the NLS approxima-
tion of Eq. (17) (see black dashed-line of Fig. 4). Here,
we terminate the continuation at K = 160, which corre-
sponds to the stiffness parameter extracted by fitting the
discrete model to the locally resonant half space model
from Ref. [17] (see Sec. II C). The numerical computa-
tions were performed on a system of 201 unit cells. This
solution was spectrally stable for all values of K consid-
ered.

B. Continuation in Frequency, ω̃

The continuation in K of the previous section was ter-
minated at the parameter value K = 160 (note M = 30
and ω̃b = 1.01). We now fix M = 30 and K = 160 and
vary the breather frequency ω̃b using a pseudo-arclength
continuation procedure [48, 49]. This allows us to visual-
ize the energy-frequency dependence of the breathers, as
may be studied in an experiment with varied excitation
amplitude.

As a seed for the continuation, we use the eigenmode
of the linearized system nearest the lowest optical band
edge, which is a time-periodic solution of the full non-
linear equations of motion under conditions of vanishing
amplitude. We have included a check in our computa-
tions to detect a loss of contact between the main chain
and resonators, and continue the solution branch until
this point.

As shown in Fig. 5, the continuation reveals a family of
DBs that extends from the linear eigenmode at vanishing
amplitude and traverses the band gap (and into the pass-
band). In Fig. 6(a), we show the maximum magnitudes of
the Floquet multipliers of the branch. This family of DBs
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FIG. 4. Top panel is the continuation diagram (Hamiltonian
energy versus coupling parameter K), where the breather fre-
quency and mass ratio are fixed as ω̃b = 1.01 and M = 30.
The dashed black line is the Hamiltonian of the NLS approx-
imation of Eq. (17), given by Eq. (3), with K=160. The bot-
tom left and right panels are the main chain displacements uj

and the local resonator displacements vj , respectively, taken
at particular values of parameter K: for I, K = 5; for II,
K = 20; and for III, K = 160.

exhibits behavior similar to those found in previous stud-
ies of diatomic granular chains [27], where the DBs are
linearly stable for frequencies very close to the lower cut-
off frequency of the optical branch. As the frequency de-
creases, the breather profiles become progressively more
localized in space, as can be seen in Fig. 5(b-d). The
Floquet multipliers corresponding to the modes shown
in Fig. 5(b-d) are shown in Fig. 6(b-d), with small devia-
tions from the unit circle emphasized in the latter panel.
For breather frequencies below the band gap, interac-
tions with the acoustic band generate oscillating tails,
as is shown in Fig. 5(e), and Floquet multipliers depart
from the unit circle along the real axis, as shown in Fig.
6(e). We note that boundary effects are significant in the
presence of oscillating tails, so the finite-length DBs do
not accurately approximate the case of an infinite lattice.
As an aside, we also point out that contrary, e.g., to what
is the case in the work of [27, 29] for a granular crystal,
here the dependence of the energy (Hamiltonian) on the
frequency is monotonic, hence in accordance with the re-
cent criterion of [50], no instability arises from changes
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of monotonicity in this dependence.
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FIG. 5. (a) Hamiltonian energy-frequency plot of the family
of breather solutions bifurcating from the lowest eigenmode of
the optical band. Black dashed lines indicate the edges of the
linear phonon band gap. Red star corresponds to the breather
shown in Fig. 3(b). (b) - (e) Breather displacement profiles
corresponding to the points labeled I - IV , respectively, in
(a). The main chain displacements uj are shown as black
points, and those of the local resonators vj are shown in red.

V. NUMERICAL SIMULATIONS

A. Hamiltonian Case

To explore the dynamics of DBs in our model, we sim-
ulate a lattice with 201 unit cells via direct numerical
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FIG. 6. (a) The blue solid curve shows the maximum magni-
tude of the breather Floquet multipliers. Black dashed lines
indicate the edges of the linear phonon band gap, and the
inset shows a magnified view of the data in this range. (b)-
(e) Floquet multipliers (blue dots) of the solutions labeled I -
IV , respectively, in (a), corresponding to the same points in
Fig. 5. In (d) and (e), axes limits are chosen to emphasize
the deviation from the unit circle, which is shown as a visual
aid (red dashed lines).

integration of the equations of motion given by Eqs. (1)
and (2).

We consider initial conditions in two shapes: the pro-
file of the DB with frequency ω̃b = 1.01 and maximum
Floquet multiplier magnitude max(|λi|) = 1.001 (as is
shown in Fig. 3(b) and denoted by the star in Fig. 5(a)),
as well as the profile of the seeding eigenmode used in
Sec. IV. B.

For each of these shapes, we scale the amplitude in two
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FIG. 7. Spatiotemporal plots of the relative displacements
vj − uj of the simulated lattice for high and low amplitude
excitations, using eigenmode and DB profiles as initial shapes.
Side panels contain spatial profiles of vj − uj at the final
time step, normalized to the maximum value. (a) Eigenmode
shape with low amplitude (approximate periodic solution).
(b) DB shape rescaled to low amplitude. (c) Eigenmode shape
rescaled to high amplitude. (d) DB shape with high amplitude
(exact periodic solution).

ways. In the case of the DB shape, we consider the exact
breather shape computed via continuation (high), and
then consider a rescaled DB shape, such that the initial
displacement v101 of the local resonator at the central
lattice site is equal to one-hundredth of that of the ex-
act solution (low). Similarly, we consider the shape of
the seeding eigenmode scaled such that the initial dis-
placement v101 of the local resonator at the central lat-
tice site is matched to the low-amplitude, rescaled DB
shape (low), and then finally consider a rescaled eigen-
mode shape, such that the initial displacement v101 of
the local resonator at the central lattice site is equal to
that of the exact DB solution (high). Thus, there are
four sets of initial conditions: the DB shape with high
amplitude (Fig. 7(d)), which results in an exact periodic
solution of Eqs. (1) and (2); the eigenmode shape with
low amplitude (Fig. 7(a)), which closely approximates a
periodic solution; the DB shape rescaled to low amplitude
(Fig. 7(b)), which is not a true periodic solution; and the
eigenmode shape rescaled to high amplitude (Fig. 7(c)),
which also is not a periodic solution. The duration of all
simulations is 200Tb, where Tb = 2π/ω̃b is the period of
the exact DB solution.

Spatiotemporal plots of the relative displacements vj−
uj of the simulated lattice, using the low and high am-
plitude DB profiles as initial conditions (i.e. the rescaled
DB and exact solution) are shown in Fig. 7(b) and Fig.
7(d), respectively, and the corresponding cases using the
eigenmode shape (i.e. the approximate periodic solution
and corresponding rescaled profile) are shown in Fig. 7(a)
and Fig. 7(c).

As shown in the right column of Fig. 7, the breather
shape spreads out from the central lattice sites at low
amplitude, but remains highly localized when initiated
with the energy of the exact solution. Conversely, as
shown in the left column of Fig. 7, the eigenmode shape
shows no noticeable distortion at low amplitude, but self-
localizes and eventually breaks up at high amplitude. In
this break-up, many smaller DBs are formed, a process
arguably reminiscent of multiple filamentation in non-
linear optics [51], which also move in space. Thus, in
future experiments on this system (e.g. using photoa-
coustic techniques, as in [17]), DBs could be detected by
impulsively exciting a large spot on the substrate surface,
and observing the formation of smaller, highly localized
wave packets.

B. Effects of Energy Leakage

While we have considered a Hamiltonian model in this
work as a foundation, energy losses may play an impor-
tant role in the dynamics. The effects of losses have pre-
viously been examined in macroscopic granular systems
[8, 30, 52–54], and also in the study of the attenuation
of Rayleigh waves by randomly distributed surface res-
onators [44, 55]. In this section, we conduct a prelimi-
nary study of energy losses on the DB dynamics, focusing
on losses caused by radiation of energy into the bulk of
the material, which is incurred by the long wavelength
“leaky modes” satisfying ω > kcT considered in previous
sections. We first estimate the strength of dissipation by
considering the rate of energy leakage into the substrate
in the system studied in Ref. [17], in the long wave-
length limit. For a plane wave with real wave number
k and complex frequency ω + iη, the amplitude decays
in time proportionally to e−ηt; thus, the rate of decay is
found by solving the dispersion relation for this complex
frequency, with wavenumber k = 0. The dispersion re-
lation (reproduced from Ref. [17] and substituting our
own variable names) is given by

(
ω2

ωhs0
2 − 1

)[(
2− ω2

k2c2T

)2

− 4

(
1− ω2

k2c2L

)1/2(
1− ω2

k2c2T

)1/2
]

=
m2

Acρ1

ω4
(

1− ω2

k2c2L

)1/2
k3c4T

, (19)

where m2 and ωhs0 are the mass and undamped natu-
ral frequency of the local resonator, respectively; Ac =

√
3/2D2 is the area of a unit cell containing a single mi-
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FIG. 8. Schematic of a single unit cell of the damped mass-
in-mass lattice, with dimensionless parameters.

crosphere of diameter D; ρ1 is the density of the sub-
strate; and cL and cT are the longitudinal and transverse
bulk sound speeds of the substrate, respectively. We find

a decay rate at k = 0 of η0 = m2ω
hs
0

2
/(2Acρ1cL). To fa-

cilitate comparison of the decay rate with other systems,
we define the normalized decay rate η̃ = 2πη/ω, where
1/η̃ can be interpreted as the number of oscillation cy-
cles needed to reduce the amplitude by a factor of e (at
some characteristic frequency ω). For the material and
geometric properties considered in this work, we estimate
the normalized decay rate to be η̃0 = 2πη0/ω

hs
0 ≈ 0.4.

Effects related to disorder, which have been discussed
[17] and studied [44, 55] in prior works on interactions
between Rayleigh waves and surface oscillators, are also
a major potential source of loss; however, in this study,
we consider the possibility of highly ordered systems.
In addition to radiative and disorder-related sources of
loss, other types of dissipation will be present, but we
expect them to be relatively small. For example, acous-
tic absorption in glass is about 0.5 dB/cm at frequencies
near 200 MHz and room temperature [56]; assuming a
Rayleigh wave with frequency ωhs0 and velocity of 3409
m/s [17], this results in η̃ = 9∗10−5. Aerodynamic drag
in air (modeled by Stokes’ Law, assuming 1 µm diameter
spheres [57]) results in η̃ = 3∗10−4. Finally, plastic de-
formation due to contact forces, if present, will not cause
significant hysteresis during the elastic loading-unloading
cycles.

To account for energy losses, in a way that is consistent
with radiation into the bulk in the continuous granular
metamaterial model, we modify our conservative system
of Eqs. (1)-(2) by placing a linear damper in each local
resonator (as is shown in Fig. 8) with a damping coeffi-
cient defined as Γ = η̃/π, such that the exponential decay
in time is proportional to e−η̃/(2π)τ and Γ0 = η̃0/π. With
the damping included, the equations of motion become

Müj +K (−uj+1 + 2uj − uj−1)

+
2

3

(
[uj − vj + 1]

3/2
+ − 1

)
+ Γ(u̇j − v̇j) = 0

(20)

v̈j −
2

3

(
[uj − vj + 1]

3/2
+ − 1

)
− Γ(u̇j − v̇j) = 0. (21)

Using Eqs. (20)-(21), we repeat simulations of the 201-
cell mass-in-mass chain, using the high-amplitude eigen-
mode and exact DB shapes (as in Fig. 7(c, d)) as initial

FIG. 9. Spatiotemporal plots of the relative displacements
vj − uj of the simulated lattice for several damping coeffi-
cients: (a, b) Γ = Γ0, (c, d) Γ = Γ0/4, (e, f) Γ = Γ0/16, and
(g, h) Γ = Γ0/100. Left and right panels correspond to the
eigenmode (rescaled to high amplitude) and DB excitations
used in Fig. 7(c, d).

conditions. The case Γ = Γ0 is shown in Fig. 9(a, b),
where it can be seen that the oscillations die out after
only a few oscillation cycles; this estimate indicates that
the leakage of energy into the substrate may prohibit
the observation of a standing localized mode in exper-
iments on the particular system of Ref. [17], without
adding additional energy into the system to support the
DB structure. However, this does not necessarily prohibit
localized structures stemming from non-leaky modes. In
this system, this corresponds to wavenumber-frequency
pairs below the line with slope cT in Fig. 2. Such so-
lutions would be traveling breathers, and can be easily
obtained from our analysis of Sec. III B by choosing a
non-zero wavenumber in Eq. (16). A detailed investiga-
tion of such solutions would be a topic for future study.

In addition, while the attenuation due to energy leak-
age is significant for the monolayer of Ref. [17], it is
straightforward to modify the system to reduce these
losses by orders of magnitude; for example, if the spheres
were instead placed with a spacing of 10D, the unit cell
area Ac would increase by a factor of 100, causing a
proportional reduction in the damping coefficient Γ. As
shown in Fig. 9(g, h), for the case Γ = Γ0/100, the dy-
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namics of the Hamiltonian model are retained for roughly
half the simulation time (on the order of one hundred os-
cillations), and localization around the central lattice site
persists. Two intermediate cases are shown in Fig. 9(c,
d) and Fig. 9(e, f), corresponding to damping coefficients
Γ = Γ0/4 (sphere spacing 2D) and Γ = Γ0/16 (sphere
spacing 4D), respectively. Very light damping could also
be achieved in systems with different geometries, such as
a thin substrate (e.g. the locally-resonant membrane of
Ref. [19]) without altering the unit cell spacing, because
energy would not be able to radiate. Additionally, we
note that light damping (specifically, attenuation rates
one order of magnitude smaller than Ref. [17]) has al-
ready been achieved experimentally in macroscale gran-
ular crystals. For example, both Ref. [52] and Ref. [30]
characterized dissipation in experiments and found time
constants on the order of a few milliseconds, at frequen-
cies near 5 kHz, resulting in η̃ ≈ 0.08 and η̃ ≈ 0.04,
respectively, which suggests possible future realizations
of our model at the macroscale.

VI. CONCLUSION

In this work, we have demonstrated the existence of
discrete breathers in a mass-in-mass chain that models
a locally resonant, granular metamaterial composed of
spheres adhered to a substrate. This model consists of a
linearly-coupled main chain (representing the substrate)
with nonlinear local resonators that follow the Hertzian
contact law (representing the spheres). After fitting the
two independent model parameters to a microscale sys-
tem studied in previous works, we analyze the result-
ing energy trapping in the Hamiltonian version of our
model, in the form of discrete breathers, theoretically,
in the anti-continuum and continuum limits of intersite
coupling, as well as numerically, by using the intersite
coupling stiffness and oscillation frequency as continua-
tion parameters. Finally, we simulate the formation and
filamentation–in the form of discrete breathers–of single-
humped wavepackets using direct numerical integration
of the equations of motion. The simulations suggest that
discrete breathers may be observed in experiments on
granular metamaterials by generating a long-wavelength
excitation at high amplitude, and detecting its breakup
into many small discrete breathers. Simulations includ-
ing energy losses suggest that the dynamics of the Hamil-
tonian model are mostly preserved in cases with light
damping. However, in cases where the substrate is very
thick, energy losses due to radiation into the bulk may in-
hibit the experimental observation of discrete breathers,
though the leakage may be mitigated significantly by
choosing suitable system parameters (e.g. the unit cell
spacing, in the specific system discussed above). We ex-
pect this work to aid in future studies of nonlinear granu-
lar systems, as well as to the more general class of media
composed of a linear material with local nonlinear reso-
nant attachments. Indeed, the dynamics and interactions

of discrete breathers (as well as their potential filamenta-
tion and dispersion) in one- to three-dimensional analogs
of such systems, may yield numerous topics that could be
both theoretically intriguing, as well as experimentally
accessible for further study. Also, it should be borne in
mind that here we only explored the focusing variants
of the relevant models and their bright solitons. Yet, in
line with recent explorations in granular crystals [30] and
in systems with resonators [15], the self-defocusing case
may also be interesting and equally accessible in different
parametric regimes.
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Appendix A: Estimation of the Mass Ratio, M

The local resonator mass is taken to be the mass of a
single microsphere, given by m2 = 4/3π(D/2)3ρ2, where
ρ2 is the density of the microsphere material. We es-
timate the main chain mass as that of a rectangular re-
gion of the substrate beneath a single microsphere. Since
Rayleigh SAWs have a characteristic decay length on
the order of the wavelength λ [36], this region has mass
m1 = λD2ρ1, where ρ1 is the density of the substrate
material.

The mass ratio is then given by

M = m1/m2 =

(
6

π

ρ1
ρ2

)
λ

D
, (A1)

where the quantity in parentheses is expected to be
of order ∼ 1 for most material combinations, and the
quantity λ/D is at least of order ∼ 101, since we con-
sider long wavelengths. Therefore, we estimate M ∼ 101.

Appendix B: Estimation of the Stiffness Ratio, K

The local resonator stiffness is taken from Hertzian
contact theory [9], linearized about the static overlap
distance δ0 due to adhesion, using the same model
as Ref. [17]. This stiffness is given by k2 =

(3/2)A
√
δ0. Here, A = (4/3)E∗

√
D/2, with E∗ =[

(1− ν21)/E1 + (1− ν22)/E2

]−1
, where E1,2 and ν1,2 are

the Young’s modulus and Poisson’s ratio, respectively,
with subscripts corresponding to the substrate and
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sphere materials [9]. The static overlap is δ0 =
(FDMT /A)2/3, where FDMT = πwD is the force due to
adhesion as per the Derjaguin-Muller-Toporov (DMT)
adhesive elastic contact model [58], and w is the work
of adhesion between the sphere and substrate materials.
The main chain stiffness is estimated in a similar man-
ner to the mass m1, using an element of the substrate
with length D in the direction of SAW propagation, and
cross-sectional area λD. The estimated stiffness is then
k1 = E1λ.

After algebraic manipulation, the stiffness ratio can be
written as

K = k1/k2 ≈
(

8(1− ν21)2

3π

)1/3(
E1D

2w

)1/3
λ

D
. (B1)

For simplicity, we have chosen to use identical sphere and
substrate materials (so that E2 = E1 and ν2 = ν1); this
approximation does not affect the generality of this rough
estimate. The first term in parentheses is of order ∼ 10−1

for realistic values of Poisson’s ratio, i.e. 0 ≤ ν1 ≤ 0.5,
and the second term in parentheses is of order ∼ 102, for
realistic values E1 ∼ 1010 and w ∼ 10−2, with D ∼ 10−6,
using SI units. Since quantity λ/D ∼ 101, we estimate
K ∼ 102.

Appendix C: Details of NLS derivation

Define the residuals as

res(u) = −M∂ττu

+∂xxu− (u− v)− 1

4
(u− v)2 +

1

24
(u− v)3 (C1)

res(v) = −∂ττv

+(u− v) +
1

4
(u− v)2 − 1

24
(u− v)3. (C2)

Substituting uan and van of Eqs. (11) and (12), we obtain
the following residuals organized by orders of ε:

res(uan) = (C3)

ε [(ω̃2M − k2 − (1− a1))A E]+
ε2[
(
(4ω̃2M − 4k2 − 1)a2 + a3 − 1

4 (1− a1)2
)
A2 E2+

(2icω̃M + 2ik + a7) ∂XAE +
(
a12 − 1

2 (1− a1)2
)
A Ā]

ε3[(1−Mc2 +a11)∂2XA E+ ((ω̃2M −k2−1)a10−2iω̃M)

∂TAE+(
1
8 (1− a1)3 − 1

2 (1− a1)(a2 − a3 − a12))
)
|A|2A E+

(8icω̃a2M + 8ika2 + (4ω̃2M − 4k2 − 1)a8 + a9+
1
2 (1− a1)a7)A∂XA E2+

((9ω̃2M − 9k2 − 1)a4 + a5 − 1
2 (1− a1)(a2 − a3)+

1
24 (1− a1)3)A3 E3+(

1
2 (1− a1)a7 − a6

)
Ā∂XA] + c.c.+ h.o.t.

res(van) = (C4)

ε [
(
ω̃2a1 + (1− a1)

)
AE]+

ε2[
(
4ω̃2a3 + (a2 − a3) + 1

4 (1− a1)2
)
A2 E2+(

2icω̃a1 + ω̃2a7 − a7
)
∂XA E+(

1
2 (1− a1)2 − a12

)
AĀ]+

ε3[
(
2icω̃a7 − c2a1 + ω̃2a11 − a11

)
∂2XAE+

(a10 − 2iω̃a1) ∂TA E+(
1
2 (1− a1)(a2 − a3 − a12)− 1

8 (1− a1)3
)
|A|2A E+(

9ω̃2a5 + (a4 − a5) + 1
2 (1− a1)(a2 − a3)− 1

24 (1− a1)3
)

A3E3+(
8icω̃a3 + 4ω̃2a9 + (a8 − a9)− 1

2 (1− a1)a7
)
A∂XA E2+(

a6 − 1
2 (1− a1)a7

)
Ā∂XA] + c.c.+ h.o.t

If we set each order of ε to 0, we can define the
coefficients, ai and parameters, ω̃ and c, such that
res(u), res(v) = O(ε4), which should yield an accurate
approximate solution to our original equations of motion.
We now list the heiarchy of solvability conditions:
O(εAE) : the dispersion relation,

Mω̃4 −
[
1 + k2 +M

]
ω̃2 + k2 = 0

a1 = 1 + k2 −Mω̃2

O(ε2A2E2):

a2 = − ω̃2(1− a1)2

1 + (1− 4ω̃2)(4ω̃2M − 4k2 − 1)

a3 =
(a1 − 1)2 + 4a2

4− 16ω̃2

O(ε2∂XA E) :

a7 =
−2ika1

M(1− ω̃2) + a1

c =
ia7(ω̃2 − 1)

2ω̃a1

O(ε2AĀ) :

a12 =
1

2
(1− a1)2

O(ε3A3E3):

a4 =

(
12(1− a1)(a2 − a3)− (1− a1)3

)
ω̃2

24(k2 − (1 + 9k2 +M)ω̃2 + 9Mω̃4)

a5 =
24a4 + 12(1− a1)(a2 − a3)− (1− a1)3

24(1− 9ω̃2)
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O(ε3A∂xA E2) :

a8 =
8ia2(k + cω̃M)(4ω̃2 − 1) + 2a7(1− a1)ω̃2 − 8icω̃a3

1 + (4ω̃2M − 4k2 − 1)(1− 4ω̃2)

a9 =
16icω̃a3 + 2a8 − (1− a1)a7

2− 8ω̃2

O(ε3Ā∂xA) :

a6 =
1

2
a7(1− a1)

Finally, with these coefficients, we are left with two
NLS equations at O(ε3E) of both res(u) and res(v).
In res(u), we have:

(−2iω̃M + (ω̃2M − k2 − 1)a10)∂TA =

−(1−Mc2 + a11)∂2XA +(
1− a1

2
(a2 − a3 − a12)− (1− a1)3

8

)
|A|2 A (C5)

and in res(v), we have:

−(−2iω̃a1 + a10)∂TA =

(2icω̃a7 + ω̃2a11 − a11 − c2a1)∂2XA +(
(1− a1)3

8
− 1− a1

2
(a2 − a3 − a12)

)
|A|2 A (C6)

In order for both NLS equations to be satisfied, the co-
efficients in each must match. Thus, we require that

a10 =
2iω̃(M + a1)

ω̃2M − k2
and a11 =

c2(M + a1)− 1− 2icω̃a7
ω̃2

so that we obtain a single NLS equation. This equation
has the solution

A(X,T ) =
√
γα sech(

√
γβX)e−iγT

with

β2 =
2ω̃M + (ω̃2M − k2 − 1)a10i

1−Mc2 + a11
(C7)

α2 =
4ω̃M + 2(ω̃2M − k2 − 1)a10i

1
8 (1− a1)3 − 1

2 (1− a1)(a2 − a3 − a12)
(C8)

and γ a free parameter.
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