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Thin, fluid membranes embedded in a bulk fluid of different viscosity are of fundamental interest
as experimental realizations of quasi-two-dimensional fluids and as models of biological membranes.
We have probed the hydrodynamics of thin, fluid membranes by active microrheology using small
tracer particles to observe the highly anisotropic flow fields generated around a rigid, oscillating post
inserted into a freely suspended smectic liquid crystal film that is surrounded by air. In general,
at distances more than a few Saffman lengths from the meniscus around the post, the measured
velocities are larger than the flow computed by modeling a moving, disk-like inclusion of finite
extent by superposing Levine/MacKintosh response functions for point-like inclusions in a viscous
membrane. The observed discrepancy is attributed to additional coupling of the film with the air
below the film that is displaced directly by the shaft of the moving post.

PACS numbers: 83.80.Xz, 47.57.Lj, 68.15.+e, 83.60.Bc

I. INTRODUCTION

Experiments involving the in-plane motion of inclu-
sions confined to a two-dimensional (2D) viscous liquid
surrounded above and below by a three-dimensional (3D)
fluid with lower viscosity (referred to hereafter as the em-
bedding fluid [1]) are useful for understanding the diffu-
sion, aggregation and transport of proteins, plasma, and
lipid molecules [2–4] in biological systems. Stimulated
by experiments in biomembranes [5, 6], Saffman and
Delbrück (SD) [7, 8] developed a general theory describ-
ing the diffusion of inclusions with radius much smaller
than the membrane’s Saffman length `S = hη/(2η′)
(where h is the thickness of the membrane, η is the viscos-
ity of the membrane, and η′ the viscosity of the embed-
ding fluid), a characteristic hydrodynamic distance over
which the membrane around the inclusion does not ex-
change momentum with the embedding fluid [9]. By solv-
ing the Navier-Stokes equations numerically, Heringa,
Wiegel, and van Beckum [10, 11] computed the mobility
of inclusions of arbitrary size in embedded membranes,
obtaining results that were subsequently confirmed by
a more general, analytical model developed by Hughes,
Pailthorpe, and White (HPW) [12]. The HPW descrip-
tion has been extensively verified in passive microrheol-
ogy experiments on several membrane/embedding fluid
systems [13–15].

By virtue of their lamellar nature, freely suspended
films of smectic liquid crystal (LC) are quantized locally
in thickness to a certain number of layers [16], stabiliz-
ing hydrodynamic parameters such as density and viscos-

ity to an extent comparable to that of 3D fluids. Many
previous studies of membrane/embedding fluid systems
have focused on understanding the behavior of inclusions
undergoing Brownian diffusion but there have been few
direct experimental investigations of the hydrodynamic
properties of 2D fluid membranes using active microrhe-
ology. Eremin et al. [17] observed the flow field generated
by an inclusion (a small bead) moving down an inclined
smectic A film under the force of gravity using tracer
particles. These experiments were carried out using very
thick films, where the effect of the embedding fluid is neg-
ligible and the hydrodynamics are those of a (bounded)
2D fluid. A detailed analysis of the flow fields generated
by actively driven inclusions in smectic films (including
comparison to theory) has, however, not yet been per-
formed.

Thermal diffusion of inclusions such as smectic islands
and liquid droplets is associated with local, positional
fluctuations that are stochastic in nature and do not re-
sult in movements large enough to generate long-range
flow fields. Manipulation of such inclusions using optical
tweezers [18, 19], although able to cause large amplitude
motion, tends to heat up the film locally and change the
thermodynamic properties of the LC material. Here we
describe experiments in which a thin, cylindrical metal
post inserted into nanometer-thick, smectic A films is ac-
tively driven in order to generate large-scale flow in the
membrane in the low-Reynolds-number regime.
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II. EXPERIMENT

We measured the 2D flow field generated by the moving
post by analyzing the motion of small tracer particles in
the film. The flow fields were extracted from digital video
using velocimetric software and compared with the gen-
eralized Levine/MacKintosh theory summarized in the
following section.

The post was a gold-coated tungsten wire 6 µm in
radius and approximately 1 cm long. The lower end of
the wire was attached to a thicker, steel rod connected
to a leaf spring that was made to oscillate parallel to the
film.

We explored two different methods of exciting the post
mechanically. When the post assembly was driven di-
rectly using a piezoelectric actuator, the high driving
voltages required would sometimes cause the tracer par-
ticles in the film to be repelled from the vicinity of the
post. A better technique, in which the field generated by
an electromagnet couples to a small, permanent magnet
attached to the base of the post (see Fig. 1), eliminated
this problem and avoided flow artifacts associated with
electroconvection in the film.

FIG. 1. (Color online) Oscillating post assembly for gener-
ating flow in smectic films. A thin metal post mounted on
top of a small permanent magnet is carefully raised until it
penetrates the liquid crystal film above it. The magnet is at-
tached to a leaf spring that allows it to move from side to side.
By varying the current in the coil of a nearby electromagnet,
the post can be displaced laterally at a controlled rate. The
resulting flow induced in the film is monitored using reflected
light video microscopy.

Films were drawn by spreading the liquid crystal ma-
terial 8CB (4′-n-octyl-4′-cyanobiphenyl, Sigma-Aldrich)
across an aperture in a glass cover slip. The flow with
the post far from any boundaries was measured in circu-
lar films 1 cm in diameter, while boundary effects were
studied near the long edge of a 20 mm× 4 mm rectangu-
lar film. 8CB is in the smectic A liquid crystal phase (a
layered, 2D fluid) at room temperature and has viscosity

η = 0.052 Pa· s [20]. The films were typically two to six
molecular layers thick, each layer having a thickness of
3.17 nm [21]. The film thickness was determined by com-
paring the reflectivities of the film and a piece of black
glass [22]. The films are bounded above and below by
air, with a viscosity of η′ = 1.827× 10−5 Pa· s [23]. The
Saffman lengths `S in our experiments were 13.534 µm
for N = 3 layers and 22.556 µm for N = 5 layers.

Once a film was drawn, it was placed in a chamber that
was filled with smoke. Ash particles that settled onto the
film served as tracer particles that allowed the flow field
to be visualized in subsequent experiments. The ash par-
ticles are small and their effect on the hydrodynamic be-
havior of the film can be neglected. The tip of the post
was wetted with a small amount of the LC so that it
would not rupture the film on contact, after which it was
raised just enough to pierce the membrane. Within a few
minutes, a meniscus formed an annulus around the post,
resulting in an inclusion with an effective radius many
times larger than the post itself. Here we present data
from experiments where the inclusion radii were between
33.5 and 110 µm, in all cases larger than the correspond-
ing Saffman length.

The post was then displaced laterally through approx-
imately 50 µm using a 2 Hz triangle wave, the post ve-
locity being constant during each half cycle. This gener-
ated flow in the film in the low-Reynolds-number regime
(Re ≈ 10−5), which was observed using reflected light
microscopy and captured using a Phantom v12.1 video
camera with 1080× 720 pixel resolution at 60 frames per
second. The video clips were then decomposed into im-
ages for further analysis. The velocimetric method used
to determine the flow fields is described in Appendix A.

III. THEORY

In 2002, Levine and MacKintosh (LM) [24] found the
response function for a viscoelastic membrane embedded
in a bulk fluid, describing the velocity at a point x in-
duced by a point force f applied at location x′ in the
membrane by

vα(x) = Gαβ(x− x′)fβ(x′). (1)

If x̂ is the unit vector pointing from x′ to x, then the
response function may be decomposed into parallel and
perpendicular components as

Gαβ(x) = G‖(|x|)x̂αx̂β +G⊥(|x|)[δαβ − x̂αx̂β ] , (2)

where

G‖(z) =
1

4πηh

[
π

z
H1(z)− 2

z2
− π

2
[Y0(z) + Y2(z)]

]
(3)

and
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G⊥(z) =
1

4πηh

[
πH0(z)− π

z
H1(z) +

2

z2
− π

2
[Y0(z)− Y2(z)]

]
.

(4)
Here z = |x|/`S is the non-dimensionalized distance be-
tween the location of the point force and the point of ob-
servation of the velocity field, Hν are Struve functions,
and Yν are Bessel functions of the second kind.

We have applied the LM results to the special case of
finding the flow field around inclusions in a purely viscous
membrane of thickness h and viscosity η embedded in a
bulk fluid of viscosity η′. Theoretical flow fields around
an inclusion are calculated by modeling the inclusion by a
ring of point forces and exploiting the linearity of Stokes
flow to represent the resulting flow as a superposition of
LM response functions [25, 26]. This approach also allows
us to consider the effects of proximity to a stationary
linear boundary: for a circular inclusion near a linear
boundary the flow is

vα(x) =

∫
dφ fβ(φ)Gαβ(x− x′(φ))

+

∫
dy gβ(y)Gαβ(x− x′(y)) , (5)

where fβ(φ) is the force per unit angle at the point x′(φ)
on the boundary of the inclusion, and gβ(y) is the force
per unit length at the point x′(y) on the linear boundary
of the membrane. These forces can be determined by
assuming no-slip boundary conditions vkα = Vkα and
vkα = 0 on the circular and linear boundaries respectively
and then solving Eq. (5) numerically.

Prasad, Koehler, and Weeks [27] studied experimen-
tally the motion of beads much smaller than the Saffman
length embedded in a fluid membrane and verified the
validity of the LM approach. By observing the mu-
tual diffusion of pairs of circular inclusions of arbi-
trary size in freely suspended films of smectic A liquid
crystal, which are fluid-like in the plane of the mem-
brane, Qi et al. [25] found that the radial mutual mo-
bilities of identical inclusions are independent of their
size but that the angular coupling becomes strongly size-
dependent when their radius exceeds the Saffman length.
It was shown further that these observations are de-
scribed well for arbitrary inclusion separations by the
extended Levine/MacKintosh theory described above.

IV. RESULTS AND DISCUSSION

The flow induced in the LC film near the moving in-
clusion was measured under a variety of experimental
conditions. In particular, we examined the effects on the
flow fields of inclusion size and of proximity to a straight
boundary.

We consider first an inclusion with effective radius
110 µm (8.1 times the Saffman length of an N = 3-
layer smectic A 8CB film) located near the middle of

a circular film, far from any boundaries, driven back and
forth in order to generate in-plane flow. A sample mi-
croscope image of the film in reflected light is shown in
Fig. 2(a). The instantaneous velocity of the post (shown
in yellow, here and in every figure) is along +ŷ. The
bright spots are tiny ash particles, each of which is sur-
rounded by a narrow meniscus of liquid crystal material.
The slightly irregular appearance of the inclusion is an il-
lumination artefact caused by the uneven tip of the wire.
Since the meniscus around the post (outlined in green) is
much thicker than the smectic film, the interior of the in-
clusion is effectively hydrodynamically isolated from the
surrounding film and may be considered essentially rigid
[28]. An example of the measured flow velocity field is
given in Fig. 2(b), the green ring showing the outline of
the moving inclusion. The general appearance of the 2D
flow field predicted by LM theory for a disk-shaped inclu-
sion of the same diameter as the meniscus surrounding
the post, shown in Fig. 2(c), suggests overall qualitative
agreement with the experimental observation. We shall
see below, however, that there are important differences
in the detailed behavior revealed by the measured 1D
flow velocity profiles that we propose arise from the mo-
tion of the air around the shaft of the post immediately
below the film, which couples to the membrane and gives
an important additional contribution to the flow field in
the film.

The flow field is anisotropic, as expected, with the flow
falling off more quickly beside the inclusion (along x)
than fore and aft (along y), as is evident from the flow
velocity profiles along these directions shown in Figs. 3(a)
and (b). The velocity in this case, where the inclusion is
far from any boundaries, falls off monotonically with dis-
tance in all directions and has the same sign everywhere,
indicating that there is no recirculation of the flow field
within the field of view near the inclusion. The mea-
sured velocity profiles are plotted as red symbols with
error bars. The black curve shows the spatial variation
of velocity predicted by LM theory for a disk-like inclu-
sion moving in the film. The blue curve shows the es-
timated velocity profile of the air around the post some
distance below the film. Here and in all figures, we plot
the magnitude of the velocity v scaled by v0, the speed
of the post. The dashed curve is a combination of the
LM results with a fraction of the air flow chosen to give
rough, qualitative agreement with the experimental ob-
servations far from the inclusion.

In general, the experimentally observed velocities when
the post is near the middle of the film are higher and
decay more slowly with distance than predicted for an
idealized, disk-like inclusion. We ascribe this to addi-
tional coupling between the shaft of the post and the
layer of air directly beneath the film. Since the shaft of
the post is on the order of a centimeter in length, it has
a large length/diameter ratio so that, beginning a short
distance below the film, the airflow near the post approx-
imates that around an infinite cylinder moving laterally
in a bounded region defined by the film holder (see Ap-
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FIG. 2. (Color online) Flow generated by a big inclusion
around a moving post located far from any boundaries in an
N = 3-layer 8CB film. The location of the post is shown in
yellow and the inclusion in green. (a) Reflected microscope
image of the inclusion (radius a = 110 µm), which is mov-
ing along y. The white dots are ash particles embedded in
the film. (b) Experimental flow field obtained by analyzing
trajectories of tracer particles. The instantaneous velocity of
the post, also measured by velocimetry, is v0 = 143 µm/sec.
(c) Model 2D flow field predicted by generalized LM theory.
While similar in overall appearance, the model agrees only
qualitatively with experiment.

pendix B for details of this calculation). The 2D air flow
around such an idealized post is depicted in Fig. 4. Since
the viscosity of air is much smaller than that of LC, this
velocity field decays much more slowly than flow in the
membrane. We postulate that the moving layer of air
near the film couples to the LC, effectively boosting the

flow in the film and leading to a more gradual decay of
the flow velocity with distance than predicted for a mov-
ing, disk-like inclusion alone.

A complete, three-dimensional hydrodynamic treat-
ment of this experimental geometry is theoretically chal-
lenging and beyond the scope of this paper. Since the
Stokes equations are linear, however, we have as a first
approximation explored a model in which a constant frac-
tion of the estimated air flow around the post is added to
the LM prediction at that radius. This is not proposed
as a rigorous model (it does not satisfy the boundary
conditions near the inclusion meniscus, after all). Nev-
ertheless, the combined velocity profiles obtained by fit-
ting the experimental data at distances more than 5`S
from the edge of the inclusion, shown as dashed curves
in Figs. 3 and 5, do approximate the measured veloci-
ties more closely than LM theory alone, supporting the
notion that the observed deviations from the LM model
for an ideal, disk-like inclusion in a quasi-2D membrane
result from coupling to airflow generated by the post be-
neath the film. We note that the discrepancy between
the experimental measurements and LM theory is con-
sistently larger for inclusions with smaller radius. This is
principally a reflection of the behavior of the LM model,
which predicts membrane velocity fields that decay more
rapidly with decreasing inclusion size. In addition, the
magnitude of the computed air flow from the post, which
falls off relatively slowly, is larger at the outer radius of
a smaller inclusion than at the outer edge of a bigger in-
clusion (about 16% higher along the y-direction and 50%
along x in the examples shown in Figs. 5 and 3). These
effects combine to make the contribution of the air more
important the smaller the inclusion.

In order to explore the effects on the flow of the prox-
imity of the inclusion to the film boundary, we measured
the flow field in the film when the post was located near
the long edge of a rectangular film. The flow field when
the inclusion is moving parallel to the boundary is shown
in Fig. 6(a). The corresponding LM flow field calculated
for a disk-like inclusion (assuming no-slip boundary con-
ditions at both the disk and the meniscus at the film
edge), shown in Fig. 6(b), is similar to the experiment.
However, in the transverse direction, while the LM model
predicts that there should be recirculation of the flow
field on both sides of the inclusion, experimentally this is
only clearly observed on the side of the inclusion further
from the boundary. The measured flow velocity profiles
parallel and perpendicular to the inclusion motion plot-
ted in Fig. 7 show that the velocity attains a minimum
value between the inclusion and the meniscus at the edge
of the film but does not become negative, increasing in-
stead to a small but finite value at the film edge. This
suggests that the no-slip boundary condition assumed in
the model may not perfectly reflect conditions at the edge
of the film. We note that symmetric, circulatory flow has
been observed previously in smectic A films, around a
bead moving under gravity down the middle of a tilted,
thick rectangular film with dimensions comparable to or
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smaller than the Saffman length as described above [17].
Finally, the flow field measured around an inclusion of

intermediate size moving normal to a straight film bound-
ary nearby is shown in Fig. 8(a). In this case, there is sig-
nificant recirculation, with vortex-like flow observed on
both sides of the post, in agreement with the model pre-
dictions shown in Fig. 8(b). The velocity decays rapidly
to zero on approaching the boundary and falls off more
slowly in the opposite direction. The measured velocity
profiles along and perpendicular to the direction of post
motion are shown in Figs. 9(a) and (b), along with the
LM model predictions.

In general, LM theory alone appears to predict the flow
fields induced in the film much better when the moving
post is near the boundary than when it is in the cen-
ter of the film, with the LM model profiles in Figs. 7(a)
and 9(a) closely approximating the experimental data.
This result indicates that near the film boundaries, the
air flow induced by the post is greatly reduced and does
not boost the flow in the film significantly.

V. CONCLUSION

We have described active microrheology experiments
on a two-dimensional, embedded viscous fluid, in which
the flow field around a rigid, moving post inserted into
a thin film of smectic liquid crystal surrounded by air is
measured by analyzing the motion of small tracer par-
ticles in the film. The observed flow fields around the
meniscus surrounding the post are compared with pre-
dictions based on generalized Levine/MacKintosh theory
for the flow around a disk-like inclusion in a 2D fluid
membrane. When the moving inclusion is far from the
film boundaries, the measured velocity field decays more
slowly in all directions than predicted by the model, an
effect ascribed to additional coupling of the film to air
around the shaft of the post. When the inclusion is
near the film boundary, LM theory alone reproduces the
observed flow fields quite well, suggesting that near the
boundaries any air flow contributed directly by the post
is negligible.

This work was supported by NASA Grant NNX-
13AQ81G, by the Soft Materials Research Center under
NSF MRSEC Grants DMR-0820579 and DMR-1420736,
by Department of Energy Grant DE-FG02-08ER54995,
and by NSF Grant CBET-0854108.

FIG. 3. (Color online) Normalized flow velocity profiles mea-
sured (a) along and (b) perpendicular to the direction of post
motion for the big inclusion in an N = 3-layer 8CB film shown
in Fig. 2. The post (radius b = 6 µm) is shown in yellow,
and the smectic film and the inclusion (radius a = 110 µm,
or 8.1 `S) embedded in it in green. The black curves are
LM model predictions for a disk-like inclusion, while the blue
curves show the flow velocity profiles of air generated by an
infinitely long, moving post with no-slip boundary conditions.
Away from the inclusion boundary, the experimental data
lie above the LM curves, suggesting that flow in the film is
boosted by air flow generated by the shaft of the post. The
dashed curve shows the flow profile obtained by adding 26%
of this air flow to the LM prediction. The velocities are scaled
by the instantaneous post velocity v0 and distances both by
the inclusion radius a and the Saffman length `S . The veloc-
ity measurements were averaged over 10 different oscillation
cycles, with the error bars showing the standard deviation of
the mean.
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FIG. 4. (Color online) Computed flow around a moving post
inserted into a fluid liquid crystal film. The post (yellow)
moves along the y direction with velocity v0. The nominal
flow field in the film around the inclusion (green) is estimated
by integrating LM point response functions for a disk-like in-
clusion, while the quasi-2D flow in the air is found by solving
the 2D Stokes equations around an infinite cylinder, assum-
ing no-slip conditions at the boundaries defined by the film
holder. The air couples to the flow in the membrane to give a
slower decay of the film velocity than predicted by LM theory
alone.

FIG. 5. (Color online) Flow field generated by a small in-
clusion (radius a = 33.5 µm, or 2.58 `S) formed around a
thin, moving post inserted near the middle of an N = 3-layer
8CB film. (a) Measured flow field superimposed on the cor-
responding microscopic image, showing the locations of the
post (yellow) and inclusion (green). Flow velocity profiles
were extracted along the directions (b) parallel and (c) trans-
verse to the inclusion motion. The deviation of experimental
data from LM theory (black curve) is larger here than for
the bigger inclusion shown in Fig. 3. The velocity profile in
air around an infinite, cylindrical post is shown in blue. The
dashed curve shows the flow profile obtained by adding 45%
of this air flow to the LM prediction.
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FIG. 6. (Color online) Flow field generated by an inclusion
of intermediate size (radius a = 80.5 µm, or 3.58 `S) moving
parallel to a straight film boundary. (a) Observed flow field
superimposed on the reflected microscopic image of an N = 5-
layer film. The center of the post is located 232 µm from the
edge of the film and is moving along y. (b) Model flow field
associated with a disk-like inclusion moving under the same
conditions as in (a). LM theory predicts that recirculation of
the flow field should be observed on both sides of the inclusion
but in the experiment this is only clearly visible on the side
further from the boundary. The meniscus at the edge of the
film is shown as gray and the glass film holder as blue.

FIG. 7. (Color online) Normalized film flow velocity pro-
files near the inclusion moving parallel to the film boundary
shown in Fig. 6, measured (a) along y and (b) along x. The
black curves are LM model predictions for a disk-like inclu-
sion. Negative velocities indicate flow with a component op-
posite the post motion, i.e., flow reversal.
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FIG. 8. (Color online) Flow field generated by an inclusion
of intermediate size (radius a = 75.5 µm, or 5.59 `S) moving
perpendicular to a straight film boundary. (a) Observed flow
field superimposed on the reflected microscopic image of an
N = 3-layer film. The center of the inclusion is located 258 µm
from the film boundary and it is moving along y. (b) Model
flow field associated with a disk-like inclusion moving under
the same conditions as in (a). The proximity to a no-slip
boundary causes significant vorticity on both sides of the post.
The meniscus at the film edge is shown as gray and the glass
film holder as blue.

FIG. 9. (Color online) Normalized film flow velocity profiles
near the inclusion moving perpendicular to the film bound-
ary shown in Fig. 8, measured (a) along y and (b) along x.
The black curves are LM model predictions for a disk-like in-
clusion. Negative velocities indicate flow with a component
opposite the post motion.
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VI. APPENDIX A: VELOCIMETRIC METHOD

Estimating a velocity field from an image sequence is a
very general problem in computer vision that is directly
applicable to many fields of research. The general con-
cept of the technique applied here [29] is to use a block-
matching algorithm to find the displacement vector that
minimizes the difference between the same subsections
of consecutive images for a specified error functional. In
this manner, a two-dimensional velocity field may be ob-
tained for each image in the sequence.

For a given image sequence I(x, y, t), the algorithm
begins by segmenting the first image into k subsections
(tiles) positioned at (Xk, Yk). Then, for each tile in the
image a two-dimensional search is performed that seeks
to minimize the function

Ferr = FID + λFS, (A1)

where FID is the absolute intensity difference between im-
age subdivisions, FS represents a velocity field smooth-
ness constraint, and λ is a free parameter that sets the
relative weighting between the two functions. The inten-
sity difference contribution for the kth tile is

FID =

∫
tile

|I(Xk, Yk, t)−I(Xk+∆x, Yk+∆y, t+∆t)| dx dy ,

(A2)
where ∆x and ∆y are the components of the displace-
ment vector d, ∆t is the time between frames, and the
integral is over the tile area. The smoothness contribu-
tion is

FS = 1− exp(−τc2s), (A3)

where

cs =

√(
dvx
dx

)2

+

(
dvx
dy

)2

+

(
dvy
dx

)2

+

(
dvy
dy

)2

,

and the velocity derivatives are calculated at (Xk, Yk).
The velocity derivative tolerance is set by the free param-
eter τ . Typically, the values of λ and τ are chosen such
that FS is comparable to twice the standard deviation of
I(x, y, t) multiplied by the tile area when c2s exceeds the
tolerance 1/τ . The displacement vector d that minimizes
the combined error yields a velocity estimate for tile k of
v(Xk, Yk, t) = d/∆t. This minimization process is re-
peated for each tile and each image to yield a velocity
field v(x, y, t).

The choice of error functional described above carries
with it a number of consequences. First, the use of the
absolute intensity difference effectively assumes that, to
a good approximation, brightness is conserved between

frames. Second, by imposing a smoothness constraint on
the velocity field, it is assumed that the actual flow field
does not have velocity gradients that exceed ∼ 1/

√
τ . In

practice it is found that imposing a soft penalty on the
smoothness of the velocity field allows for some abrupt
variation, but the occurrence of unphysical or spurious
vectors is reduced. Finally, the smoothness constraint
requires knowledge of the local velocity field in the neigh-
borhood of the kth tile. An initial guess for the velocity
field may be provided in any number of ways, but, fun-
damentally, accurate velocity information is not known
prior to the error minimization process. To resolve this is-
sue, an iterative, multi-resolution technique is employed
to estimate the velocity field, where the first iteration
carries out the minimization process using only the in-
tensity difference component. Full details of the method
and tests of its performance may be found in [30].

In this way, a two-dimensional velocity field is obtained
for each frame in the image sequence at a specified final
resolution that is some fraction of the original image res-
olution.

VII. APPENDIX B: CALCULATION OF
VELOCITY PROFILES IN AIR

To model the air flow induced by a long, thin oscillat-
ing post moving in the transverse direction, we consider
a coaxial system comprising a solid cylinder of radius b
(representing the post) embedded in a cylindrical cham-
ber of radius R (representing the film holder). A general
solution of the flow field in this geometry may be de-
rived following Happel and Brenner [31]. Assuming that
the post is moving at speed v0, the flow velocities in the
radial and tangential directions are given by

vr =
1

r

∂Ψ

∂θ
, vθ = −∂Ψ

∂r
, (B1)

where Ψ is the stream function

Ψ = sin θ

[
1

8
Cr3 +

1

2
Dr

(
ln r − 1

2

)
+ Er +

F

r

]
(B2)

and

C = − 8v0

2b2R2
[(

1
b2 −

1
R2

)
+ ln

(
b
R

) (
1
b2 + 1

R2

)]
D =

2v0
(

1
b2 + 1

R2

)(
1
b2 −

1
R2

)
+ ln

(
b
R

) (
1
b2 + 1

R2

)
E =

v0
(

1
b2 − lnR

(
1
b2 + 1

R2

))(
1
b2 −

1
R2

)
+ ln

(
b
R

) (
1
b2 + 1

R2

)
F =

v0

2
[(

1
b2 −

1
R2

)
+ ln

(
b
R

) (
1
b2 + 1

R2

)]
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