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Amorphous solids, such as metallic, polymeric, and colloidal glasses, display complex spatiotem-
poral response to applied deformations. In contrast to crystalline solids, during loading, amorphous
solids exhibit a smooth crossover from elastic response to plastic flow. In this study, we investigate
the mechanical response of binary Lennard-Jones glasses to athermal, quasistatic pure shear as a
function of the cooling rate used to prepare them. We find several key results concerning the con-
nection between strain-induced particle rearrangements and mechanical response. We show that the
energy loss per strain dUloss/dγ caused by particle rearrangements for more rapidly cooled glasses is
larger than that for slowly cooled glasses. We also find that the cumulative energy loss Uloss can be
used to predict the ductility of glasses even in the putative linear regime of stress versus strain. Uloss

increases (and the ratio of shear to bulk moduli decreases) with increasing cooling rate, indicating
enhanced ductility. In addition, we characterized the degree of reversibility of particle motion dur-
ing a single shear cycle. We find that irreversible particle motion occurs even in the linear regime
of stress versus strain. However, slowly cooled glasses, which undergo smaller rearrangements, are
more reversible during a single shear cycle than rapidly cooled glasses. Thus, we show that more
ductile glasses are also less reversible.

PACS numbers: 62.20.-x, 63.50.Lm 64.70.kj 64.70.pe

I. INTRODUCTION

Amorphous solids, including metallic, polymeric, and
colloidal glasses, possess complex mechanical response to
applied deformations, such as plastic flow [1–4], strain
localization [5–9], creep flow [7, 10, 11], and fracture [12–
14]. In crystalline materials, topological defects reflecting
the symmetry of the crystalline phase govern response
to deformation. In amorphous solids without long-range
positional order, it is more difficult to detect and pre-
dict changes from elastic response to irreversible behav-
ior [8, 15], such as yielding [16, 17] and flow [4, 18]. The
typical response of the deviatoric stress to an applied
(pure) shear strain for amorphous solids is depicted in
Fig. 1 (a). The average stress increases roughly linearly
with strain for small strains, indicating a putative elas-
tic regime. At larger strains, the stress response softens
and becomes anelastic, but it continues to increase with
strain. For larger strains (i.e. near γ ∼ 0.05), the shear
stress reaches a peak (whose height depends on the ther-
mal history, as shown in Fig. 1 (c)) and then begins to
decrease until it plateaus at a steady state value in the
plastic flow regime [2, 18]. (For this system, we employed
periodic boundary conditions that prevent fracture.)

Several studies have suggested that amorphous solids

do not possess a truly elastic response regime [6, 7, 9,
16, 19–21]. For example, both a sublinear increase of
stress versus strain (left inset to Fig. 1 (a)) and rapid
drops in stress over narrow strain intervals (right inset
to Fig. 1 (a)) have been observed at strains below the
nominal yield strain of 2% [16, 19, 21]. The rapid drops
in stress are caused by particle rearrangements (Fig. 1
(b)), which are often referred to as shear transformation
zones [1, 22–25]. We will show below how the energy loss
induced by rearrangements, even in the putative elastic
regime, determines the mechanical response of glasses.

In this article, we build a conceptual framework for the
thermal history dependent mechanical response of glasses
in terms of strain-induced particle rearrangements. Our
studies focus on binary Lennard-Jones glasses undergoing
athermal, quasistatic pure shear. The initial glasses are
prepared over a wide range of cooling rates. The cooling
rate determines the fictive temperature, which defines the
average energy of the glass in the potential energy land-
scape [27, 28]. The fictive temperature significantly af-
fects mechanical properties, such as ductility [14, 29, 30],
shear band formation [31], and stress versus strain [2, 32].
Prior work has characterized the disappearance of min-
ima in the energy landscape and resulting particle rear-
rangements versus applied strain [26, 33, 34]. However,
how the particle rearrangement statistics contribute to



2

Figure 1: (a) von Mises stress σ versus strain γ (solid line) from simulations of binary Lennard-Jones glasses (prepared at
cooling rate Rc = 10−3) with N = 2000 particles undergoing athermal, quasistatic pure shear averaged over 500 samples.
Periodic boundary conditions are employed, which prevent fracture during loading. (The dependence of σ(γ) on system size is
shown in Appendix C.) The affine stress versus strain in the γ → 0 limit is given by the dashed line. The left inset provides
a close-up of the ensemble-averaged σ(γ), which highlights the deviation from linear behavior in the range γ = 0.005 to 0.01.
The right inset gives σ(γ) for a single sample over the same small strain interval. The circled stress drop indicates the particle
rearrangement in (b). The vectors (which have been scaled by a factor of 15) indicate the particle displacements that caused
the stress drop. The participation number P [26] of this event is roughly 18. Blue and red spheres indicate the large and
small particles, respectively, with the largest displacements. (c) σ versus γ for the same system in (a) for several cooling rates
Rc = 10−2 (dashed line), 10−3 (solid line), 10−4 (dash-dotted line), and 10−5 (dotted line).

the cooling rate dependent mechanical response is not
well understood.

We emphasize three key results concerning the cool-
ing rate dependent mechanical response of glasses. First,
we find that the strain-induced energy loss per strain for
more rapidly cooled glasses is larger than that for more
slowly cooled glasses. Second, we show that the cumu-
lative energy loss before the plastic flow regime can be
used to determine whether glasses exhibit brittle or duc-
tile behavior. Third, we characterize the degree of irre-
versibility of particle rearrangements in response to shear
reversal and show that more rapidly cooled glasses are
more ductile and irreversible compared to slowly cooled
glasses.

II. METHODS

We performed constant number, pressure, and tem-
perature (NPT) molecular dynamics simulations of bi-
nary Lennard-Jones mixtures containing 80% large and
20% small spherical particles by number (both with
mass m) in a cubic box with volume V under peri-
odic boundary conditions. The particles interact pair-
wise via the shifted-force version of the Lennard-Jones
potential, u(rij) = 4εij [(σij/rij)

12 − (σij/rij)
6] with a

cutoff distance rc = 2.5σij , where rij is the separation
between particles i and j. The energy and length pa-
rameters are from the Kob-Andersen model: εAA = 1.0,
εBB = 0.5, εAB = 1.5, σAA = 1.0, σBB = 0.88, and
σAB = 0.8 [35]. Energy, temperature, pressure, and time
scales are expressed in units of εAA, εAA/kB , εAA/σ

3
AA,

and σAA
√
m/εAA, respectively, where kB is Boltzmann’s

constant [36].
We first equilibrate systems in the liquid regime at con-

stant temperature T0 = 0.6 and pressure P = 0.025 using
a Nosé-Hoover thermostat and barostat, a second-order
simplectic integration scheme [37, 38], and time step
∆t = 10−3. We cool systems into a glassy state at zero
temperature using a linear cooling ramp, T (t) = T0−Rct
over a range of cooling rates from Rc = 10−1 to 10−6,
all of which are above the critical cooling rate. Thus,
all zero-temperature samples are disordered. We apply
athermal, quasistatic pure shear at fixed pressure. To
do this, we expand the box length and move all particles
affinely in the x-direction by a small strain increment
dγx = dγ = 10−4 and compress the box length and move
all particles affinely in the y-direction by the same strain
increment dγy = −dγ. Following the applied pure shear
strain, we minimize the total enthalpy H = U + PV at
fixed pressure P = 10−8, where U =

∑
i>j u(rij) is the

total potential energy. We successively apply pure strain
increments dγ and minimize the enthalpy at fixed pres-
sure after each increment to a total strain γ. We studied
systems with N = 250, 500, 1000, and 2000 particles to
assess finite size effects.

We developed a new method to unambiguously deter-
mine whether a particle rearrangement occurs with an ac-
curacy on the order of numerical precision, which allows
us to detect rearrangements with sizes ranging over more
than seven orders of magnitude. To identify particle re-
arrangements, at each strain γ we compare the potential
energy per particle U(γ) = U(γ)/N during forward shear
to U ′(γ) obtained by first a forward shear step from strain
γ to γ + dγ (and enthalpy minimization) followed by a
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Figure 2: (a) Potential energy per particle U(γ) versus strain
γ for binary Lennard-Jones glasses with N = 2000 parti-
cles prepared using cooling rates Rc = 10−2 (blue) and 10−5

(green) and subjected to athermal, quasistatic pure shear.
The solid and dashed lines indicate U(γ) for single configu-
rations and averaged over an ensemble of configurations, re-
spectively. The dotted lines indicate the cumulative energy
loss up to strain γ, Uloss(γ), for single configurations. (b) Av-
erage energy loss per (1%) strain dUloss/dγ versus strain for
Rc = 10−2 (plus signs) and 10−5 (circles) and three system
sizes: N = 2000 (solid lines), 1000 (dashed lines), and 500
(dotted lines). Ensemble-averaged data is averaged over at
least 500 samples.

backward shear step from γ+dγ back to γ (and enthalpy
minimization). We find that the distribution of magni-
tudes of the energy differences |∆U(γ)| = |U(γ)−U ′(γ)|
is bimodal with peaks near 10−14 corresponding to nu-
merical error and 10−3 corresponding to distinct particle
rearrangements. Thus, it is straightforward to identify
particle rearrangements as those with |∆U | > Ut, where
the threshold Ut = 10−10 clearly distinguishes numerical
error from particle rearrangements. (See Appendix B for
an expanded description of this method.) We denote the
total number of rearrangements in the strain interval 0 to
γ as Nr(γ). In addition, we calculate the energy lost after
the Nr(γ) rearrangements in the strain interval 0 to γ:

Uloss(γ) =
∑Nr(γ)
i=1 |∆U(γi)|, where γi indicates strains at

which rearrangements occur. For each cooling rate Rc,
we detect rearrangements of glasses all prepared at Rc
and average Uloss over at least 500 samples. Additional
details concerning the simulation methods are included
in Appendix A.

III. RESULTS

In Fig. 2 (a), we plot U(γ) for single configurations, as
well the ensemble-averaged curves, for two cooling rates
(Rc = 10−5 and 10−2). In addition, we show Uloss(γ)
for single configurations at the two cooling rates. The
energy loss grows more rapidly at small strains and is

Uloss
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Figure 3: Ratio of shear to bulk moduli G/B versus the cu-
mulative energy loss Uloss during shear from γ = 0 to 0.04
below the peaks in stress versus strain (Fig. 2 (c)). The ar-
row indicates the direction of increasing Rc. The inset shows
G and B separately versus Rc, both of which are normalized
to 1 at Rc = 10−6.

thus larger for more rapidly cooled glass. This behavior
is consistent with the dependence of σ(γ) on cooling rate
in Fig. 1 (c). As the cooling rate decreases, the yield
stress and strain increase because fewer and smaller par-
ticle rearrangements occur. However, at large strains,
beyond the yield strain, σ(γ), as well as U(γ), become
independent of cooling rate [2, 32].

Previous studies have shown that the number of en-
ergy minima grows exponentially with the average po-
tential energy [28, 39]. The increase in the number of
minima for rapidly cooled glasses makes them more sus-
ceptible to particle rearrangements and increased energy
loss [40, 41]. Researchers have also shown that more
rapidly cooled glasses are more loosely packed and less or-
dered than slowly cooled glasses [42, 43]. (See results for
the packing density versus strain for several cooling rates
in Appendix D.) More loosely packed glasses with re-
duced short- to medium-range structural order are more
prone to particle rearrangements and energy loss during
shear [16].

In Fig. 2 (b), we plot the ensemble-averaged cumula-
tive energy loss per strain dUloss/dγ versus strain. For
rapidly cooled glasses, the energy loss is roughly propor-
tional to strain for γ < 0.06. In contrast, for more slowly
cooled glasses (i.e. R = 10−5), the systems only begin
losing energy beyond a characteristic strain γc ≈ 0.02.
At large strains γ & 0.09, dUloss/dγ becomes indepen-
dent of cooling rate and strain [32]. Further, we find that
dUloss/dγ is roughly independent of system size over the
range of N we consider.

We next connect particle rearrangements to the me-
chanical properties of glasses. As shown in Fig. 2, more
rapidly cooled glasses suffer larger energy loss during
shear. We propose that enhanced energy loss through
particle rearrangements at small strains can prevent
catastrophic brittle failure, by preventing stress accumu-
lation and localization [29, 31, 41, 44, 45]. This suggests
that more rapidly cooled glasses are more ductile than
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Figure 4: (a) Measure of state irreversibilityD0 after undergo-
ing a single athermal quasistatic pure shear cycle with strain
amplitude γmax for several cooling rates: Rc = 10−2 (plus
signs), 10−3 (squares), 10−4 (triangles), and 10−5 (circles).
The curves were averaged over 96 samples with N = 2000.
The upper left inset shows that the two measures of irre-
versibility, D0 and I, are positively correlated. The lower
right inset shows a schematic of the trajectory of a single par-
ticle during forward shear from total strain 0 to γmax and
backward shear from γmax to 0. The bars connect parti-
cle positions at corresponding strains during the trajectory,
~R(γ′, 0) and ~R(γmax, γmax − γ′). D0 and I are related to
the length of the lower bar and average length over all bars,
respectively. (b) Cumulative energy loss Uloss(γmax) versus
path irreversibility I(γmax) for 0 < γmax < 0.04. Each data
points represent a shear cycle with γmax = γi, where γi are
the strains at which rearrangements occur. The dashed curve
gives Uloss = AI2 with A ∼ 1. The arrow indicates the direc-
tion of increasing γmax.

slowly cooled glasses [14].
To investigate this hypothesis, we calculate the cumu-

lative energy loss Uloss due to particle rearrangements
(from γ = 0 to 0.04 below the peaks in σ(γ) as shown in
Fig. 2 (c)) as a function of the ratio of the shear to bulk
moduli G/B, which correlates strongly with the ductility
of a material [14, 44, 46, 47]. (G and B were obtained
from the slope of the corresponding stress versus strain
for vanishingly small pure and compressive strains, re-
spectively.) As shown in Fig. 3, the brittleness G/B de-
creases as Uloss increases. Moreover, we find that both G
and B decrease with increasing cooling rate, but G de-
creases faster (inset to Fig. 3), and thus the ratio G/B,
and brittleness, decrease with increasing Rc.

Whether a material is reversible or not during deforma-

tion is often inferred from the stress-strain curve or other
macroscopic measurements. For example, materials are
typically deemed reversible in the regime where the
stress-strain curve is linear, and irreversible in the regime
where plastic flow occurs [48]. Reversibility has been
studied experimentally using enthalpy [18] and strain re-
covery [19], elastostatic compression [16], nanoindenta-
tion [10], and quality factor measurements [49]. In simu-
lations, reversibility has been studied using cyclic shear
of model glasses [17, 50–54]. Though the linear stress-
strain region in Fig. 1 is typically considered reversible,
recent measurements have identified irreversible events
and anelasticity on the micro-scale in this ‘elastic’ re-
gion [6, 7, 9, 16, 19–21].

An important, open challenge is to determine the on-
set [50, 51] of micro-scale irreversibility and understand
its connection to irreversibility and plasticity on macro-
scopic scales. Above, we defined particle rearrangements
as those that led to local irreversibility of the poten-
tial energy (quantified by |∆U(γ)|) after a forward strain
increment dγ, followed by a backward strain increment
−dγ. We now characterize reversibility following a sin-
gle cycle of a finite-sized strain using two measures [50].
First, we define “state” irreversibility as

D0(γ) = |~R(0, 0)− ~R(γ, γ)|/N, (1)

where ~R(γf , γb) gives the particle coordinates after the
system has been sheared forward by strain γf and back-
ward by strain γb. D0 characterizes the ability of a
sheared system to return to the original, unsheared con-
figuration after a single cycle. (See lower right inset to

Fig. 4 (a).) In Eq. 1, ~R(0, 0) gives the original, un-

sheared particle coordinates, and ~R(γ, γ) gives the par-
ticle coordinates of the system after it was sheared for-
ward to strain γ and then sheared backward from γ to
0. D0(γ) ∼ 0 indicates a type of reversible behavior,
where most of the particles return to their original, un-
sheared positions after a single strain cycle of amplitude
γ. In contrast, D0 > 0 implies irreversible behavior that
grows in magnitude with increasing D0. We also define
a measure of “path” irreversibility [50],

I(γ) =
1

N

√
1

γ

∫ γ

0

|~R(γ′, 0)− ~R(γ, γ − γ′)|2dγ′, (2)

which gives the average distance between configurations
at corresponding strains during forward and backward
portions of the shear cycle. (See the lower right inset to
Fig. 4 (a).)

Even though shear cycles can occur with I > 0 and
D0 = 0, which implies that the system returns to the
original, unsheared configuration at γ = 0 along different
forward and backward shear paths [50], we find that the
ensemble-averaged I becomes nonzero only when D0 be-
gins increasing from zero. Further, I and D0 are strongly
correlated as γmax increases. (See the upper left inset in
Fig. 4 (a).) In Fig. 4 (a), we plot D0(γmax) for several
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Figure 5: (a) Rearrangement frequency dNr/dγ and (b) en-
ergy loss per rearrangement dUloss/dNr plotted versus strain
γ for Rc = 10−1 (crosses), 10−2 (plus signs), 10−3 (squares),
10−4 (upward triangles), 10−5 (circles), and 10−6 (downward
triangles). (c) Energy loss per rearrangement dUloss/dNr plot-
ted parametrically against participation number 〈P〉 for all
data in (a) and (b). The inset shows 〈P〉 versus γ for the
same Rc in (a) and (b). All data is obtained by averaging
over 500 samples for N = 2000.

Rc. We find that slowly cooled glasses are nearly state re-
versible over a finite range of strain (up to γmax ∼ 0.05),
while D0 ∼ Aγmax (with slope A) for rapidly cooled
glasses. For intermediate Rc, D0 ∼ B(Rc)γmax for
γmax < γc(Rc) and D0 ∼ Aγmax for γmax > γc(Rc). The
slope B(Rc) increases with Rc, and the crossover strain
γc(Rc) decreases with Rc. The upper inset to Fig. 4
(a) shows that I and D0 possess the same Rc depen-
dence. Rapidly cooled glasses possess higher values of ir-
reversibility because the energy loss during shear is larger
(Fig. 2). Further evidence for this is provided in Fig. 4
(b), where we show that Uloss ∼ I2.

IV. CONCLUSIONS AND FUTURE
DIRECTIONS

In this study, we showed that the energy loss per strain
dUloss/dγ is larger for more rapidly cooled glasses. Fur-
ther, we found that the cumulative energy loss can be
used to determine the ductility and degree of irreversibil-
ity of glasses. A future direction of this research is to un-
derstand the separate contributions of the frequency of
rearrangements dNr/dγ and energy loss per rearrange-

ment dUloss/dNr to dUloss/dγ = (dUloss/dNr)(dNr/dγ).
In Fig. 5 (a) and (b), we show that both dNr/dγ and
dUloss/dNr are larger for more rapidly cooled glasses at
small strains. However, in the range 0.05 . γ . 0.09,
dNr/dγ forms a small peak for small Rc (increasing above
the value for large Rc) before reaching the cooling rate
independent, large strain limit. The increase in dNr/dγ
at intermediate strains is associated with the fact that
more slowly cooled glasses develop a large stress over-
shoot in this regime, as shown in Fig. 1 (c) [2, 31]. In
contrast, dUloss/dNr monotonically increases with γ for
all Rc studied.

We find that the energy loss per rearrangement is con-
trolled by the number of particles that move significantly
during each rearrangement, which can be quantified using

the participation number P=
∑N
i=1 (di/dmax)2, where di

is the displacement of particle i and dmax is the maxi-
mum di [26]. In the inset of Fig. 5 (c), we show that the
ensemble-averaged 〈P〉 increases with γ and is larger for
more rapidly cooled glasses. In contrast, rearrangements
are more localized for slowly cooled glasses. We also find
that the Rc dependence of dUloss/dNr can be collapsed
when dUloss/dNr is plotted versus 〈P〉, which further em-
phasizes that the number of particles that move signifi-
cantly determines energy loss from rearrangements.

An important topic of future research is to char-
acterize the system size dependence of dNr/dγ and
dUloss/dγ, separately, as a function of strain γ. Pre-
vious studies [55–57] have shown that the rearrange-
ment frequency displays power-law scaling with system
size, dNr/dγ ∼ N−β , with an exponent β whose magni-
tude varies strongly as the strain is increased above the
yielding transition. Beyond yielding in the steady state
regime, β reaches a plateau value that is insensitive to
cooling rate [55], similar to the behavior for σ(γ) and
dUloss/dγ. In contrast, the system size dependence of
dUloss/dγ over the full range of strain is not well-studied,
and will be characterized in future studies. The goal of
our research in this area is to use the statistics of re-
arrangements (i.e. frequency and energy loss per rear-
rangement) to build a quantitatively accurate theoreti-
cal framework for the cooling-rate dependent mechanical
response of glasses.
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Appendix A: Athermal, quasistatic pure shear at
fixed pressure

In this appendix, we provide additional details con-
cerning the preparation and shearing of zero-temperature
glasses. We prepared zero-temperature glasses by cool-
ing the systems from an initial temperature T0 = 0.6 in
the liquid regime to zero temperature at fixed pressure
P = 0.025 using a linear cooling ramp. In this case, the
temperature as a function of time t obeys T (t) = T0−Rct
with cooling rate Rc. We then minimized the enthalpy
H = U + PV , where U is the total potential energy and
V = LxLyLz is the volume, to set the pressure P0 = 10−8

by moving the particles and adjusting the length of the
box Lz in the z-direction (by less than 0.1%). We then
applied athermal, quasistatic pure shear at fixed low pres-
sure P0 = 10−8 to the zero-temperature glasses. To
implement pure shear, we expand the box by a small
strain increment dγx = ln(1 + ∆Lx/Lx) = dγ = 10−4

and move all particles affinely in the x-direction by the
same amount. At the same time, we compress the box by
a small strain increment dγy = ln(1 − ∆Ly/Ly) = −dγ
and move all particles affinely in the y-direction by the
same amount. After each strain step, we minimize the
enthalpy at fixed P0, by first moving the particles to min-
imize H at fixed V and then by shifting the particles
affinely, and change Lz to set P = P0. After each strain
step, the minimization procedure terminates when the
magnitude of force on each particle falls below a small
tolerance, fmax < ftol = 10−10, and the deviation in
the calculated pressure from the target value is small,
|P − P0|/P0 < 10−4.

Appendix B: Identification of particle
rearrangements

In many prior studies, somewhat arbitrary thresholds
in either energy or nonaffine displacements have been
employed to identify particle rearrangement events dur-
ing athermal, quasistatic shear [1, 8, 52]. In this study,
we developed a novel particle rearrangement detection
method that identifies particle rearrangements with ac-
curacies that approach numerical precision. To identify
particle rearrangements, at each strain γ we compare the
total potential energy per particle U(γ) = U(γ)/N from
simulations undergoing forward shear to the potential en-
ergy per particle U ′(γ) obtained by first a forward shear
step from strain γ to γ+dγ (and enthalpy minimization)
followed by a backward shear step from γ + dγ back to
γ (and enthalpy minimization). (See the inset to Fig. 6
(b).) We find that P (|∆U(γ)|) is bimodal with strong
peaks near 10−14 corresponding to numerical error and
10−3 corresponding to distinct particle rearrangements
(Fig. 6 (a)).

We also quantified rearrangements by calculating the
non-affine displacement per particle D(γ) between the
configurations at successive strain steps γ and γ+dγ [1]:
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Figure 6: (a) Probability distribution P (|∆U(γ)|) of the mag-
nitude of the potential energy difference during forward and
backward shear |∆U(γ)| = |U(γ) − U ′(γ)| on a log10− log10

scale for each strain step during athermal, quasistatic pure
shear of binary Lennard-Jones glasses from 96 samples pre-
pared with cooling rate Rc = 10−5 and system sizes N = 250
(red curves) and 2000 (green curves). (b) A scatter plot
of |∆U(γ)| and the non-affine displacement D(γ) for system
sizes N = 250 (red circles) and 2000 (green crosses). The
horizontal dashed line indicates an unambiguous threshold
Ut = 10−10 that separates numerical noise (bottom) from
particle rearrangements (top). The inset shows the potential
energy per particle U versus strain γ for forward and back-
ward shear on a single sample with N = 250 that undergoes
a particle rearrangement. The black solid line indicates for-
ward shear in increments of dγ = 10−4, i.e. from point A at
γ = 0.0847 to point B at γ + dγ = 0.0848. The blue dashed
line indicates backward shear from point B at γ+dγ = 0.0848
to point C at γ = 0.0847. The magnitude of the potential en-
ergy difference is |∆U(γ)| = |UA − UC | for γ = 0.0847.

D(γ) = |~R(γ + dγ) − ~R(γ)JJJ(γ)|/N , where ~R(γ) =
(~r1, ~r2, . . . , ~rN ) gives the 3N particle coordinates at strain

γ, JJJ(γ) =

edγ 0 0
0 e−dγ 0
0 0 edε

 is the affine transformation

matrix describing pure shear in the x-y plane and com-
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Figure 7: von Mises stress σ versus strain γ for zero-
temperature glasses prepared at cooling rate Rc = 10−3 and
several system sizes: N = 250 (solid line), 500 (dashed line),
1000 (dash-dotted line), and 2000 (dotted line). The curves
were averaged over 500 samples.

pression or expansion along the z-axis (depending on the
sign of dε = ln[V (γ + dγ)/V (γ)]) to maintain fixed pres-
sure.

We show a scatter plot of |∆U(γ)| versus D(γ) in
Fig. 6 (b) for glasses prepared at Rc = 10−5 and two
system sizes N = 250 and 2000. We find a large gap
in the values of the energy differences between “true”
particle rearrangements (|∆U | > Ut = 10−10) and “spu-
rious” energy differences caused by numerical precision
(|∆U | < Ut). In contrast, we find that true and spuri-
ous particle rearrangements (as identified via |∆U |) share
a continuous range of values for the nonaffine displace-
ments (10−3 < D(γ) < 10−2), which makes it difficult
to set a non-arbitrary cutoff for defining particle rear-
rangements using D(γ). For |∆U | > Ut, we find that the
energy differences grow with increasing non-affine dis-
placement D(γ).

Appendix C: von Mises stress

In Fig. 1, we show the von Mises stress versus strain
during the athermal, quasistatic pure shear deformation
of binary Lennard-Jones glasses. The 3× 3 stress tensor
is given by

Σλδ =
1

V

∑
i>j

fijλrijδ, (C1)

where fijλ is the λ = x, y, z component of the pairwise

force ~fij that particle j exerts on particle i, and rijδ
is the δ = x, y, z component of the center-to-center dis-
tance vector ~rij between particles i and j. The von Mises

equivalent stress σ is given by the second invariant of the

γ

0 0.02 0.04 0.06 0.08 0.1 0.12

ρ

1.194

1.196

1.198

1.2

1.202

1.204

1.206

1.208

1.21

Figure 8: Reduced number density ρ = Nσ3
AA/V of binary

Lennard-Jones glasses containing N = 2000 particles pre-
pared using cooling rates Rc = 10−2 (solid curve), Rc = 10−3

(dashed curve), Rc = 10−4 (dash-dotted curve) and Rc =
10−5 (dotted curve). These systems undergo athermal qua-
sistatic pure shear at constant pressure P = 10−8 as a func-
tion of strain γ. Each curve is averaged over 500 independent
samples.

stress tensor:

σ =

√
3

2
Tr(ΣΣΣ + PIII)2, (C2)

where III is the identity tensor and P = −1/3Tr(ΣΣΣ) is
the pressure [2]. We remove the residual stress σ(0) from
σ(γ) so that the stress-strain curves are initialized to zero
at γ = 0. In Fig. 7, we show the variation of stress versus
strain (σ(γ)) with system size from N = 250 to 2000. For
large N > 1000, σ(γ) is nearly independent of system
size.

Appendix D: Number density as a function of strain
and cooling rate

The cooling rate dependence of the particle rearrange-
ment statistics in our study is consistent with the fact
that more slowly cooled glasses are more densely packed
(and possess lower potential energy) than rapidly cooled
glasses. In Fig. 8, we confirm that the density increases
with decreasing cooling rate. In addition, the packing
density decreases with strain for all cooling rates. In
general, amorphous binary Lennard-Jones glasses with
higher packing densities possess lower total potential en-
ergy since more pair interactions can be accommodated
in the minimum of the pair potential.
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ical Review Letters 115, 165501 (2015).

[32] J. A., E. Bouchbinder, and I. Procaccia, Physical Review
E 87, 042310 (2013).

[33] D. J. Lacks and M. J. Osborne, Physical Review Letters
93, 255501 (2004).

[34] C. E. Maloney and A. Lemâıtre, Physical Review E 74,
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