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The	 elusive	 connection	 between	 dynamics	 and	 local	 structure	 in	 supercooled	 liquids	 is	 an	
important	piece	of	the	puzzle	in	the	unsolved	problem	of	the	glass	transition.	The	Johari-Goldstein	β	
relaxation,	ubiquitous	in	glass-forming	liquids,	exhibits	mean	properties	that	are	strongly	correlated	
to	 the	 long-time	 α	 dynamics.	 However,	 the	 former	 comprises	 simpler,	more	 localized	motion,	 and	
thus	has	perhaps	a	more	 straightforward	 connection	 to	 structure.	Molecular	dynamics	 simulations	
were	carried	out	on	a	two-dimensional,	rigid	diatomic	molecule	(the	simplest	structure	exhibiting	a	
distinct	β	process)	to	assess	the	role	of	the	local	liquid	structure	on	both	the	Johari-Goldstein	β	and	
the	α	relaxation.	Although	the	average	properties	for	these	two	relaxations	are	correlated,	there	is	no	
connection	between	the	β	and	α	properties	of	a	given	(single)	molecule.	The	propensity	for	motion	at	
long	 times	 is	 independent	 of	 the	 rate	 or	 strength	 of	 a	 molecule’s	 β	 relaxation.	 The	 mobility	 of	 a	
molecule	averaged	over	many	initial	energies,	a	measure	of	the	influence	of	structure,	was	found	to	
be	heterogeneous,	with	clustering	at	both	the	β	and	α	timescales.	This	heterogeneity	is	less	extended	
spatially	 for	 the	β	 than	 for	 the	α	 dynamics,	 as	 expected;	 however,	 the	 local	 structure	 is	 the	more	
dominant	 control	parameter	 for	 the	β	 process.	 In	 the	glassy	 state,	 the	arrangement	of	neighboring	
molecules	determines	entirely	the	relaxation	properties,	with	no	discernible	effect	from	the	particle	
momenta.	

INTRODUCTION	

The	origin	of	the	remarkable	change	in	behavior	as	
a	 liquid	 vitrifies	 is	 still	 an	 unsolved	 problem	 in	
condensed	 matter	 physics.	 The	 dynamics	 in	 the	
supercooled	 regime	 is	 spatially	 heterogeneous,	 and	
given	the	absence	of	structural	heterogeneity,	ferreting	
out	 the	 origin	 of	 this	 dynamic	 heterogeneity	 would	
seem	 to	 be	 paramount	 to	 solving	 the	 glass	 transition	
problem.	 A	 basic	 issue	 is	 the	 effect	 of	 the	 local	 liquid	
structure	on	the	dynamics	[1,2,3,4].	Implicit	in	drawing	
analogies	from	colloidal	systems	is	the	assumption	that	
the	 arrangement	 of	 neighboring	 molecules	 largely	
determines	 the	 relaxation	 properties	 [5,6].	 Molecular	
dynamics	simulations,	which	enable	 the	structure	and	
dynamics	 to	 be	 followed	 in	 space	 and	 time	 with	
arbitrary	 precision,	 are	 well	 suited	 to	 test	 this	
assumption.	

Isoconfigurational	 ensembles	 [7,8]	 have	 been	 an	
especially	 useful	 simulation	 methodology	 to	 assess	
structure-dynamics	 correlations.	 Multiple	 trajectories	
are	simulated	having	the	same	initial	particle	positions	
but	 initial	 velocities	 randomly	 chosen	 from	 a	

Boltzmann	 distribution.	 At	 long	 times,	 particle	
mobilities,	 averaged	 over	 these	 trajectories	 (the	 so-
called	 dynamic	 propensity)	 still	 show	 substantial	
heterogeneity;	 thus,	 the	 instantaneous	 velocities	 do	
not	 govern	 the	 mobilities.	 The	 heterogeneity	 must	
arise	at	least	in	part	from	“something”	in	the	structure	
that	 predisposes	 some	 particles	 to	 have	 higher	
mobility	than	others	[9].	What	is	this	“something”?	The	
isoconfigurational	 ensemble	 methodology	 is	 order	
agnostic;	 it	 cannot	 identify	 any	 specific	 structural	
feature	responsible	for	controlling	dynamics.	In	certain	
systems	 [10,11,12]	 regions	 of	 slow	 dynamics	 were	
found	 to	 be	 correlated	 with	 ordered	 clusters	 of	
particles	 [13,14],	 certain	 local	 geometrical	 motifs	
[15,16,17],	 the	 local	 composition	 [18],	or	 soft	 localized	
modes	of	the	quenched	configuration	[19].	The	picture	
that	 emerges	 is	 that	 while	 there	 is	 a	 correlation	
between	 structure	 and	 dynamics,	 stronger	 at	 low	
temperature	 [20],	 the	 strength	 of	 such	 correlations	 is	
highly	system	dependent	[21].	Quantities	such	as	local	
density	 [22]	 or	 potential	 energy	 [23,24]	 do	 not	 in	
general	 correlate	well	with	 the	 spatial	 distribution	 of	
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the	dynamics.	Two	particularly	interesting	approaches	
have	been	the	use	of	concepts	from	information	theory	
to	 quantify	 links	 between	 structural	 and	 dynamical	
properties	 [25,26],	 as	 well	 as	 machine	 learning	
algorithms	to	identify	new	such	links	[27,28,29].	

Work	 to	 date	 has	 focused	 on	 the	 relation	 of	
structure	 to	 dynamics	 at	 the	 timescale	 of	 the	 alpha	
relaxation	and	in	the	short-time	caging	regime	[23,30].	
In	experimental	 studies	of	glass-forming	materials,	 an	
additional	 relaxation,	 the	 Johari-Goldstein	 (JG)	 β	
process,	 is	 almost	 universally	 present	 at	 intermediate	
timescales.	 JG	 motion	 involves	 all	 atoms	 in	 the	
molecule	 and	 is	 observed	 even	 in	 systems	 with	 a	
completely	 rigid	molecular	 structure.	 There	 is	 a	 large	
amount	 of	 evidence	 supporting	 a	 close	 relationship	
between	 this	 β	 and	 the	 α	 dynamics,	 and	 it	 has	 been	
suggested	 that	 the	 β	 process	 is	 simpler,	 more	
fundamental,	non-cooperative	(or	weakly	cooperative)	
motion	 that	 evolves	 over	 time	 into	 the	 cooperative	 α	
relaxation	 [4].	 If	 this	 is	 the	 case,	 we	 might	 expect	 a	
more	straightforward	connection	of	the	β	relaxation	to	
local	 structure,	 which	 could	 clarify	 any	 relationship	
between	the	long-time	dynamics	and	the	structure.		

In	 this	 work	 we	 use	 molecular	 dynamics	
simulations	 to	 investigate	 the	 connection	 of	 the	 β	
relaxation	to	local	structure.	Model	systems	most	often	
used	 to	 study	 glassy	 dynamics	 are	 mixtures	 of	
spherical	particles,	which	do	not	show	a	JG	relaxation,	
at	 least	 up	 to	 the	 timescales	 accessible	 by	 molecular	
dynamics	 simulations.	 Instead,	 we	 simulate	 a	 rigid,	
asymmetric	 dumbbell-shaped	 molecule,	 the	 simplest	
shape	 that	 captures	 the	 characteristics	 observed	
experimentally	 for	 the	 JG	 process	 [31,32,33,34].	 The	
simulations	were	done	for	a	two	dimensional	molecule,	
so	 that	 clustering	 can	 be	 more	 clearly	 depicted.	 We	
find	 that	 this	2D	behavior	 is	qualitatively	 the	same	as	
for	the	three	dimensional	case.		

METHODS	

We	studied	in	two	dimensions	a	binary	mixture	of	
N=4000	 (2600:1400)	 rigid	 dumbbell-shaped	
molecules	 labeled	 AB	 and	 CD.	 Atoms	 belonging	 to	
different	molecules	interact	through	the	Lennard-Jones	
potential	

	
12 6

( ) 4 ij ij
ij ijU r

r r
σ σ⎡ ⎤⎛ ⎞ ⎛ ⎞

⎢ ⎥= −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

Ú 	 	 	 	 (1)	

where	 r	 is	 the	distance	between	particles,	 and	 i	and	 j	
refer	to	the	particle	types	A,	B,	C	and	D.	The	energy	and	
size	 parameters	 are	 based	 on	 the	Kob-Andersen	 (KA)	
binary	 mixture	 of	 spheres,	 which	 does	 not	 easily	
crystallize	 [35].	 This	was	 done	 in	 the	 same	way	 as	 in	
the	3D	systems	in	refs.	[31,32,33,34];	to	wit,	the	energy	
parameters	 𝜖!" 	 are	 those	 of	 the	 KA	 liquid,	 i.e.,	
𝜖!! = 𝜖!" = 𝜖!! = 1.0,	 𝜖!! = 𝜖!" = 𝜖!! = 1.0,	 and	
𝜖!" = 𝜖!" = 𝜖!" = 𝜖!" = 1.5.	 To	 set	 𝜎!" ,	 we	 use	 the	
original	KA	parameters	for	the	larger	A	and	C	particles,	
while	the	smaller	B	and	D	particles	have	a	size	62.5%	
that	of	A	and	C,	respectively.	Thus,	𝜎!! = 1,	𝜎!! = 0.88,	
𝜎!! = 0.625,	 and	 𝜎!! = 0.625×0.88.	 For	 the	
interactions	 between	 different	 types	 of	 particles,	 we	
take	 𝜎!" = 𝐾!"(𝜎!! + 𝜎!")	 where	 𝐾!"=0.5	 (additive	
interaction)	 when	 the	 particles	 belong	 to	 the	 same	
type	of	molecule	(i,	j	=	AB,	CD)	and	𝐾!" = 0.4255	when	
the	 particles	 belong	 to	 different	 molecule	 types,	 the	
latter	 chosen	 to	 give	 the	 KA	 value	 for	 𝜎!" = 0.8.	 All	
atoms	have	a	mass	m	=	1.	The	bond	lengths	A-B	and	C-
D	were	 fixed	 to	d=𝜎!!/3.	 In	 two	dimensions	we	use	a	
65:35	ratio	of	AB	to	CD	molecules	instead	of	the	usual	
80:20	ratio	used	 in	3D;	we	 found	this	 to	be	necessary	
to	suppress	crystallization	and	phase	separation,	as	 is	
the	 case	 for	 the	 KA	 mixture	 of	 spheres	 [36].	 Unless	
otherwise	 noted,	 we	 follow	 the	 dynamics	 of	 the	 AB	
species.	 The	 data	 are	 presented	 in	 normalized	 units	
(Lennard-Jones	 units)	 of	 length	 𝜎!!,	 temperature	
𝜖!!/𝑘! 	and	time	 𝑚𝜎!!! 𝜖!! !/!.		

Simulations	were	carried	out	using	GROMACS,	with	
the	 velocity	 Verlet	 algorithm,	 a	 Nose-Hoover	
thermostat,	and	Parrinello-Rahman	barostat	[37,38,39]	
at	 a	 pressure	 of	 P=1,	 in	 a	 square	 box	 with	 periodic	
boundary	 conditions.	 Bond	 lengths	 were	 maintained	
constant	 using	 the	 LINCS	 algorithm	 [40].	 At	 each	
temperature	 the	 system	 was	 equilibrated	 for	 the	
shorter	of	10𝜏! 	 or	𝑡!" = 5×10!.	At	 low	 temperatures,	
T<0.3,	 the	𝛼	 relaxation	 time	 is	 much	 longer	 than	 the	
total	 (equilibration	 and	 production)	 simulation	 time,	
whereby	the	system	is	out	of	equilibrium	(i.e.,	a	glass).	
In	 the	 glassy	 state,	 translational	 and	 orientational	
correlation	 functions	 do	 not	 decay	 to	 zero	 over	 the	
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duration	of	the	simulation	runs.	For	the	simulations	at	
three	temperatures	in	the	glassy	state,	production	run	
times	were	much	less	than	𝑡!" ,	ensuring	an	absence	of	
significant	aging	(drift	in	pressure,	potential	energy,	or	
dynamical	correlation	functions)	during	a	run.			

At	the	glass	transition	defined	by	incomplete	decay	
of	 the	 correlation	 functions,	 the	 α	 relaxation	 time	 is	
about	 eight	 orders	 of	 magnitude	 longer	 than	 the	
vibrational	 relaxation	 times.	 For	 a	 real	 glass-forming	
liquid	 this	 corresponds	 to	 time	 scales	 in	 the	 range	 of	
10-4	 s,	 rather	 than	 the	 more	 usual	 𝜏!∼100	 s	 for	
experimental	glass	transitions.	

The	 supercooled	 dynamics	 of	 mixtures	 of	 two-
dimensional	 Lennard-Jones	 particles	 differ	 from	 their	
three-dimensional	 counterpart	 in	 the	 extent	 of	
transient	 localization	 of	 particles	 and	 the	 degree	 of	
decoupling	 of	 translational	 and	 orientational	
correlations	 [41].	 In	 the	 system	 studied	 herein,	 the	
temperature	 dependence	 of	 the	 relaxation	 times,	

strengths,	 and	 spectral	 shapes	 for	 both	 the	 α	 and	 β	
processes,	 as	 well	 as	 the	 nature	 of	 their	 dynamic	
heterogeneity,	 are	 qualitatively	 identical	 to	 those	 for	
the	 three-dimensional	 asymmetric	 dumbbell	 system	
(representative	comparison	shown	below).	

RESULTS	AND	DISCUSSION	

We	 follow	 reorientational	 motions	 via	 the	 first	
order	rotational	correlation	function	

 1( ) cos ( )C t tθ=   (2) 

where	𝜃	 is	 the	 angular	 change	 of	 a	 unit	 vector	 along	
the	molecular	axis.	The	same	information	is	contained	
in	the	corresponding	susceptibility	𝜒 𝜔 ,	which	can	be	
more	 readily	 compared	 to	 experimental	 dielectric	
spectra.	The	susceptibility	is	calculated	from	
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Figure	 1	 shows	 𝐶! 𝑡  	 and	 𝜒(𝜔)	 for	 various	
temperatures.	 There	 is	 a	 small	 initial	 drop	 in	 𝐶!	 at	
𝑡~0.1,	 corresponding	 to	 rattling	 of	 the	 molecules	
within	the	local	cage	formed	by	neighboring	molecules.	
At	 high	 temperatures,	 𝐶!	 then	 decays	 to	 zero	 via	 a	
single	 step.	 Below	 a	 temperature	 𝑇!",	 the	 relaxation	
occurs	in	two	steps,	the	shorter-time	β	and	longer-time	
α.	 The	 latter	 grows	 in	 intensity	 with	 decreasing	
temperature	 at	 the	 expense	 of	 the	 β	 relaxation	
strength.	 At	 or	 below	 𝑇~0.3 (�𝑇!),	 	 the	 𝛼	 relaxation	
time	is	much	longer	than	the	total	simulation	run	time,	
and	 the	 system	 is	 in	 the	non-equilibrium	glassy	 state.	
The	 β	 process	 remains	 as	 a	 broad	 step,	 with	 𝐶!	 no	
longer	 decaying	 to	 zero.	 The	 susceptibility	 𝜒(𝜔)	
contains	 the	 same	 information	 as	 C1(t):	 a	 small	 high-
frequency	 peak	 (at	 low	 temperatures),	 or	 change	 in	
slope	 (at	 high	 temperatures)	 corresponding	 to	 caged	
dynamics;	a	peak	corresponding	to	the	β	process;	and	
below	 𝑇!" the	 α	 dispersion	 developing	 as	 a	 weak	
shoulder	 that	 intensifies	 on	 cooling.	 Higher-order	
rotational	 correlation	 functions,	 as	 well	 as	
translational	relaxation,	are	not	shown	but	behave	in	a	
qualitatively	 similar	 way	 to	 𝐶! 𝑡 ,	 with	 slightly	
different	 relative	 intensities	 and	 relaxation	 times	 for	
the	α,	β,	and	vibrational	dynamics	[32].	

	

	
FIG.	1.	 (a)	First	order	 rotational	correlation	 function	as	 a	
function	 of	 time;	 (b)	 imaginary	 part	 of	 the	 first-order	
rotational	 susceptibility	 as	 a	 function	 of	 frequency	 The	
temperatures	 are	 indicated	 in	 units	 of	 𝜖!!/𝑘!.	 Dashed	
lines	for	𝑇 ≤ 0.3	denote	the	glassy	state.	
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The	contributions	to	the	relaxation	spectrum	from	
𝐶! 𝑡 	 and	 𝐶! 𝑡  of	 the	 respective	 α	 and	 β	 processes	
were	deconvoluted	using	the	Williams	ansatz	[42]:	

	 ( ) ( ) ( )1 Δ Δ ( )C t C t C t C tα α β α β= +  (4) 

where	Δ	represents	the	relaxation	strength.	We	used	a	
stretched	exponential	function	[43]	for	the	𝛼	relaxation	
and	a	Cole-Cole	function	[43],	or	its	Fourier	transform	
to	the	time-domain,	for	the	β	relaxation.	Eq.	4	assumes	
the	β	 dynamics	 takes	 place	 in	 an	 environment	 that	 is	
rearranging	on	the	time	scale	of	the	𝛼 process,	with	the	
two	 being	 “statistically	 independent”.	 A	 common	
alternative	 is	 to	 assume	 additivity	 of	 the	 two	
relaxations	 in	 the	 time	 or	 frequency	 domain.	 The	 β	
relaxation	must	then	be	described	with	an	asymmetric	
function	 to	provide	a	 satisfactory	 fit.	This	 requires	 an	
additional	 adjustable	parameter,	 yet	 still	 gives	poorer	
fits	and	larger	uncertainties	than	the	Williams	ansatz.		

Figure	 2	 shows	 the	 variation	with	 temperature	 of	
the	 relaxation	 times	 and	 strengths.	 The	 α	 relaxation	

time	can	be	described	by	the	Vogel-Fulcher-Tammann	
equation	[43]	

	 ( ) 0
0

exp BT
T Tατ τ
⎛ ⎞

= ⎜ ⎟
−⎝ ⎠

  (5) 

where	𝜏!,	𝐵	and	𝑇! are	constants.	The	β	relaxation	time	
shows	 Arrhenius	 behavior	 (T0=0)	 in	 the	 glass,	 which	
changes	 to	 a	 slightly	 stronger,	 non-Arrhenius	
temperature	 dependence	 above	 𝑇!.	 The	 β	 relaxation	
strength	 increases	with	 increasing	 temperature,	while	
Δα	decreases,	becoming	zero	at	𝑇!" = 0.56.	(That	is,	at	
high	 temperatures	 the	 structural	 dynamics	 are	
relatively	 unconstrained.)	 Included	 in	 Fig.	 2	 are	 the	
corresponding	 relaxation	 times	 for	 the	 3	 dimensional	
case	[32],	showing	qualitatively	the	same	behavior.	

In	Figure	3,	τα	and	τβ	are	 indicated	on	plots	of	 the	
mean	 square	displacement	 of	 the	 center	 of	mass.	 The	
behavior	 is	 typical	 for	 glass-forming	 liquids,	 with	 an	
initial	 slope	 of	 2	 (ballistic	 motion)	 and	 a	 long-time	
slope	of	unity	 indicating	diffusive	behavior.	Below	the	
α	 onset	 temperature,	 the	 α	 relaxation	 time	
corresponds	to	an	approximately	constant	value	of	the	
mean	 square	 displacement,	 in	 the	 beginning	 of	 the	
diffusive	regime;	this	is	a	consequence	of	the	coupling	
of	 the	 α	 reorientations	 to	 diffusion.	 At	 lower	
temperatures	 a	 plateau	 is	 evident;	 that	 is,	 a	 broad	
shallow	step	centered	around	𝜏! .	This	plateau	reflects	

	
FIG.	2.	(a)	Relaxation	times	and	(b)	strengths		of	the	α	and	
β	 processes,	 obtained	 by	 fitting	 the	 data	 of	 Figure	 1	
(squares).	Lines	through	𝜏! ,	𝜏! 	and	𝛥!	are	respectively	fits	
of	eq.	5,	the	Arrhenius	equation,	and	 linear	behavior.	The	
onset	 and	 glass	 transition	 temperatures	 are	 indicated	by	
vertical	dashed	lines.	Also	shown	are	results	(circles)	from	
simulations	of	a	similar	three-dimensional	molecule	[32].	

	
FIG.	3.	Mean	square	displacement	of	the	molecular	center	
of	 mass	 at	 the	 indicated	 temperatures.	 Symbols	 indicate	
the	 α	 (triangles)	 and	 β	 (inverted	 trirangles)	 relaxation	
times.	
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small	 displacements	 caused	 by	 the	 rotational	 jumps	
comprising	the	β	process	[31].		

From	 the	 simulations	 in	 the	 isoconfigurational	
ensemble	 we	 determined	 for	 each	 molecule	 the	
dynamic	 propensity	 𝑟! !! .	 This	 is	 defined	 as	 the	
squared	 displacement	 of	 the	 center	 of	 mass	 at	 a	
reference	 time	 𝑡!"# = 1.5𝜏! ,	 averaged	 over	 100	 runs,	
each	starting	from	the	same	particle	configuration	with	

randomized	initial	velocities	[7,8].	Figure	4	(top)	shows	
a	 map	 of	 the	 dynamic	 propensity	 for	 three	
temperatures	 in	 the	 liquid	 state.	 Similar	 to	 previous	
studies	[7,8,23],	there	is	substantial	heterogeneity,	with	
molecules	having	large	and	small	 𝑟! !" 		organized	into	
clusters,	the	size	of	which	increases	on	cooling	[44].	

As	 calculated	 herein,	 𝑟! !" 	 characterizes	 the	
propensity	of	a	molecule	 for	motion	at	 long	 times,	 t	>	
τα.	To	investigate	the	dynamics	on	the	β	timescale,	we	
calculated	 from	 the	 first-order	 rotational	 correlation	
function	 for	 each	 molecule	 an	 isoconfigurationally	
averaged	logarithm	of	the	β	relaxation	time		
log 𝜏! !"  and	 β	 relaxation	 strength	 Δ! !" .	 (Note	 that	
because	the	β	relaxation	manifests	as	only	a	very	weak	
step	in	the	mean	square	displacement,	using	the	latter	
to	 compute	 the	 dynamic	 propensity	 is	 impractical).	 A	
correlation	 function	 𝐶! 𝑡 !" 	 was	 first	 calculated	 for	
each	molecule,	 by	 averaging	 its	 rotational	 correlation	
function	 over	 a	 suitable	 time	 interval	 (0, 𝑡!"#  )	 across	
the	 isoconfigurational	 ensemble.	 The	 time	 𝑡!"# 	 is	
intermediate	 between	 𝜏! 	 and	 𝜏!;	 that	 is,	 long	 enough	
that	 the	entirety	of	 the	β	relaxation	 is	captured	 in	 the	
calculated	correlation	function,	but	sufficiently	shorter	
than	 𝜏! 	 so	 that	 the	 structure	 (which	we	 are	 trying	 to	

	

FIG.	 5.	 Representative	 isoconfigurationally	 averaged	
correlation	functions	〈𝐶!(𝑡)〉!"	for	ten	individual	molecules	
at	T=0.3	(symbols).	The	solid	 line	 is	 the	mean	correlation	
function	for	all	molecules.	

	

FIG.	 4.	 	 Spatial	 distribution	 of	 (top)	 the	 dynamic	 propensity	 at	 𝑡 = 1.5𝜏! ,	 (middle)	 the	 isoconfigurationally	 averaged	 𝛽	
relaxation	time,	and	(bottom)	relaxation	strength.	The	color	scale	is	normalized	to	span	the	minimum	to	the	maximum	values	
for	each	panel.	
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correlate	 to	 the	 β	 dynamics)	 does	 not	 change	
significantly.	As	long	as	these	conditions	hold,	the	exact	
value	of	𝑡!"# 	does	not	significantly	affect	the	results	of	
our	calculation.		

Representative	 isoconfigurationally	 averaged	
single-molecule	 correlation	 functions,	 along	 with	 the	
total	(averaged	over	all	molecules)	𝐶! 𝑡 ,	are	shown	in	
Figure	 5.	 If	 structure	 had	 no	 influence	 on	 the	 β	
dynamics,	 the	 curves	 for	 individual	 molecules	 would	
collapse	 onto	 𝐶!(𝑡).	 They	 do	 not;	 instead,	 a	 step	
decrease	corresponding	to	the	β	relaxation	is	observed	
at	 widely	 different	 timescales	 and	 with	 a	 range	 of	
relaxation	strengths.	

A	suitable	 function	(the	 time-domain	 transform	of	
the	Cole-Cole	equation)	was	fit	to	the	 𝐶! 𝑡 !" 	for	each	
molecule	 to	 extract	 an	 isoconfigurational	 relaxation	
time	 𝑙𝑜𝑔 𝜏! !"  and	 relaxation	 strength	 Δ! !" .	 These	
quantities	 are	 depicted	 in	 Figure	 4.	 While	 some	
clustering	 of	 molecules	 with	 similar	 log 𝜏! !" 	 and	
similar	 Δ! !" 	 is	 present,	 these	 clusters	 are	 much	
smaller	than	those	for	 𝑟! !";	moreover,	the	cluster	size	
does	 not	 grow	 appreciably	 on	 cooling.	 In	 fact	 there	
does	 not	 seem	 to	 be	 any	 similarity	 between	 the	
propensity	maps	at	 the	α	and	β	relaxation	 timescales;	
that	 is,	 a	 molecule’s	 propensity	 for	 motion	 at	 long	
times	is	independent	of	its	propensity	for	having	a	fast	
or	 strong	 β	 relaxation.	 This	 result	 calls	 to	 mind	 our	
previous	 finding	 that	 in	 a	 single	 simulation	 run	 (i.e.,	
without	 the	 isoconfigurational	 averaging),	 single-
molecule	 β	 relaxation	 times	 and	 strengths	 are	
independent	 of	 each	 other,	 and	 independent	 of	 the	

single-molecule	α	relaxation	time	[33].	This	behavior	at	
the	 single-molecule	 level	 is	 in	 striking	 contrast	 to	 the	
many	correlations	between	average	properties	of	the	α	
and	 β	 processes,	 which	 has	 led	 to	 the	 inference	 of	 a	
direct	 relationship	 between	 the	 two	 [45,46].	 𝑙𝑜𝑔𝜏! !" 	
and	 Δ! !" 	are	also	mutually	uncorrelated	(Figure	6a),	
as	found	for	the	non-averaged	values	[33].		

To	 quantify	 the	 clustering,	 we	 calculate	 a	 length	
scale	 for	 the	 dynamic	 propensity	 as	 follows.	 The	
standard	deviation	𝜎(0)	of	the	propensity	is	a	measure	
of	 its	 heterogeneity.	 We	 then	 average	 (“blur”)	 the	
propensity	 over	 a	 length	 scale	 L	 by	 replacing	 each	
molecule’s	 propensity	 by	 the	 average	 value	 within	 a	
radius	 L	 of	 the	 molecule;	 this	 gives	 a	 new	 standard	
deviation	𝜎 𝐿 ,	which	is	smaller	for	larger	values	of	L.	
We	then	define	the	characteristic	length	scale	𝜆	as	the	
value	 of	 𝐿	 for	 which	 the	 𝜎(𝐿)/𝜎(0)	 reaches	 a	 given	
value,	 here	 1/e.	 Figure	 7	 shows	 the	 length	 scales	
extracted	in	this	manner	using	the	data	in	Figure	4.	The	
length	𝜆! ,	characterizing	heterogeneity	of	the	dynamic	
propensity	 for	 the	α	 relaxation,	 is	 large	 (many	 times	
the	 molecular	 diameter)	 and	 increases	 strongly	 on	
cooling.	Though	uncorrelated	with	each	other,	both	the	
β	 relaxation	 time	 and	 strength	 are	 characterized	by	 a	
common	 length	 scale	𝜆! ,	 equal	 to	 a	 couple	molecular	
diameters	and	thus	much	smaller	than	𝜆! .	𝜆! 	increases	
weakly	with	decreasing	 temperature,	 reaching	 a	 peak	
slightly	 below	 𝑇!	 and	 then	 decreasing	 on	 further	
cooling.	 The	decrease	below	𝑇!	may	be	 related	 to	 the	
decrease	 in	 the	 4-point	 correlation	 function	 at	 the	 β	
timescale	[33].		

	

FIG.	6.	(a)	Correlation	of	isoconfigurationally	averaged	β	relaxation	strength	and	relaxation	time,	along	with	the	correlation	
of	the	local	volume	with	the	isoconfigurationally	averaged	(b)	β	relaxation	strength	and	(c)	β	relaxation	time	(T=	0.3)	
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When	 discussing	 the	 origin	 of	 the	 JG	 relaxation,	
regions	 of	 looser	 packing,	 so-called	 “islands	 of	
mobility”	 [47],	 are	 sometimes	 invoked.	 We	 partition	
the	 simulation	 box	 into	 Voronoi	 polyhedra	 [48]	
centered	on	the	molecular	centers	of	mass,	and	use	the	
volume	of	the	polyhedron	as	a	measure	of	the	volume	
local	 to	 each	 molecule.	 Only	 a	 very	 weak	 (R=0.39)	
correlation	 is	 present	 between	 	 Δ! !" 	 and	 this	 local	
volume	 (Fig.	 6b),	 but	 surprisingly	 this	 suggests	 that	
molecules	with	smaller	 local	volume	are	slightly	more	
likely	to	have	a	more	intense	β	relaxation.	A	somewhat	
better	 but	 still	 weak	 correlation	 (R=0.59)	 exists	
between	 local	 volume	 and	 the	 β	 relaxation	 time	 (Fig.	
6c);	 to	wit,	 looser	 packing	 is	 associated	with	 faster	 β	
dynamics.		

Nevertheless,	 local	 structure	 clearly	 plays	 a	
determinative	role	in	the	β	relaxation.	We	quantify	the	
extent	 to	 which	 structure	 (as	 opposed	 to	 initial	
momenta)	 controls	dynamics	as	 follows:	By	analyzing	
only	 a	 single	 simulation	 run,	 we	 obtain	 N	 relaxation	
times	log 𝜏!

! 	of	individual	molecules	(i	is	the	molecule	
index),	which	 form	a	distribution.	The	breadth	of	 this	
distribution,	 or	 amount	 of	 heterogeneity,	 can	 be	
quantified	by	the	standard	deviation	of	log 𝜏!

(!),	i.e.,		

( )21

1/2
1 ( )log logi

i
S N β βτ τ−⎡ ⎤= −⎢ ⎥⎣ ⎦∑ .	 	 	 (6)	

A	 portion	 of	 the	 heterogeneity	 will	 be	 due	 to	 the	
variation	 in	 local	 structure	 around	 each	 molecule	 in	
the	 starting	 configuration,	 the	 rest	 due	 to	 the	
variations	 in	 initial	 velocities.	When	we	 average	 over	
multiple	 simulation	 runs,	 each	 with	 identical	 starting	
configurations	but	different	initial	velocities,	we	obtain	
N	 isoconfigurationally	 averaged	 single	 molecule	
relaxation	 times	 log 𝜏!

!
!" .	 These	 form	 a	 different	

distribution,	 the	 breadth	 of	 which	 is	 only	 due	 to	
variation	in	local	structure.	The	standard	deviation,		

( )
1/22

1 ( )log logi
iso ici
S N β βτ τ−⎡ ⎤= −⎢ ⎥⎣ ⎦

∑ 	 	 (7)	

must	 therefore	be	smaller	 than	𝑆!.	Taking	 the	ratio	of	
the	two	standard	deviations		

	
( )( )
( )( )

1
2 2

β

2
1 β β

log log τ
(log )

log τ log τ

i
i iciso

i
i

SQ
S

β

β

τ
τ

⎡ ⎤−⎢ ⎥
= = ⎢ ⎥

−⎢ ⎥
⎣ ⎦

∑

∑
					(8)	

gives	us	a	quantity	that	reflects	to	what	extent	log 𝜏! 	is	
determined	only	by	 local	structure.	The	same	analysis	
was	 performed	 for	 Δ! 	 to	 yield	 𝑄(𝛥!),	 and	 for	 the	
squared	 displacement	 at	 𝑡!"# = 1.5𝜏! 	 ,	 𝑄(𝑟!)	
characterizing	 the	 dynamic	 propensity	 at	 the	 α	
relaxation	 timescale.	 These	 three	 ratios	 of	 standard	

	

	
FIG.	 7.	 Characteristic	 length	 scale	 of	 the	 dynamic	
propensity	 (circles),	 and	 the	 isoconfigurationally	
averaged	 β	 relaxation	 time	 (filled	 squares)	 and	 β	
relaxation	 strength	 (empty	 squares).	 The	 shaded	 area	
corresponds	to	the	glassy	state.	

	

FIG.	 8.	 Degree	 to	 which	 heterogeneity	 is	 determined	 by	
the	 structure,	 as	 calculated	 using	 eq.	 8,	 for	 the	 dynamic	
propensity	 (triangles),	β	 relaxation	time	 (squares),	and	β	
relaxation	strength	(circles).	The	shaded	area	corresponds	
to	the	glassy	state.	
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deviations	 are	 plotted	 in	 Figure	 8.	 At	 a	 given	
temperature,	 𝑄(log 𝜏!)~ 𝑄(Δ!),	 and	 both	 are	 larger	
than	𝑄 𝑟! ;	i.e.,	the	heterogeneity	of	the	β	relaxation	is	
determined	by	the	structure	to	a	greater	extent	than	is	
that	of	the	α	relaxation.	All	three	quantities	increase	on	
cooling,	 and	 below	 the	 glass	 transition	 the	 standard	
deviations	 for	 the	 β	 process	 both	 reach	 a	 plateau	 of	
~0.95.	 This	 means	 that	 in	 the	 glass,	 heterogeneity	 of	
the	β	process	is	almost	entirely	due	to	variation	of	the	
local	structure.		

CONCLUSIONS	

The	 fact	 that	 the	 dynamic	 propensity	 is	
heterogeneous	 means	 that	 “something”	 in	 the	
structure	 determines	 the	 α	 relaxation	 dynamics	 [9],	
though	 its	 exact	 nature	 remains	 elusive	 and	 perhaps	
system-dependent.	 In	 a	 rigid	 dumbbell-shaped	

molecule	that	exhibits	a	 JG	β	relaxation,	we	show	that	
“something	 else”	 in	 the	 structure	 also	 governs	 the	 β	
relaxation.	 The	 local	 structure	 gives	 molecular	
propensities	for	faster	or	slower,	as	well	as	stronger	or	
weaker,	 β	 dynamics;	 however,	 these	 propensities	 are	
independent	 from	 each	 other,	 and	 from	 the	 dynamic	
propensity	at	the	α	timescale.	Structure	controls	the	β	
relaxation	properties	 to	 a	 larger	 extent	 than	 it	 affects	
motion	 at	 longer	 times,	 and	 this	 disparity	 increases	
with	 cooling	 to	 eventually	 approach	 100%;	 that	 is,	 in	
the	 glassy	 state	 the	 instantaneous	 momentum	 of	 a	
particle	has	a	negligible	influence	on	its	dynamics.	

ACKNOWLDEGMENT	

This	 work	 was	 supported	 by	 the	 Office	 of	 Naval	
Research.	

	
																																																																																																																									

	
	
	

[1]				L.J.	Kaufman,	Ann.	Rev.	Phys.	Chem.	64,	177	(2013).	
[2]				L.	Berthier	and	G.	Biroli,	Rev.	Mod.	Phys.	83,	587	

(2011).	
[3]				C.M.	Roland,	Macromolecules	43,	7875	(2011).	
[4]				K.L.	Ngai,	Relaxation	and	Diffusion	in	Complex	

Systems	(Springer,	2011).	
[5]				S.	Gokhale,	A.K.	Sood,	and	R.	Ganapathy,	Adv.	Phys.	

65,	363	(2016).	
[6]				G.L.	Hunter	and	E.R.	Weeks,	Rep.	Prog.	Phys.	75,	

066501	(2012).	
[7]				A.	Widmer-Cooper,	P.	Harrowell,	and	H.	Fynewever,	

Phys.	Rev.	Lett.	93,	135701	(2004).	
[8]				A.	Widmer-Cooper	and	P.	Harrowell,	J.	Phys:	Condens.	

Matter	17,	S4025	(2005).	
[9]				P.	Royall	and	S.	R.	Williams,	Physics	Reports	560,	1	

(2015).	
[10]	S.	Golde,	T.	Palberg,	and	H.	J.	Schöpe,	Nature	Phys.	12,	

712	(2016).	
[11]	T.	Kawasaki,	T.	Araki,	and	H.	Tanaka,	Phys.	Rev.	Lett.	

99,	215701	(2007).	
[12]		S.	Mazoyer,	F.	Ebert,	G.	Maret,	and	P.	Keim,	Eur.	Phys.	

J.	E	34,	101	(2011).	
[13]		D.	Coslovich	and	G.	Pastore,	J.	Chem.	Phys.	127,	

124504	(2007).	
[14]		D.	Coslovich,	Phys.	Rev.	E	83,	051505	(2011).	
[15]		C.	P.	Royall,	A.	Malins,	A.	J.	Dunleavy,	and	R.	Pinney,	J.	

Non-Cryst.	Solids	407,	34	(2015).	
[16]		A.	Malins,	J.	Eggers,	C.	P.	Royall,	S.	R.	Williams,	and	H.	

Tanaka,	J.	Chem.	Phys.	138,	12A535	(2013).	
	

	

[17]		A.	Malins,	J.	Eggers,	H.	Tanaka,	C.	P.	Royall,	Faraday	
Discuss.	167,	405	(2013).	

[18]		M.	S.	G.	Razul,	G.	S.	Matharoo,	and	P.	H.	Poole,	J.	Phys:	
Condens.	Matter	23,	235103	(2011).	

[19]	 A.	 Widmer-Cooper,	 H.	 Perry,	 P.	 Harrowell,	 D.	 R.	
Reichman,	Nature	Physics,	4,	711	(2008).	

[20]		R.	L.	Jack,	A.	J.	Dunleavy,	and	C.	P.	Royall,	Phys.	Rev.	
Lett.	113,	095703	(2014).	

[21]		G.M.	Hocky,	D.	Coslovich,	A.	Ikeda,	and	D.	R.	
Reichman,	Phys.	Rev.	Lett.	113,	157801	(2014).	

[22]		J.	C.	Conrad,	F.	W.	Starr,	and	D.	A.	Weitz,	J.	Phys.	Chem.	
B	109,	21235	(2005).	

[23]		A.	Widmer-Cooper	and	P.	Harrowell,	Phys.	Rev.	Lett.	
96,	185701	(2006).	

[24]		G.	S.	Matharoo,	M.	S.	Gulam	Razul,	and	P.	H.	Poole,	
Phys.	Rev.	E	74,	050502(R)	(2006).	

[25]		A.	J.	Dunleavy,	K.	Wiesner,	C.	P.	Royall,	Phys.	Rev.	E	
86,	041505	(2012).	

[26]		A.	J.	Dunleavy,	K.	Wiesner,	R.	Yamamoto,	and	C.	P.	
Royall,	Nature	Comm.	6,	6089	(2015).	

[27]		E.D.	Cubuk,	S.	Schoenholz,	J.M.	Rieser,	B.D.	Malone,	J.	
Rottler,	D.J.	Durian,	E.	Kaxiras,	A.J.	Liu,	Phys.	Rev.	Lett.	
114,	108001	(2015).	

[28]		E.D.	Cubuk,	S.S.	Schoenholz,	E.	Kaxiras,	A.J.	Liu,	J.	Phys.	
Chem.	B	120,	6139	(2016).	

[29]		S.S.	Schoenholz,	E.D.	Cubuk,	D.M.	Sussman,	E.	Kaxiras,	
A.J.	Liu,	Nature	Physics	12,	469	(2016).	

[30]		S.	Bernini,	F.	Puosi,	and	D.	Leporini,	J.	Chem.	Phys.	
142,	124504	(2015).	

	



	

9	
	

	

[31]	D.	Fragiadakis	and	C.M.	Roland	Phys.	Rev.	E	86,	
020501	(2012).	

[32]	D.	Fragiadakis	and	C.M.	Roland	Phys.	Rev.	E	88,	
042307	(2013).	

[33]	D.	Fragiadakis	and	C.M.	Roland	Phys.	Rev.	E	89,	
052304	(2014).	

[34]	D.	Fragiadakis	and	C.M.	Roland	Phys.	Rev.	E	91,	
022310	(2015).	

[35]	W.	Kob	and	H.	C.	Andersen,	Phys.	Rev.	Lett.	73,	1376	
(1994).	

[36]	R.	Brüning,	D.	A.	St-Onge,	S.	Patterson,	and	W.	Kob,	J.	
Phys:	Condens.	Matter	21,	035117	(2009).	

[37]	B.	Hess,	C.	Kutzner,	D.	van	der	Spoel,	and	E.	Lindahl,	J.	
Chem.	Theory	Comput.	4,	435	(2008).	

[38]	E.	Lindahl,	B.	Hess,	and	D.	van	der	Spoel,	J.	Mol.	Model.	
7,	306	(2001).	

[39]	H.	J.	C.	Berendsen,	D.	van	der	Spoel,	and	R.	van	
Drunen,	Comput.	Phys.	Comm.	91,	43	(1995).	

[40]	B.	Hess,	J.	Chem.	Theory	Comput.	4,	116	(2008).	
[41]	E.	Flenner	and	G.	Szamel,	Nature	Comm.	6,	7392	

(2015).	
[42]	G.	Williams,	Adv.	Polym.	Sci.	33,	60	(1979).	
[43]	C.M.	Roland.	Viscoelastic	Behavior	of	Rubbery	

Materials,	Oxford	(2011).	
[44]	 An	 alternative	 would	 be	 to	 calculate	 the	

isoconfigurationally	 averaged	 α	 relaxation	 time	
log 𝜏! !" ,	 in	 a	 similar	 way	 to	 that	 done	 for	 the	 β	
relaxation.	 The	 corresponding	 propensity	 maps	 are	
qualitatively	 the	 same	 as	 those	 𝑟! !" 	 (with	 short	
relaxation	 time	 corresponding	 to	 large	mean	 square	
displacement),	 but	 with	 significantly	 higher	
uncertainty,	especially	at	T>0.35.	

[45]	K.L.	Ngai	and	M.	Paluch,	J.	Chem.	Phys.	120,	857-873	
(2004).	

[46]	S.	Capaccioli,	M.	Paluch,	D.	Prevosto,	Li-Min	Wang,	and	
K.	L.	Ngai,	J.	Phys.	Chem.	Lett.	3,	735−743	(2012).	

[47]	G.P.	Johari	and	M.	Goldstein,	J.	Chem.	Phys.	53,	2372	
(1970);	G.P.	Johari,	J.	Non-Cryst.	Sol.	307-310,	317	
(2002).	

[48]	W.	Brostow	and	J.-P.	Dussault,	J.	Comput.	Phys.	29,	
812	(1978).	


