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We study the phase behavior of a system of charged colloidal particles that are electrostatically
bound to an almost flat interface between two fluids. We show that, despite the fact that our
experimental system consists of only 103 - 104 particles, the phase behavior is consistent with the
theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). Using spatial
and temporal correlations of the bond-orientational order parameter, we classify our samples into
solid, isotropic fluid, and hexatic phases. We demonstrate that the topological defect structure we
observe in each phase corresponds to the predictions of KTHNY theory. By measuring the dynamic
Lindemann parameter, γL(τ), and the non-Gaussian parameter, α2(τ), of the displacements of the
particles relative to their neighbors, we show that each of the phases displays distinctive dynamical
behavior.

I. INTRODUCTION

Colloidal systems have long been used as a model for
investigating fundamental questions in condensed matter
physics. Two dimensional (2D) systems are of particu-
lar interest, both for the rich physical phenomena they
display [1, 2] and for the ease with which they can be
imaged, via video or confocal microscopy [3]. To create
such a system, colloidal particles must somehow be con-
fined to a surface. This can be done by using colloids
sedimented onto a solid or fluid substrate [2, 4, 5], by
physically confining colloids between the parallel walls of
a thin sample chamber [1, 6], or by using charged parti-
cles that bind electrostatically to a fluid interface [7, 8].
The latter system has the advantage that the surface to
which the particles bind does not have to be flat, and so
is particularly useful in exploring the role of background
curvature in determining the structure and dynamics of
topological defects in 2D materials [9, 10]. However, the
phase behavior of colloids in this kind of system, which is
necessary for a full understanding of experiments under-
taken at finite temperature, has not been investigated.

In this work, we study systems of 103 - 104 charged
colloidal particles that are electrostatically bound to an
almost-flat fluid interface, shown schematically in Fig. 1.
We demonstrate that the interaction between particles
is consistent with a dipolar pair potential. We measure
the dipole moment of the particles, which allows us to
directly compare the phase behavior of our system to
previous experiments and simulations using dipolar par-
ticles [2, 11, 12].

Using density as the control parameter, we show that
the phase behavior of our system is consistent with
the theory of defect-mediated melting due to Koster-
litz, Thouless, Halperin, Nelson and Young (KTHNY),
whereby the transition from isotropic fluid to crystalline
solid happens via an intermediate hexatic phase [13–15].
We identify the solid, isotropic fluid, and hexatic phases
by measuring the bond-orientational order parameter ψ6

and associated space and time correlation functions g6(r)
and g6(τ). Finally, we show that the classification of our
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FIG. 1. (Color online.) Schematic of the experimental geom-
etry. In the “side view” panel, the height h of the droplet
is exaggerated compared to the base diameter D. In experi-
mental samples, h . 5µm. Particles sitting on the interface
(shown in full color) are mobile, while the remaining particles
(shown as faded) bind randomly and irreversibly to the bare
glass surface. The boundary of the droplet is delineated by a
row of particles stuck to the glass. The inset shows the origin
of the dipolar repulsion between interfacial particles.

samples into solid, isotropic fluid and hexatic phases is
consistent both with the topological defect structure pre-
dicted by KTHNY theory, and with the dynamical be-
havior that has been described previously [16].

II. MATERIALS & METHODS

Our experimental system is composed of diameter
d = 1.1µm poly(methyl methacrylate) (PMMA) parti-
cles that bind electrostatically to the interface between
an oil and an aqueous phase. The particles are ini-
tially dispersed in a 1:1 volumetric mixture of cyclo-
hexyl bromide (CHB) and dodecane, while the aqueous
phase consists of a 10mM solution of NaCl in a 90 wt%
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FIG. 2. (Color online.) Three samples of hydrophobic PMMA particles electrostatically bound to almost-flat droplets, at areal
densities ρ of (a) 0.036, (b) 0.043, and (c) 0.049µm−2. The top row shows a confocal micrograph of each sample. For samples
(b) and (c), the entire, roughly circular droplet is shown (see Fig. 1). In each sample, the inset square has a side length of
100µm. The middle row shows Delaunay triangulations of the particle positions in a selected region, in the first frame of each
movie. Particles with five or seven nearest neighbors are respectively indicated by red triangles and green disks. The bottom
row shows the particle trajectories over 25 minutes.

glycerol-water mixture. The dielectric constant ε of the
oil is 4.3 ε0, where ε0 is the permittivity of the vacuum
[17]. The CHB is purified and stored according to the
protocols given in references [7] and [18]. The PMMA
particles are sterically stabilized with covalently bound
poly(12-hydroxystearic acid) (PHS) [19]. Previous work
has shown that, when dispersed in similar oils, micron-
sized PHS-coated PMMA particles acquire a charge q of
around +500 e, where e is the elementary charge [7, 20].
While the charging mechanism is still incompletely un-
derstood [18, 21, 22], particle charging in our system is
robust and reproducible [20]. To facilitate measurement
of particle dynamics with confocal microscopy, we fluo-
rescently dye the particles with absorbed rhodamine 6G
[23].

To prepare the particle-laden interfaces we use in our
experiments, we use an atomizer to deposit droplets of
the aqueous phase onto a cover slip. We then incorpo-
rate the cover slip into the construction of a glass capil-

lary channel, which is filled with the particle dispersion
at the desired concentration. As the particle dispersion
flows into the chamber, some of the particles bind irre-
versibly to the surface of the droplets, while others bind
to the bare glass surface. The experimental geometry is
shown schematically in Fig. 1. Particles that are bound
to the interface are mobile, and can reach thermodynamic
equilibrium. To control the flatness of the fluid interfaces,
prior to the droplet deposition step, the cover slip is im-
mersed in a bath of KOH-saturated isopropanol (IPA),
and rinsed sequentially with DI water, acetone and IPA.
The cover slip is blown dry with an N2 sprayer and dried
in an oven at 70◦C for at least 15 mins prior to use. By
varying the immersion time of the cover slips in the KOH
solution, we control the advancing contact angle of the
deposited droplets of the aqueous phase [24]. We find
that immersing the cover slips for 30 mins. gives contact
angles of approximately 1◦, which are appropriate for this
experiment. Apart from the KOH immersion step, we
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follow the same protocol to clean all glass surfaces that
come into contact with the particle dispersion. Once the
capillary channel has been filled, we seal it: first with
a buffer layer of glycerol and then with optical adhesive
(Norland Products Inc. NOA #68).

Following the above procedures, we obtain a sam-
ple chamber that contains several particle-laden inter-
faces, ranging in base diameter, D, from around 200 to
500µm. Each interface has a slightly different areal den-
sity, ρ, of PMMA particles, thus allowing us to approxi-
mately uniformly sample areal densities in the range 0.01-
0.15µm−2. We estimate the curvature of the droplets as
follows: using a 10× magnification NA 0.3 air objective
mounted on a Leica TCS SP5 II confocal microscope,
we image the particles in a single confocal slice. If all
the particles appear in the field of view, the maximum
thickness of the drop must then be less than the the op-
tical section thickness, around 5µm. Since the dimen-
sions of our droplet are far smaller than the capillary
length, we ignore the effect of gravity [25], and assume
that the droplets take the shape of a spherical cap. Since
D > 200µm, and the thickness is < 5µm, the radius of
curvature must be at least 1 mm: far greater than the
length scales probed in our experiments. Thus, when
analyzing our experimental data, we treat the droplet
surface as flat.

After waiting at least a day for the samples to equilib-
riate, we use confocal microscopy to record the motion of
the particles for up to several hours, at a rate of 0.25-1.0
frames/s. Using standard routines [26], we locate the par-
ticles in the field of view. Delaunay triangulations of the
instantaneous particle positions identify sites with more
or fewer than six nearest neighbors, called disclinations.
Trajectories obtained by by linking particle positions in
adjacent frames reveal the mobility of individual parti-
cles.

Snapshots and movies of particle layers of different
densities captured and analyzed in this way display the
qualitative features of the three phases predicted by
KTHNY. The low-density, isotropic fluid phase shown
in Fig. 2 (a) is characterized by homogeneously dis-
tributed disclination defects and uniformly mobile par-
ticles. By contrast, the high-density, equilibrium crystal
phase, shown in Fig. 2 (c), is only capable of support-
ing sparse clusters of tighly-bound defects that do not
affect the long-range order of the lattice. In this phase,
the particles that compose the crystal are uniformly con-
fined to the vicinity of their lattice sites. As we show in
Section III, the resulting caged diffusion can be used to
measure in-situ the strength of the inter-particle interac-
tions.

At intermediate particle densities, such as that shown
in Fig. 2 (b), isolated disclinations condense into the de-
fect clusters that characterize the hexatic phase. These
clusters facilitate particle mobility, disrupt translational
order, and induce long-lived spatial inhomogeneities in
the structure and dynamics of the particles.
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FIG. 3. (a) Nearest-neighbor relative mean square displace-
ment curves for three crystalline samples, at different densities
ρ. (b) Log-log plot of the limiting value of the n.n.-MSD, as
a function of areal density. The dashed line is the best-fit line
with slope -5/2, as predicted by Eqn. (2). This fit gives an
electric dipole moment p = (455± 20) e·µm.

III. MODEL FOR INTERPARTICLE
INTERACTIONS & MEASUREMENT OF

DIPOLE MOMENT OF PARTICLES

To compare the phase behavior of our system with that
observed in other systems [2, 11, 12, 27], it is important
to know both the form and magnitude of the interparticle
repulsion [28]. In previous work, we studied the behavior
of PHS-coated PMMA particles at an interface between
two fluids which are similar in composition to those de-
scribed here [20]. In our system, the PMMA particles
appear to be wet very little (or possibly not at all) by
the aqueous phase, and can be described as spheres with
charge q sitting on top of a conducting medium, as shown
in the inset to Fig. 1. In the same work, we showed that
the force binding individual particles to the interface is
electrostatic in origin, and that the interaction between
pairs of particles is dipolar. These results are consistent
with previous experimental and theoretical work [29–31]
on systems of charged particles in the vicinity of a fluid
interface. In our system and similar ones, the interac-
tion of two charged particles is the sum of the Coulomb
repulsion between the particles and the Coulomb attrac-
tion between each particle and the image charge of the
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other. Thus, in the limit where the interparticle distance
r is large compared to the diameter d of the particles, the
net interaction between two interfacially bound particles
can be approximated by a pair potential of the form:

U(r) ' A

r3
,

where A = p2/8πε, and p = qd is the magnitude of the
electric dipole moment of the particles [32]. As shown in
Fig. 2 (c-iii), when the interfacial density of the particles
is high enough, they form a crystalline solid phase. In a
hexagonal lattice composed of repulsive dipolar particles,
the average value of p can be estimated by observing the
fluctuations of the particles relative to the cage formed by
their nearest neighbors. To quantify the interactions be-
tween our interfacial PMMA particles, we use a method
due to Parolini et al. [33], which we now outline briefly.

We begin by identifying a region of the interface where
several hundred particles are arranged in a defect-free
crystal lattice which is at least 20µm from the droplet
boundary. We consider only samples where the density
gradient across the subregion of interest is less than 0.3%
per interparticle spacing, and avoid the grain boundaries
or isolated dislocations that are occasionally present in
our samples. These non-equilibrium features may be
identified quantitatively, for instance by anomalous be-
havior of the dynamic Lindemann parameter, γL(τ), or
the non-Gaussian parameter, α2(τ), which we define in
Section V. To further check that we are measuring equi-
librium properties, we verify that our results do not de-
pend strongly on the particular choice of subregion.

At each instant t in time, the Delaunay triangulation
defines Ni, the set of nearest neighbors of particle i. The
position of particle i relative to its neighbors is given by

ri,n.n.(t) = ri(t)−
1

nb

∑
j ∈Ni

rj(t),

where the sum is taken over the nb neighbors of particle i.
The nearest-neighbor relative mean square displacement
(n.n.-MSD) as a function of time interval τ is defined as

〈δrn.n.(τ)2〉 = 〈(ri,n.n.(t+ τ)− ri,n.n.(t))
2〉, (1)

where the average is taken over particles i and starting
times t. When calculating the quantity ri,n.n.(t+ τ), we
use the set of neighbors defined at time t, even if those
particles no longer share a Delaunay bond with particle i
at time t+τ . The upper panel of Fig. 3 shows 〈δrn.n.(τ)2〉
curves three crystalline samples, at different densities ρ.
In all these samples, 〈δrn.n.(τ)2〉 reaches a plateau value
〈δr2n.n.〉. According to [33], this value is related to the
force constant A, and hence to the dipole moment p, by
the equation

〈δr2n.n.〉 =
29/2αkBT

35/4A
ρ−5/2, (2)

where we have used the relation between ρ and interpar-
ticle spacing a in a hexagonal lattice, ρ = 2/a2

√
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FIG. 4. (Color online.) Delaunay triangulations of typi-
cal particle configurations, taken from the samples shown in
Fig. 2. Five- and seven-coordinated disclinations are marked
by red triangles and green disks respectively. Sample (a)
shows three unpaired disclinations, while (b) shows two un-
paired dislocations (5-7 pairs). Sample (c) shows a pair of
dislocations with opposite Burgers’ vector. This configura-
tion is not a topological defect.

constant α is calculated in reference [33], and is approxi-
mately equal to 0.0531. The lower panel of Fig. 3 shows
the results of applying this method to 10 crystalline sam-
ples at different areal densities. The error bars show the
discrepancy between the results of calculating the limit-
ing value of 〈δr2n.n.〉 in two different ways: first by using
the plateau in the n.n.-MSD curve as a function of time;
and second by computing the variance of the histogram
of frame-to-frame displacements in the x− and y− direc-
tions separately. For a particle diffusing in an isotropic
harmonic potential, sampled over sufficiently long times,
these two methods should give the same result. Fitting
the data to Eq. 2, we find that p = (455± 20) e·µm.

When discussing phase behavior in this system, it is
convenient to introduce the dimensionless interaction pa-
rameter Γ,

Γ =
A(πρ)3/2

kBT
,

where T = 293 K is the temperature at which the ex-
periments take place. Using Γ to describe the effective
temperature of the system allows us to directly compare
our results with previous experiments [2, 34] and simula-
tions [11] using dipolar repulsive particles.

IV. KTHNY THEORY: TOPOLOGICAL
DEFECTS AND ORIENTATIONAL

CORRELATIONS

Over the past several decades, KTHNY theory has
been shown to describe the phase behavior of a broad
class of 2D materials, including dipolar repulsive parti-
cles [28, 35, 36]. According to this theory, melting of a
2D crystalline solid takes place via two continuous tran-
sitions, which can be understood in terms of the topo-
logical defects present in the material. Two types of
topological defects are important: disclinations, points
which have a number of nearest neighbors other than
six; and dislocations, bound pairs of one five-coordinated
and one seven-coordinated disclination. A dislocation is
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characterized by a Burgers’ vector, which represents the
magnitude and direction of the lattice distortion induced
by the dislocation [38]. Some examples of these kinds of
defects are shown in Fig. 4 (a) and (b).

According to KTHNY theory, in the solid phase at
equilibrium, no free topological defects are present. How-
ever, there may be thermally activated pairs of disloca-
tions of opposite Burgers’ vector which are bound by an
attractive potential. These kinds of structures, an exam-
ple of which is shown in Fig. 4 (c), are not topological,
since they can occur via local rearrangements of the lat-
tice. At sufficiently low Γ, this attraction can be over-
come by thermal fluctuations, and the dislocation pairs
dissociate. Although the resulting free dislocations de-
stroy the finite shear modulus of the crystal lattice, the
resulting material is not an isotropic fluid, but rather a
liquid crystalline hexatic phase. The transition to the
isotropic fluid is completed when the dislocations them-
selves unbind into their constituent disclinations.

Using data from experiments and simulations, different
groups have explored various ways of quantitatively test-
ing the predictions of KTHNY theory [27, 39]. Of par-
ticular interest is the bond-orientational order parameter
ψ6, since it can be easily calculated from real-space data,
and because the functional form of the associated cor-
relation functions, g6(r) and g6(τ), clearly discriminate
between the phases of the material.

If particle k has position rk at time t, the bond-
orientational order parameter ψ6(rk, t) is the defined by

ψ6(rk, t) =
1

nb

∑
j ∈Nk

e6iθkj ,

where the sum is taken over the nb nearest neighbors of
particle k. The angle between particle k and its j−th
neighbor, θkj , is taken with respect to an arbitrary but
fixed axis. The degree of local hexagonal order is given by
|ψ6|. In the crystal phase, the orientation of the hexag-
onal unit cell is given by 1

6 argψ6. The space and time

isotropic
fluid

hexatic solid

topological
defects

free
disclinations

free
dislocations

none

g6(r) ∝
r → ∞

exp (−r/ξ6) r−η6 const.

g6(τ) ∝
τ → ∞

exp (−τ/τ6) τ−η6/2 const.

TABLE I. Topological defect structure and properties of cor-
relation functions g6(r) and g6(τ) in the solid, hexatic and
fluid phases, according to KTHNY theory.

correlation functions g6(r) and g6(τ) are defined

g6(r) = Re
{〈
ψ∗6(rk, t)ψ6(rl, t)

〉
|rk−rl|=r

}
and

g6(τ) = Re
{〈
ψ∗6(rk, t)ψ6(rk, t+ τ)

〉}
.

When calculating g6(r), the averages are taken over
time and pairs of particles {k, l} satisfying the condi-
tion |rk − rl| = r. For g6(τ), the averages are taken
over all particles k and starting times t. Thus, g6(r) is a
two-particle correlation function, while g6(τ) is a single-
particle quantity. According to KTHNY theory, these
correlation functions have distinct behaviors in each of
the three phases: for large r and τ , both functions tend
to a constant value in the solid phase, decay algebraically
in the hexatic phase, and decay exponentially in the
isotropic fluid, with a characteristic decay length [time] ξ6
[τ6]. KTHNY theory predicts that, in the hexatic phase,
the exponent η6 of the power-law decay of g6(r) is twice
the exponent of the power-law decay of g6(τ), and further
dictates that, at the fluid-hexatic transition, η6 reaches a
critical value of -1/4 [35]. Some of these predictions are
summarized in Table I.

Figure 5 (a) and (b) respectively show g6(r) and g6(τ),
plotted for nine samples at values of Γ ranging from 53 to
91. In our analysis of the temporal correlation function
g6(τ), we rescale τ by the average time τ0 required for
a freely diffusing particle to traverse the mean distance
between particles a. This step is necessary because the
thickness of the aqueous layer underneath the particles
(see Fig. 1) varies between samples. Thus, even in the
limit of very low particle density, different samples may
have diffusion coefficients D0 that vary by as much as
a factor of four. We estimate τ0 from the small-time
behavior of the n.n.-MSD curves, such as those shown
in Fig. 3. At the smallest time intervals for which we
have data, we assume that the particle is freely diffusing
inside its cage of nearest neighbors, and fit the first two
data points of the 〈δrn.n.(τ)2〉 curve by a straight line,
containing the origin, with slope 4D0 [37]. This allows
us to estimate the time for a freely diffusing particle to
traverse one interparticle spacing, τ0 = a2/4D0. For our
samples, τ0 is of order 30 mins.

For samples with Γ ≤ 67, both g6(r) and g6(τ) show
the exponential decay characteristic of the isotropic fluid
phase, while for Γ ≥ 79, both functions tend to a con-
stant value at large r and τ . For the sample at Γ = 74,
g6(r) shows behavior consistent with the power-law decay
expected in the hexatic phase. For Γ = 68, the slope of
g6(r) equals the critical value of -1/4 within experimental
error, and so we cannot unambiguously assign this sam-
ple to either phase. As can be seen from the right panel
of Fig. 5, for the samples at Γ = 68 and Γ = 74, our data
for g6(τ) do not allow us to distinguish between algebraic
decay with a small negative power, and a constant value.
Thus, we estimate that the transition between the hex-
atic and the isotropic fluid phases occurs at ΓFH = 68,
and the transition between the hexatic and the ordered
phase occurs at ΓHS = 76.
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FIG. 5. (Color online.) Log-log plots of orientational correlation functions g6(r) and g6(τ), for nine samples at different values
of Γ. The sloped dashed lines in each plot indicate algebraic decay with the exponents expected at the fluid-hexatic transition,
while the horizontal dashed line in the g6(r) plot separates the curves which decay (Γ ≤ 74) from those that reach a constant
value (Γ ≥ 79). Using these curves, we identify the fluid-hexatic and solid hexatic transitions at ΓFH = 68±2 and ΓHS = 76±3.

We also note that the g6(r) and g6(τ) curves for the
Γ = 79 sample lie above those for the sample at Γ = 83,
indicating that the former sample is more ordered. This
apparent non-monotonic behavior might reflect sample-
to-sample variation in electric dipole moment p, which
would cause experimental uncertainty in our calculated
values of Γ, and may also account for some of the spread
of the data in Fig. 3. In fact, since the limiting values of
the correlation functions should be a monotonic function
of Γ, we can use the deviation from monotonicity to es-
timate the uncertainty in our stated values of Γ. Doing
this, we find that the uncertainty in Γ is approximately
3%. This figure only accounts for sample-to-sample vari-
ation: the uncertainty in the mean value of the electric
dipole moment p calculated from the data in Fig. 3 could
lead to all the stated values of Γ being shifted systemati-
cally from their true values by as much as 8%. In spite of
these experimental uncertainties, the values of ΓFH and
ΓHS that we find are in quantitative agreement with those
found in previous experiments [12, 16].

The final orientational quantity we define is the average
orientational order parameter Ψ6 = 〈ψ6(rk, t)〉, where
the average is taken over all points k and times t. We
expect that, in the isotropic fluid phase, |Ψ6| = 0, while
in the crystalline solid phase, |Ψ6| takes a finite positive
value, which tends to unity as Γ increases. In the top
panel of Fig. 6, we plot |Ψ6| as a function of interac-
tion parameter Γ. The middle panel of the same figure
shows the total defect fraction, defined as the fraction of
particles which have a number of nearest neighbors other
than six. Between ΓFH and ΓHS, the defect fraction drops
dramatically, and we see a corresponding growth in the
orientational order |Ψ6| in the system.

The bottom panel of Fig. 6 shows a plot of the frac-
tion of unpaired dislocations and disclinations, ndisloc.

and ndisc.. A topological defect is defined as unpaired if
it is does not share a Delaunay bond with any other de-
fect. Thus, the 5-coordinated disclination in the center of
Fig. 4 (a) is unpaired, as are the two dislocation defects in
Fig. 4 (b). On the other hand, both the cluster of defects
in the top right of Fig. 4 (a) and the two adjacent disloca-
tions of opposite Burgers’ vector in Fig. 4 (c) are paired,
and neither contributes to ndisloc. or ndisc.. While com-
putationally straightforward, our definition of unpaired
defects does not provide a direct measurement of the con-
centration of free defects in the sense of KTHNY theory.
This is true for at least two reasons: first, our defini-
tions of ndisloc. and ndisc. treat energetically bound but
non-adjacent defects as unpaired. This leads us to over-
estimate the number of free defects, especially in the solid
and hexatic phases. Second, our definitions completely
neglect defect clusters, such as the structure in the top
right of Fig. 4 (a), which may contain one or several net
topological defects. This will cause us to underestimate
the number of free defects, especially in the fluid phase,
where such clusters proliferate. Despite these shortcom-
ings, we find that ndisloc. and ndisc. display the expected
behavior in the vicinity of the transitions: near Γ = ΓFH,
ndisc. drops dramatically, while near Γ = ΓHS, ndisloc.
does the same.

V. DYNAMICAL MEASURES OF PHASE
BEHAVIOR

As well as displaying distinctive spatial structure, dif-
ferent phases of a material are typically characterized by
their dynamics. To investigate this aspect of the phase
behavior of our samples, we plot, in Fig. 7, the dynamic
Lindemann parameter γL(τ) and the non-Gaussian pa-
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FIG. 6. (Color online.) (a) Absolute value of the average
bond-orientational order parameter, plotted as a function of
interaction parameter Γ. The dashed lines indicate the val-
ues of Γ at the fluid-hexatic and hexatic-solid transitions, as
defined by the behavior of the correlation functions g6(r) and
g6(τ) (see Fig. 5). (b) Fraction of particles which do not
have six nearest neighbors. (c) Fraction of particles which
form unpaired disclinations or dislocations. To enable these
quantities to be displayed on the same plot, the fraction of
unpaired disclinations is multiplied by a factor of 5.

rameter α2(τ) [16]. The dynamic Lindemann parameter
γL(τ) is defined

γL(τ) =
〈δrn.n.(τ)2〉

2a2
, (3)

where the n.n.-MSD 〈δrn.n.(τ)2〉 is defined in Eqn. (1).
The non-Gaussian parameter α2(τ) is defined as

α2(τ) =
〈δrn.n.(τ)4〉

2〈δrn.n.(τ)2〉2 − 1.

This quantity measures the extent to which the his-
togram of particle displacements deviates from the nor-
mal distribution. Using the phase classification based on
the behavior of the correlation functions g6(r) and g6(τ),
our measurements of γL(τ) and α2(τ) are consistent with
previous measurements of the dynamics of systems in the
solid, fluid and hexatic phases [16].

0.001 0.010 0.100 1

0.005
0.010

0.050
0.100

0.500
1

τ / τ0

γ L
(τ
)

0.001 0.010 0.100 1
0.01

0.05
0.10

0.50
1

τ / τ0

α
2(
τ)

◆◆
◆◆

◆

◆ ◆ ◆ ◆
60 70 80 90

0

1

2

3

Γ

m
ax

(α
2
)(b)

0.001 0.010 0.100 1

0.005
0.010

0.050
0.100

0.500
1

τ / τ0

γ L
(τ
)

0.001 0.010 0.100 1
0.01

0.05
0.10

0.50
1

τ / τ0
α
2(
τ)

◆◆
◆◆

◆

◆ ◆ ◆ ◆
60 70 80 90

0

1

2

3

Γ

m
ax

(α
2
)

0.001 0.010 0.100 1

0.005
0.010

0.050
0.100

0.500
1

τ / τ0

γ L
(τ
)

0.001 0.010 0.100 1
0.01

0.05
0.10

0.50
1

τ / τ0

α
2(
τ)

◆◆ ◆◆

◆

◆ ◆ ◆ ◆
60 70 80 90

0

1

2

3

Γ

m
ax

(α
2
)

0.001 0.010 0.100 1

0.005
0.010

0.050
0.100

0.500
1

τ / τ0

γ L
(τ
)

0.001 0.010 0.100 1
0.01

0.05
0.10

0.50
1

τ / τ0

α
2(
τ)

◆◆ ◆◆

◆

◆ ◆ ◆ ◆
60 70 80 90

0

1

2

3

Γ

m
ax

(α
2
)

Γ = 91

Γ = 85

Γ = 83

Γ = 79

Γ = 74

Γ = 68

Γ = 67

Γ = 54

Γ = 53

Γ = 91

Γ = 85

Γ = 83

Γ = 79

Γ = 74

Γ = 68

Γ = 67

Γ = 54

Γ = 53

Γ = 91

Γ = 85

Γ = 83

Γ = 79

Γ = 74

Γ = 68

Γ = 67

Γ = 54

Γ = 53

Γ = 91

Γ = 85

Γ = 83

Γ = 79

Γ = 74

Γ = 68

Γ = 67

Γ = 54

Γ = 53

Γ = 91

Γ = 85

Γ = 83

Γ = 79

Γ = 74

Γ = 68

Γ = 67

Γ = 54

Γ = 53

Γ = 91

Γ = 85

Γ = 83

Γ = 79

Γ = 74

Γ = 68

Γ = 67

Γ = 54

Γ = 53

Γ = 91

Γ = 85

Γ = 83

Γ = 79

Γ = 74

Γ = 68

Γ = 67

Γ = 54

Γ = 53

Γ = 91

Γ = 85

Γ = 83

Γ = 79

Γ = 74

Γ = 68

Γ = 67

Γ = 54

Γ = 53

Γ = 91

Γ = 85

Γ = 83

Γ = 79

Γ = 74

Γ = 68

Γ = 67

Γ = 54

Γ = 53

(a)

FIG. 7. (Color online.) Log-log plots of: (a) dynamic Lin-
demann parameter γL(τ); and (b) non-Gaussian parameter
α2(τ). Panel (a) shows that, for samples identified as belong-
ing to the ordered phase by our analysis of the correlation
functions, γL(τ) reaches a constant value, while the samples
with Γ < ΓHS behave diffusively or subdiffusively. The hor-
izontal dashed line indicates the critical value γcL = 0.0097
predicted by Eqns. (2) and (3), evaluated at the density ρHS

corresponding to ΓHS. Panel (b) shows that, in the isotropic
fluid, α2 peaks at some intermediate timescale, while in the
candidate hexatic samples (Γ = 68 and 74), non-Gaussian
behavior grows over the timescales we observe. The inset in
the lower plot highlights the dramatic growth in the maxi-
mum value of α2 in the hexatic phase. The vertical dashed
lines indicate ΓFH, and ΓHS, as defined by the behavior of the
correlation functions g6(r) and g6(τ).

In the solid phase, the dynamic Lindemann param-
eter reaches a plateau value at long time. The ob-
served critical value of the dynamic Lindemann param-
eter is γcL = 0.012 ± 0.001. This is close to the value
predicted by evaluating Eqns. (2) and (3) at the den-
sity ρHS corresponding to the hexatic-solid transition,
γcL = 0.0097± 0.005. This comparison serves as a consis-
tency check on Eqn. (2), and the measured value of ΓHS.
In the solid phase, the non-Gaussian parameter α2(τ) has
a small positive value independent of time. This may be
because the quantities ri,n.n. are not statistically inde-
pendent, as they take into account the positions of the
nearest neighbors.

In the fluid phase, we observe diffusive behavior,
γL(τ) ∝ τ , at long times, while the non-Gaussian pa-
rameter α2(τ) displays a local maximum at time inter-
vals τ/τ0 ∼ 0.1. These timescales also correspond to
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the presence of a shoulder in the γL(τ) curves, and are
also similar to the characteristic times τ6 of the exponen-
tial decay of the g6(τ) curves shown in Fig. 5. All these
timescales may originate in collective rearrangements of
defect clusters, such as that shown in Fig. 4 (a).

In the sample we identify as belonging unambiguously
to the hexatic phase (Γ = 74), γL(τ) behaves subdiffu-
sively over observed times. For the sample at Γ = 68,
the correlation functions g6(r) and g6(τ) are consistent
with critical behavior, and we are unable to assign it to
either the fluid or the hexatic phase. For this sample,
the slope of γL(τ) appears to be approaching 1 at the
longest times we measure, perhaps indicating that it is
indeed a fluid. Previously, Zahn and Maret showed that
α2(τ) tends to a constant value of order unity for systems
in the hexatic phase [16]. Our data are consistent with
this finding, but we do not record our candidate hexatic
samples for sufficiently long times to verify the limiting
behavior. We do, however, observe the sharp growth in
the maximum value of α2(τ) in the hexatic phase that
was reported in the same study.

VI. CONCLUSIONS

In this work, we study a system of charged colloidal
particles that are electrostatically bound to a fluid in-
terface, and interact via electric dipole-dipole repulsion.
We show that the phase behavior of this system is well-
described by KTHNY theory, with density as the con-
trol parameter. Using the orientational correlation func-
tions g6(r) and g6(τ), we assign each sample to the solid,
isotropic fluid, or hexatic phase. We demonstrate that
the concentration of unpaired dislocations and disclina-
tions are consistent with the KTHNY picture of defect-
mediated melting. Finally, we find that each phase dis-
plays distinctive dynamical behavior, as measured by the
the dynamic Lindemann parameter γL(τ) and the non-
Gaussian parameter α2(τ).

Given the small number of particles in our system, the
extent to which our data are well-modeled by KTHNY
theory is quite surprising. This agreement is only pos-
sible because the orientation of the droplet edge, which
is delineated by a line of pinned particles (see Fig. 2),
does not propagate into the interior of the droplet. In
the fluid phase, this is expected, since orientational cor-
relations decay exponentially over lengths of a few inter-
particle spacings – this decay is evident in the Γ ≤ 67
curves in Fig. 5 (a). In the crystal phase, as shown in
Fig. 8, the orientation inherited from the droplet edge is
destroyed by a series of grain boundaries that run around
the inner perimeter of the droplet. These grain bound-
aries separate an interior monocrystalline region from an
outside layer, a few interparticle spacings wide, which

is aligned with the edge of the droplet. Evidently, the
strain fields associated with these grain boundaries are
not large enough to significantly disrupt the phase behav-
ior of the material in the interior region. In the hexatic, it
is not immediately clear how the system accommodates
the presence of the droplet edge, since grain boundaries
are difficult to identify unambiguously in this phase.

The concurrence between our findings and previous
work on larger systems of dipolar repulsive particles ex-
tends to quantitative agreement on the transition values
of the interaction parameter Γ [2, 12], although the spar-
sity our data, as well as the error bars for Γ shown for
example in Fig. 6, limit our ability to determine the width
of the hexatic window.
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FIG. 8. (Color online.) Plot of the Delaunay triangula-
tion of interfacially bound particles in a single quadrant of
a roughly circular droplet. This sample has Γ = 120, and
approximately 2000 particles in total. The color map shows
the local orientation of the lattice, given by 1

6
argψ6, while

5- and 7-coordinated disclinations are indicated by triangles
and disks respectively. The thick black curve identifies the
droplet edge. (Disclinations are not plotted for the particles
on the boundary.) Away from the edge, the system forms a
monocrystal that spans the interior of the droplet. Immedi-
ately adjacent to the droplet edge, the lattice is aligned with
the edge. Where the orientation of the interior region does
not match that of the edge, grain boundaries form, a few lat-
tice spacings from the boundary. These grain boundaries are
delineated by a chain of polarized dislocations (5-7 pairs).
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