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Abstract

Numerous experiments have taken advantage of DNA as a model system to test theories for a

channel-confined polymer. A tacit assumption in analyzing these data is the existence of a well

defined depletion length characterizing DNA-wall interactions such that the experimental system (a

polyelectrolyte in a channel with charged walls) can be mapped to the theoretical model (a neutral

polymer with hard walls). We test this assumption using pruned-enriched Rosenbluth method

(PERM) simulations of a DNA-like semiflexible polymer confined in a tube. The polymer-wall

interactions are modeled by augmenting a hard wall interaction with an exponentially decaying,

repulsive soft potential. The free energy, mean span, and variance in the mean span obtained

in the presence of a soft wall potential are compared to equivalent simulations in the absence

of the soft wall potential to determine the depletion length. We find that the mean span and

variance about the mean span have the same depletion length for all soft potentials we tested. In

contrast, the depletion length for the confinement free energy approaches that for the mean span

only when depletion length no longer depends on channel size. The results have implications for

the interpretation of DNA confinement experiments under low ionic strengths.
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I. INTRODUCTION

DNA has played a key role in the experimental tests of theories of a polymer confined to

a slit [1–14] or a channel [15–27], in particular the models by de Gennes and coworkers for

weak confinement [28, 29] and Odijk for strong confinement [30, 31]. The key results of this

body of work have been summarized in several recent reviews [32–34]. There are marked

advantages to using double-stranded DNA as a model polymer for these experiments: (i)

DNA is readily available in monodisperse solutions from biological sources, such as the λ-

phage genome; (ii) bright intercalating dyes such as YOYO-1 permit easy imaging of single

molecules of DNA by fluorescence microscopy [35]; (iii) the persistence length of DNA,

around 50 nm [36], is similar to the length scales available in conventional nanolithography

methods; and (iv) DNA can be electrokinetically injected into very small channels, down to

10 nm, through the use of entropy gradients [37, 38]. These advantages must be balanced

against the disadvantages arising from DNA’s polyelectrolyte nature. In particular, most

experiments take place in channels that adopt a (negative) charge at experimentally relevant

pH values, while the theories are generally developed for neutral channels. Mapping between

experiments and theory thus requires defining a depletion length scale characterizing the

“effective channel size” of a neutral system that maps to a particular DNA experiment. In

the present contribution, we use a simple model system to test whether a unique depletion

length can be defined for the thermodynamics of a channel-confined chain.

The models developed for channel-confined polymers make scaling law predictions for the

confinement free energy, F , the average size of the confined chain, 〈X〉, and the variance

about that size, δX2, for a neutral polymer confined by hard walls [29–31, 39–41]. In some

cases, the prefactors for the scaling laws are known exactly [41–43]. These thermodynamic

quantities depend on the contour length L of the polymer, its persistence length lp, the effec-

tive width w of the polymer backbone, and the channel size D. The persistence length and

effective width of DNA, which are affected by the relative amount of screening of electro-

statics by the ionic environment, can be obtained from polyelectrolyte theory [44–47], albeit

with some uncertainty arising from the effect of the intercalating dye [48–54]. Intercalation

also increases the DNA contour length relative to the rise of naked DNA [55]. However,

uncertainties in contour length can be minimized by (i) ensuring uniform staining of the

DNA [56] and (ii) using funnel-shaped channels that allow one to interrogate the properties
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the same DNA molecule in a range of confinement [18, 22, 23, 25, 57]. For long chains [31],

the thermodynamic variables become extensive quantities, so funnel-shaped channels permit

a single-molecule test of various scaling laws independent of the contour length.

The situation surrounding the effect of electrostatic interactions on the effective channel

size remains unclear. The theories assume a hard wall potential; analyzing experimental

data for DNA thus requires defining an effective channel size Deff such that data obtained

in a channel of physical size D with charged walls can be mapped to an equivalent neutral

channel. In what follows, it proves convenient to recast the problem in terms of a depletion

length δ, such that Deff = D − δ. In an early simulation study, Wang et al. [58] observed

reasonably good agreement with experimental data [16] by assuming that the wall depletion

length is the same as the length scale characterizing segment-segment excluded volume inter-

actions, δ = w. A number of subsequent publications followed this approximation, although

it should break down as the channel size decreases [32]. From a practical standpoint, it

seems reasonable that the depletion length would be of the same order of magnitude as the

DNA effective width, as their electrostatic origins are similar, but should be corrected for

the different charge densities of DNA and, say, fused silica [32]. In order to begin reconciling

the remaining discrepancies between theory and experiments on DNA, for example in recent

work on the extended de Gennes regime [23, 25], it is worthwhile to revisit the concept of a

depletion length for a channel-confined polymer.

Our focus here lies in assessing the validity of the depletion length as a way to apply

theories for polymers confined by hard walls to confinement in a combination of a hard

and soft potential. We thus simulate a model of DNA confined in a tube that confines the

polymer with a hard wall and also repels the polymer from the wall by an exponentially

decaying, soft potential. While the functional form of this soft potential is similar to the

Debye-Hückel formula, the model should not be interpreted as arising from electrostatics.

In the electrostatic problem, the key quantity controlling the interactions is the electrostatic

screening length due to the ionic strength of the medium, which affects the DNA persistence

length, segment-segment interactions, and segment-wall interactions. Moreover, due to the

high charge density of DNA, linearized electrostatic models are unlikely to be realistic [47].

By simplifying the problem to a semiflexible chain interacting with a wall through the sum

of a hard and soft potential, rather than considering the complexity of the full electrostatic

problem, we are able to address the question of the depletion length in a straightforward
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way.

II. SIMULATION MODEL AND METHOD

For our simulation model, we adopt the discrete wormlike chain model used in our prior

work [58]. The DNA molecule consists of Nb beads with a bond length a. The stiffness of

the chain emerges from the bending potential

βUbend = κ(1− cos θi), (1)

where θi is the angle between a contiguous trio of beads centered on position i and β =

(kBT )
−1 is the inverse Boltzmann factor. The bending constant κ is related to the persistence

length by [59]
2lp
a

=
κ+ κ coth(κ)− 1

κ− κ coth(κ) + 1
. (2)

Bead-bead overlap is treated as an infinite energy penalty,

βUev,bead =











∞, |rij| ≤ w,

0, |rij| > w,
(3)

where w is the effective width of the beads and rij is the distance between the center of the

beads. Since bond length is smaller than the effective width, a < w, we do not enforce the

bead-bead excluded volume for contiguous beads [60]. The chain is confined in a circular

tube of diameter D. Bead-wall interactions are also treated with an infinite energy penalty

similar to Eq. (3) for bead radial positions ri ≥ (D − w)/2. For notational purposes, we

combine both of these hard core potentials into the quantity Uev, which is infinite if there

is bead/bead or bead/wall overlap, and zero otherwise. We also include a soft potential on

each bead of the form

βUsoft = A exp

[

−
(D/2)− ri

λ

]

(4)

where A is the dimensionless strength of the potential at the wall surface, and λ is the decay

length.

Chain growth simulations in a tube of diameter D were performed with the Pruned-

Enriched Rosenbluth Method (PERM) [61, 62], using the modification of our standard code

[59, 63] for soft potentials [64]. Briefly, a given tour starts with a bead located at a random
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radial position within the tube. The weight of the first bead is W0 = exp(−βUsoft). The sub-

sequent beads n = 1, 2, . . . are placed by first selecting k = 5 trial moves from the wormlike

chain probability distribution of Eq. (1) and assigning each trial move j an atmosphere

a(j)n = exp[−β(Uev + Usoft)]. (5)

In prior work [65], we found that this relatively small value of k is sufficient due to the fine

discretization of our model and the stiffness of the wormlike chain model. The Rosenbluth

weight for this particular growth step is [61]

wn =
k

∑

j=1

a(j)n . (6)

We then select one trial move with probability

p(j)n =
a
(j)
n

wn

(7)

and update the cumulative Rosenbluth weight of the chain as

Wn = wnWn−1. (8)

Within a given tour [61], configurations whose cumulative Rosenbluth weight Wn exceeds an

upper bound relative to some target weight are copied (enriched), with each copy assigned

half the weight of the original configuration. Conversely, chain growth of configurations

whose cumulative Rosenbluth weight falls below some lower bound relative to the target

weight is stopped (pruned) to avoid wasting time continuing to grow chains that will make

negligible contributions to the ensemble averages. Thus, each tour contributes many con-

figurations to the ensemble through the enrichment process, albeit with some correlations

between configurations within a given tour. To set the target weight, we used a bootstrap-

ping method [59] where we first perform “blind” PERM simulations [61] to estimate the

target weight, linearly extrapolate from that target weight to the desired long chain length,

and then perform “non-blind” PERM simulations [62] using that target weight. Note that

any errors in the bootstrapping method affect the efficiency of the simulations, not the

accuracy.

A given simulation data set consists of m tours. PERM is effectively a counting method

[61], providing an estimate of the partition function. As such, the free energy for an ensemble
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of chains of n+ 1 beads is given by

βF = − ln〈Wn〉. (9)

In the latter, the angular brackets represent the average over all configurations that reach

a contour length of n + 1 beads in any of the m tours. Since the trial moves in our imple-

mentation [59, 63] are drawn from the distribution for a wormlike chain, the reference state

for the free energy in Eq. (9) is an unconfined, ideal wormlike chain. In order to compute

the confinement free energy, we perform a second simulation of a real wormlike chain with

the same values of lp and w as the confined chain but in the absence of confinement. The

confinement free energy is then

F = F − F free, (10)

where F free is the result from Eq. (9) for simulations of the unconfined chain. The span of

a given configuration is

X = max(xi)−min(xi), (11)

with xi being the axial position of bead i ∈ [0, n]. The mean span of the confined chain is

computed by removing the bias in the PERM chain growth,

〈X〉 =
〈WnX〉

〈Wn〉
(12)

and the variance in the span is computed in an analogous manner,

δX2 =
〈WnX

2〉

〈Wn〉
− 〈X〉2. (13)

III. RESULTS

To provide correspondence with typical DNA simulations, we report the results that follow

in a dimensional form with a persistence length lp = 53 nm and an effective width w = 4.6 nm

[58]. The bond length in the simulations is a = 2.9 nm; this provides additional resolution

of the contour length relative to a touching bead model [60]. The maximum contour length

in a given tour is Nb = 3361, with the exception of our test of the results as a function of

molecular weight, where the maximum contour length is Nb = 33610 beads. PERM natively

outputs data as a function of molecular weight, and we found that this value of Nb was

sufficient to produce extensive scaling for F , 〈X〉, and δX2. Each simulation consists of five
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sets of m = 105 tours. We estimate the sampling error by treating each set as a separate

measurement. The standard errors of the mean for F and 〈X〉 are smaller than the size of

the data points in all plots. As is the case in prior work [39, 59], the standard error of the

mean for δX2 is somewhat larger, up to 15% of the mean value, and indicated by the error

bars in the data that follow.

The simulations provide data in the form F = F(D,A, λ; lp, w, L), where A and λ are

the strength of the potential and the decay length in Eq. (4). To begin, it proves convenient

to consider how data obtained for A = 0, corresponding to the hard wall, compare to data

at A = 1 for different values of λ. Figure 1 presents these data as a map between the

hard potential and the soft potential; the abscissa corresponds to the size D used for the

simulations in the soft potential for a given value of the decay length λ, and the ordinate

is the corresponding effective channel size Deff with A = 0 that provides the same value of

(a) the confinement free energy, (b) the mean span, and (c) the variance about the mean

span. For notational clarity, these effective channel sizes are listed as DF , DS and DV ,

respectively. The line Deff = D in Fig. 1 would be the result if the soft potential did not

affect the chain thermodynamics. All of the data lie below the line Deff = D, which is to be

expected because the soft potential repels the chain from the wall.

As illustrated in the inset of Fig. 2, the depletion length δ is given by the difference

between the effective diameter in Fig. 1 and the diameter used for the simulations with the

soft potential. For the moment, we will assume that the depletion lengths are different for

different thermodynamic quantities and denote them as δF , δS and δV for the confinement

free energy, mean span, and variance, respectively. Figure 2 shows the depletion lengths

obtained from Fig. 1b for the mean span, δS. Similar plots are readily obtained for the other

thermodynamic quantities in Fig. 1.

For the shortest decay length in Fig. 2, λ = 5 nm, we see that the depletion length quickly

approaches a constant value as the channel diameter increases. However, for larger values

of the decay length λ, larger channel sizes are required until the depletion length reaches

its plateau. For the particular simulation data in Fig. 2, the depletion length appears to be

reaching a plateau for the largest tube diameters for λ = 10 nm, while the depletion length

continues increasing monotonically for the largest decay length λ = 20 nm.

The results in Fig. 2 are in qualitative agreement with the rationale provided by Reisner et

al. for the depletion length for DNA in nanochannels [32]. Explicitly, Reisner et al. proposed
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FIG. 1. Mapping between simulations with A = 0 (hard walls) and A = 1 for different values of

the decay length λ, where △ (λ = 5 nm) � (λ =10 nm) # (λ = 20 nm). The effective channel

sizes DF , DS , and DV are the sizes of the channels with A = 0 that have the same value of the

confinement free energy, span, and variance, respectively, as the channel with A = 1. The solid

line in each panel would be the result if the soft potential had no effect on the thermodynamics.

Error bars represent the standard error of the mean.
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FIG. 2. Depletion length for the mean span, δS , obtained from the data in Fig. 1b. The data

correspond to A = 1 for different values of the decay length λ, where △ (λ = 5 nm) � (λ =10

nm) # (λ = 20 nm). The inset illustrates how the depletion length is computed from the effective

diameter for the mean span.

that the depletion length could be computed in a manner analogous to the Stigter effective

width [47] by considering a rod interacting with a charged surface. Importantly, they point

out that this model should break down when the channel size decreases such that the double

layers from surfaces on opposite sides of the channel overlap. This is essentially the behavior

exhibited in Fig. 2, albeit for a simpler physical system; if the tube is sufficiently large, the

depletion length becomes a constant.

The key question in our work is whether there is a unique depletion length, δ, describing

the thermodynamics of a confined chain. The data in Fig. 3 indicate that this is not the

case. For all channel sizes, we find that the ratio of depletion lengths δV /δS in Fig. 3a is

unity to within the sampling error. In contrast, we only find that the ratio of depletion

lengths δF/δS in Fig. 3b becomes unity when the depletion length has become independent

of the channel size. In order to show this behavior, we increased the maximum diameter for

all three data sets beyond those of Fig. 1, up to D = 360 nm for the λ = 20 nm case. The

error bars were obtained by propagating from the errors in depletion length of variance and

the errors in depletion length of span, assuming zero covariance since the mappings were

done separately.
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FIG. 3. Ratio of the depletion length from mapping free energy, δF and variance, δV , relative to

the depletion length for the mean span, δS , for A = 1 and different decay length, λ, where △ (λ =

5 nm) � (λ =10 nm) # (λ = 20 nm).

Inasmuch as our physical system is considerably simpler than the DNA-fused silica system

used in experiments, we can go further in quantifying the criteria necessary for the depletion

length to become independent of channel size. Let us denote the value of the soft potential

in Eq. (4) at the channel center as

A0 = A exp

(

−
D

2λ

)

(14)

Figure 4 plots the magnitude of the depletion length as a function of the the potential at the

center of the channel, A0. To compress the data, we chose to normalize the depletion length

with the decay length; we would not expect collapse of the data using this normalization

because the depletion length must depend on both the magnitude of the potential at the

channel wall (A) and the rate of decay (λ). In addition to the data already presented in

Fig. 3, we performed additional simulations at A = 2 and A = 1/2 for an intermediate value

of the decay length, λ = 7 nm, to provide almost eight decades of data for A0. Overall,

we find that the depletion lengths δ reach a constant value for A0 . 10−5. We chose a

conservative value of 10−5 here, keeping in mind that this value is within any practically

relevant margin of error arising from uncertainties in the physical parameters in experiments.

The value of A0 = 10−5 as the value where depletion length become insensitive to A0 was
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also tested for higher molecular weight. This is presented as the second column to Figure

4. The value A0 = 10−5 remains robust up to our maximum value of Nb = 33610 beads, an

order of magnitude larger. Due to the massive increase in molecular weight, the standard

error for variance about mean span increases to up to 36% of the mean value. However,

the perfect collapse in the data for depletion length from free energy and span is a strong

indicator for the robustness.

The key result of our analysis is that this value of the potential at the center line, A0 .

10−5, corresponds to the point at which double layer overlap no longer makes a significant

contribution to the confinement thermodynamics. Indeed, by recasting the abscissa of Fig. 3

in terms of the potential strength measured at the tube center, we see a qualitative agreement

for the ratio of depletion length for the mean span and the confinement free energy for all

thermodynamic properties for values of A0 . 10−5 in Fig. 5, independent of the particular

value of A or λ.

IV. DISCUSSION

While the exact origin of the discrepancy between different depletion lengths is diffi-

cult to explain beyond a phenomenological description of the simulation results and the

heuristic that the soft potential should be weak enough at the bulk center of the channel,

the results we have obtained nonetheless have important implications for analyzing DNA

confinement experiments. In most cases, experiments compare the mean span and/or the

variance obtained in experiments to theory or simulation, for example our recent work using

confinement spectroscopy [22, 23]. In these cases, the question of the exact value of the

depletion length remains an open question for quantitative comparisons [22, 23]. However,

we cannot ascribe any discrepancy between the experiments and theory (or simulations) to

a possible problem with the concept of a depletion length — even if there is double-layer

overlap in the experimental system. In the analysis of these experiments, we could treat the

depletion length as an adjustable parameter for, say, comparing the experimental results for

the mean span to simulations. Once the best-fit depletion length is established from the

measurements of the mean span, it is no longer an adjustable parameter when analyzing

the variance. As such, we view our results for the depletion length of the mean span and

variance as support for previous analyses of experimental data.
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potential strengths at the wall, A, and different decay lengths, λ. The vertical line indicates

A0 = 10−5, where the depletion lengths become insensitive to A0. The first column corresponds to

data for Nb = 3361 for the various combinations of A and λ. The second column corresponds to

the test for high molecular weight for A = 1.0 and λ = 5 nm.

The situation becomes more complicated when DNA confinement is used to measure

the confinement free energy [14]. Our results suggest that these experiments should be

conducted in high ionic strength buffers such that the Debye length is small compared to

the confinement length scale. This is indeed the case in previous experiments [14].
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It is worthwhile to see how our results translate into relevant experimental systems for

DNA. If we postulate that the criterion from our simulations, namely that the wall poten-

tial at the center of the channel should decay to 10−5kBT , applies to the full electrostatic

problem as well, we can determine when double-layer overlap is a potential problem. For

these calculations, we considered TBE buffer, which is commonly used in experiments, and

determined the ionic concentration of the system through an iterative procedure of solving

the system chemical equilibria [66]. We have also included in our calculation the presence

of 0.5% (v/v) β-mercaptoethanol (BME) which is commonly present in DNA confinement

experiments to delay the onset of photobleaching [6]. To model the zeta potential of the

channel walls, which are typically fused silica or PDMS, we used the phenomenological

approximations proposed by Kirby and Hasselbrink [67],

ζsilica
pC

[mV] = 2 + 7(pH− 3) (15)

ζPDMS

pC
[mV] = 5.27− 4.67(pH) (16)

where pC is the negative base 10 logarithm of ion concentration, analogous to the definition
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of pH. For completeness, we have set the Bjerrum length,

lB =
e2

4πǫbǫ0kBT
(17)

to be the representative length scale of the double layer, following the suggestion by Viovy

[68]. The sum of the double layer length scale and the distance needed for the zeta potential

to decay to 10−5kBT sets the minimum radius needed for the channel size such that the

mapping to a hard wall theory works.

Our results in Fig. 6 indicate that at a relatively common experimentation concentration

of 1x TBE for fused silica channels, dimensions smaller than 40 nm should encounter double

layer overlap effects. We found that the phase diagram for PDMS channel is only marginally

different from that of the silica channel. We have also looked at the results if a more

conservative value of A0 = 10−6 or a less conservative value of A0 = 10−4 is chosen instead.

The region not bounded by the two broken lines of Fig. 6 is where we are most confident about

our result. While this is a good guide to experimental studies, we realize that the electrostatic

potential within the channel is usually not of the form shown in Eq. (4) especially in the

region where the ionic strength is very small [69].

Going forward, it is important to be sure that the condition embodied in Fig. 6 is met if

the experimental data are to be compared to theory. For example, working at very low ionic
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strengths [4, 13, 19] is a facile strategy to increase DNA stretching through a combination

of electrostatic repulsion from the walls (which reduces the effective channel size) and the

increased persistence length of the DNA backbone [44–46]. In such experiments, it may

prove more challenging to match the experimental data to theories for neutral polymers

because the DNA-wall electrostatic interactions are sensible throughout most of the channel

cross-section.

While we have focused here on the concept of a depletion length, our toy model is not

sufficient to say anything meaningful about the magnitude of the depletion length for DNA

confined in typical channel materials like fused silica. This is not a trivial calculation. The

Onsager-like calculation proposed by Reisner et al. [32] is a useful starting point, and likely

to be a sufficient improvement over simply using the DNA effective width for cases where

the Debye length is small compared to the channel width. When electrostatic interactions

with the wall extend over longer distances in the channel, this model is not appropriate [32].

To date, simulations that attempt to consider electrostatic interactions between DNA and

charged walls do so at the mean-field, Debye-Hückel level [70, 71]. DNA is a highly charged

polyelectrolyte, so it is not clear that Debye-Hückel results will prove to be a meaningful

model for DNA confinement. Indeed, the Stigter model uses the Guoy-Chapman model,

and it may prove that ion-ion correlations that are not included in a mean-field model are

important for the DNA-wall interactions.

One possible approach to model DNA-wall interactions for the case where the Debye

length is a substantial fraction of the channel cross section is a self-consistent solution for

the electrostatic interactions, where the configuration of the DNA and the ion distribution

are determined simultaneously to account for the perturbation to the ion distribution near

the walls by the presence of the DNA. Including such interactions entail a substantial increase

in the computational costs of the model, but may be necessary if one desires a quantitatively

accurate model of the DNA-wall interactions. However, such a model would still neglect the

effect of other additives in the buffer besides the salt. For example, most experiments use

a polymer in the buffer (e.g., polyvinylpyrrolidone) to suppress electroosmotic flow and to

minimize DNA-wall adsorption to defects in the channel. Experiments in very narrow slits

suggest that the DNA-polymer interactions have a non-trivial effect on the DNA mobility

[72].
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V. CONCLUDING REMARKS

In the present contribution, we used a relatively simple model of a self-avoiding, wormlike

chain confined to a hard tube with an additional soft, repulsive potential to test the fre-

quently used assumption of a depletion length to map experiments using channel-confined

DNA to a neutral chain model. This choice of model system allowed us to examine this

question without additional complications related to the long-range electrostatics and ion-

ion correlations that are present in the experimental system. Our simulations indicate that

the concept of a depletion length is well defined for the size metrics, independent of the mag-

nitude or decay length of the soft potential. However, we only found congruence between

the depletion length for the confinement free energy and the size metrics in the case where

the soft potential reaches a low enough strength at the center of the channel, approximately

10−5kBT . Fortunately, for most experimental systems, the Debye length is small compared

to the channel cross section and the surface potential of the walls is not too high, so this

condition is met. However, there is a small body of experimental data [4, 13, 19] that uses

low ionic strength buffers where the Debye lengths are a substantial fraction of the channel.

It is also possible (albeit challenging) to operate with silica-based nanochannels that are

below 20 nm in cross-section [37, 38, 73], where even high ionic strength buffers produce

Debye lengths that have non-trivial extents.

While we have been somewhat critical about the interpretation of DNA-based exper-

iments to test models for channel-confined polymers, our analysis does not dampen our

overall enthusiasm towards this model experimental system. Although there are challenges

in using DNA beyond those discussed here, for example the inability to tune the system

so that different confinement regimes span multiple decades in channel size [39, 74], DNA

remains the most convenient model system for studying confined polymers. While it may

ultimately prove challenging to use DNA to test the existing models down to the prefactors

for the scaling laws [23, 25, 41–43], there is no better experimental system to directly vi-

sualize the effects of confinement at the single molecule level and investigate the universal

properties of confined polymers at the scaling level.
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