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Understanding the rheological properties of soft biological tissue is a key issue for mechanical
systems used in the healthcare field. We propose a simple empirical model using Fractional Dynamics
and Exponential Nonlinearity (FDEN) to identify the rheological properties of soft biological tissue.
The model is derived from detailed material measurements using samples isolated from porcine
liver. We conducted dynamic viscoelastic and creep tests on liver samples using a plate–plate
rheometer. The experimental results indicated that biological tissue has specific properties: i) power
law increase in the storage elastic modulus and the loss elastic modulus of the same slope; ii) power
law compliance (gain) decrease and constant phase delay in the frequency domain; iii) power law
dependence between time and strain relationships in the time domain ; and iv) linear dependence in
the low strain range and exponential law dependence in the high strain range between stress–strain
relationships. Our simple FDEN model uses only three dependent parameters and represents the
specific properties of soft biological tissue.

I. INTRODUCTION

A. Background

Understanding the physical phenomena underlying the
mechanical properties of human tissue has a great impact
on bioscience and engineering. This knowledge will lead
to further development of machines and systems in the
healthcare field. Recently, the healthcare field has re-
alized the benefit of using intelligent machines (such as
robots) that can physically interact with humans. As
a byproduct, the physical information measured by the
machines can also be used for cyber system construction
(such as machine learning).
Understanding the rheology—the study of materials

with both solid and fluid characteristics in which the
response to strain under applied stress is evaluated—
of biological tissues is a key issue for current research
in the human healthcare field. Rheology is relevant to
many technological applications, ranging from biologi-
cal science (e.g., medicine, sports, biology, biomechan-
ics) to engineering (e.g., robotics, mechatronics, material
mechanics, control theory, computational mechanics, in-
formation technology). Modeling of soft tissue rheologi-
cal properties is a core technology for developing various
healthcare machines and systems to assist human activ-
ity. For example, a mathematical model of target ob-
jects (human, organ, tissue, etc.) is required for mechan-
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ical design, motion planning, information processing, and
machine/system control.
These research and development areas require funda-

mental equations that are limited to the essential prop-
erties of the macroscopic behavior of the target matter
(i.e., micro-scale modeling is not necessary). In short,
the development of fundamental macroscopic models of
the properties of biological matter is a key research issue
pertinent to healthcare machines and systems designed
for humans, organs, and tissues.
In spite of their scientific and technological impor-

tance, mainly because they are difficult to model, very
little knowledge has been established regarding the rhe-
ological properties of soft biological tissues. The proper-
ties of soft biological tissues are different from those of
synthetic matter, and the rheological properties of soft
biological tissue cannot be directly modeled in the same
manner as synthetic matter [1, 2]. This difference in
properties has limited the development of methods for
sensing, parameterizing, and information processing of
rheological properties of soft biological tissue.

B. Goal and motivation

The goal of this study is to establish a universal fun-
damental model to represent the macroscopic rheological
properties of soft biological tissue, as well as a method
for measuring these properties.
The motivation behind this study is the need for a ‘sim-

ple model’ that accurately represents the specific rheolog-
ical properties of soft biological tissue. The model should
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be strongly correlated with experimental data derived
from actual biological tissue. A ‘simple model’ means
that the model should utilize the minimum number of pa-
rameters, yielding a mathematical equation that is easy
to understand and implement. Use of a simple model is
essential for robust identification and discrimination of
tissues using rheological information.

C. Related research

Many researchers have reported that the rheological
properties of soft biological tissues have distinct proper-
ties in comparison to industrial synthetic materials [1, 3],
such as metals. For example, researchers reported that
biological tissues have viscoelastic properties [1–4]. Re-
searchers have also reported that soft biological tissues
exhibit a very nonlinear relationship between strain and
stress [1–7]. Numerous studies have dealt with both the
nonlinearity and/or viscoelasticity of biological tissue [1–
31]. Models that neglect viscoelasticity and/or nonlinear-
ity result in variability and incongruous analysis of the
rheological properties of soft biological tissue[1, 3, 10].
In this article, we describe the complex viscoelastic and
nonlinear properties of soft biological tissue as ‘rheologi-
cal properties’.
An ordinary linear differential equation (LDE) is

generally used to model viscoelastic properties (e.g.,
Voigt/Maxwell/Kelvin model)[1–4]. In other words, the
terms of the equation for rheological properties have been
generally modeled using both ‘linear’ and ‘integer order’
differential equations explicitly or implicitly. Small order
LDE models do not fit data from biological tissues well,
and a large number of parameters are used in LDEs to in-
crease model accuracy (e.g., generalized Maxwell model).
These models only represent linear relationships between
stress and strain[1, 3, 6, 8, 9].
Hyperelastic models (e.g., Ogden, Mooney–Rivlin

models) are generally used to represent stress–strain non-
linearity [1–7], although the number of parameters in hy-
perelastic models also tends to be large. Moreover, these
models are time-independent and do not represent dy-
namic (viscoelastic) properties. Thus, additional terms
and parameters are needed to represent dynamic proper-
ties in a hyperelastic model [10].
The equations in some related work [4, 6, 21–31] have

dealt with both viscoelasticity and nonlinearity. How-
ever, these models tend to become overly complex and
involve an excess number of material parameters to rep-
resent these properties. Existing models with numerous
parameters—such as those combining hyperelastic mod-
els with viscoelastic models—are unsuitable for identify-
ing model parameters. The use of a large number of pa-
rameters leads to a risk of overfitting the parameter iden-
tification and ill-posedness of inverse problems. Having a
large number of parameters also increases computational
costs.
A standard model based on a simple equation with

few parameters that is highly correlated with experimen-
tal data from soft biological tissues does not currently
exist. A preferred model should have a small number
of parameters that are strongly correlated with the ex-
perimental data. Therefore, we have conducted stud-
ies aimed at developing a model with these characteris-
tics [32–39]. The model is derived from comprehensive
material data obtained from in vitro measurements of
porcine liver [32–35]. The model was also validated us-
ing in vitro breast tissue (fibroglandular tissue, fat, mus-
cle) [36, 37] and partially evaluated using muscle tissue
[38, 39]. The model combines a fractional differential
equation with a polynomial expression for stress–strain
nonlinearity, which consists of four parameters [32–37].
However, two parameters in the model—both parame-
ters representing nonlinear properties—correlate and in-
terfere with one another. In addition, the parameter
identification from the experimental data of these two
parameters is complex; specifically, global searching and
optimization are required. Moreover, the physical laws
of soft biological tissue were not explicitly introduced in
these articles. The model and scope of these earlier pub-
lications are briefly introduced in Appendix A.

D. Objectives

The objective of this article is to propose a sim-
ple model that represents the rheological properties—
meaning, viscoelastic and nonlinear properties—of soft
biological tissues. Specifically, we propose a simple
model, using only three dependent parameters, incorpo-
rating fractional dynamics and exponential nonlinearity
to identify rheological properties. The advantage of our
model is that it is strongly correlated with various ex-
perimental data and uses a small number of parameters,
thereby rendering it suitable for parameter identification
and inverse analysis. This article also examines the phys-
ical laws of soft biological tissue based on the experimen-
tal data and model.

Figure 1 shows an overview of this article. The model
is derived from detailed material measurements using ac-
tual biological tissue. Specifically, we used samples iso-
lated from various porcine livers. We selected liver sam-
ples because liver is a relatively simple tissue with low
anisotropy when compared with other biological organs
and tissues. We used a plate–plate rheometer to mea-
sure the liver samples, as the rheometer can dynamically
control and measure stress and strain applied to the sam-
ple. We conducted a dynamic viscoelastic test and creep
test to derive and evaluate the model. Individual differ-
ences between liver samples—physical properties of bi-
ological tissues differ between individual samples—were
represented by the values of model parameters.
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FIG. 1. An overview of this article. The model is derived from detailed material measurements using actual biological tissue.
Specifically, we used samples isolated from various porcine livers. We used a plate–plate rheometer to measure the liver samples
in which the rheometer can dynamically control and measure stress and strain applied to the sample (a). For example, we
conducted a dynamic viscoelastic test and a creep test with several stresses (b) to derive and evaluate our empirical model (c).
Individual differences between liver samples—physical properties of biological tissues differ between individual samples—were
represented by the values of model parameters.

II. MATERIALS AND METHODS

In this section, we explain how we measured and mod-
eled the rheological properties of the samples. First, we
introduce our rheological model scheme. We then explain
the study materials and measurement procedures.

A. Proposed model

The rheological model in this study relies on experi-
mental data obtained from biological tissues. We first
give the model equations (1a) and (1b) to enhance the
readability of this article. Here, we present a scalar and
simple shear model for soft biological tissue. The pro-
posed rheological model utilizes Fractional Dynamics and
Exponential Nonlinearity (FDEN); the equations are as
follows:

tαr
dα

dtα
(Gx) = f {x < xb} (1a)

tαr
dα

dtα
(Gxbe

x−xb
xb ) = f {x > xb} (1b)

where x is strain (torsional strain), f is stress (torsional
stress), and t is time, as variables; α is a non-integer
derivative order representing the index of viscoelasticity,
tr is the reference time scale, G is the linear viscoelas-
tic stiffness at an arbitrarily chosen time tr, and xb is
the boundary strain in which the characteristics change
to nonlinearity, as the parameters of the model. e is

Napier’s constant. The details of the calculations regard-
ing x and f are described in Appendix B.
The equation (1b) is derived from the connectivity

between linear equation (1a) and exponential nonlinear
equation (1b) —the exponential curve (1b) is tangent to
the straight line (1a).
The other form of equation (1b) is as follows:

tαr
dα

dtα
(Gie

Gn x) = f {x > 1/Gn} (2)

where Gn is nonlinear viscoelastic stiffness (Gi is a
dependent parameter). Each parameter should fulfill the
following relationship (3) concerning the connectivity be-
tween (1a) and (2). The detailed calculation is described
in Appendix E.

Gn =
1

xb
, Gi =

Gxb
e

(3)

The model has a total of three parameters —α, G,
and Gn (or xb)— as representative parameters according
to the relationships in (3).
The details of the experimental methods and deriva-

tion process of the model from the experimental data are
described in the next sections.

B. Materials and conditions

Figure 2 shows the details of the measuring compo-
nents. We used porcine liver in the present study be-
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cause porcine abdominal organs have properties similar
to those of humans and are widely used in laparoscopic
surgery training for novice surgeons. We chose to mea-
sure the properties of liver samples because liver, consist-
ing of homogeneous and isotropic tissue, would be rela-
tively easy to model. We used cryogenically preserved
liver samples (4◦C on ice) that were taken within 24
hours post-mortem and that did not include membranes
or large blood vessels. Specimens were not frozen at any
time during the procedure.

We used a plate–plate rheometer (AR550 or AR-G2;
TA Instruments, New Castle, DE) to measure the stress
loaded on the sample and sample strain. The shear stress
rheometer was selected because the shear test must be
independent of any change in cross-sectional area in the
stress calculation. In addition, the effect of gravity could
be disregarded. From these measurements, the conven-
tional shear strain x and conventional shear stress f were
calculated. The measurements of strain x and stress f
are valid only when there is no slip between the sample
and the plates. Thus, sandpaper (P80 grain size) was
attached to the top plate and the measurement table to
prevent sliding. The details of the calculation are de-
scribed in Appendix B. The liver sample was cut into
slices (diameter 20 mm, height 5 mm), and the slices
were placed on a measurement table. The samples were
soaked in saline solution at 35◦C during each test.

C. Procedures

1. Initializing procedures

After the saline solution reached the target tempera-
ture, the gap was zeroed to the surface of the saucer. The
saline solution was stable and there was no reflux flow.
Each tissue sample was placed on a measurement table,

FIG. 2. Details of the measuring components (a) and actual
experimental setup (b). We used porcine liver as the sample
for this study. We used a plate–plate rheometer to measure
the stress loaded on the sample and sample strain. The liver
sample was cut into slices, and the slices were placed on a
measurement table. The samples were soaked in a saline so-
lution at 35◦C during each test. Sandpaper was attached to
the top plate and the measurement table to prevent sliding.
Radius R was 20 mm and gap d was 5 mm.

and the sample thickness (=gap d) was determined. The
sample thickness was defined as the distance between the
surface of the saucer and the surface of the parallel plate
(part of the measuring device) at the time that the nor-
mal stress resulting from contact between the parallel
plate and the sample reached 0.1 N. To engage the sam-
ple and parallel plate, preloading for 180 seconds and
unloading for 180 seconds were performed thrice under a
load constant shear stress fc of 750 Pa. The following se-
ries of experiments were conducted for each sample, after
the above initializing procedures.

2. Dynamic viscoelastic test

Sine-wave stress from 0.1 to 10 rad/s, providing 1.5%
strain amplitude xo, was applied to the sample. The
compliance J (gain from stress amplitude fo to strain
amplitude xo), phase delay φ, storage elastic modulus G’,
and loss elastic modulus G” of each angular frequency ω
were measured. As shown in the following experimen-
tal results (Fig. 6), 1.5% (= 0.015) strain amplitude is
in the range where liver tissue exhibits linear responses.
The effect of mass (inertia) and shear viscosity from the
external normal saline solution could be disregarded at
frequencies less than 10 rad/s. Data were collected from
11 liver samples. We obtained a pair of results (storage
elastic modulus G’, loss elastic modulus G”) or (compli-
ance J, phase φ) from the dynamic viscoelastic test. The
detailed process to obtain the experimental results from
the dynamic viscoelastic test is provided in Appendix C.

3. Creep test and nonlinear measurement

A torsional creep test was performed after the dynamic
viscoelastic test. The creep test, in which step responses
to strain x(t) are observed under constant stress fc, was
repeatedly performed, applying several stresses on the
sample. Time series of strain data x(t) were measured
during each experiment. The constant shear stress fc
load ranged from 25 to 750 Pa, and the time series of
strain data x(t) were recorded for 180 seconds at each
stress level. Each test was performed at intervals of 180
seconds. The load shear stress during each interval was
0 Pa. The reference strain was set to 0 at each creep test
to account for residual stress and strain. We ignored the
data obtained from 0 to 1 second because of vibrations
during the early transient stage. The details of this area
are presented in our previous article [34, 35]. Data were
collected from 64 liver samples.
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III. RESULTS AND MODELING

A. Mechanical complex impedance

Here, mechanical complex impedance G∗ is defined as
follows:

G∗(ω) = G′(ω) + jG′′(ω) (4)

Here, ω is angular frequency, j is the imaginary unit, G∗

is the complex mechanical impedance, G’ is the storage
elastic modulus, and G” is the loss elastic modulus.
Typical experimental results of a dynamic viscoelas-

tic test—in this section, mechanical complex impedance
G∗—of a sample are shown in Fig. 3. All liver samples
exhibit the same trend as the typical sample; data trends
are the same, however, model fit data and parameters are
different.
Both the storage elastic modulus G’ and the loss elastic

modulus G” increased with the angular frequency ω. We
found that both the storage elastic modulus G’ and the
loss elastic modulus G” exhibit a power law form over
two decades. Furthermore, G′ and G′′ are approximately
proportional to ω1/8 (α=0.125 = 1/8).

FIG. 3. Mechanical complex impedance. The typical exper-
imental results of a dynamic viscoelastic test—in this figure,
mechanical complex impedance—of a sample. The asterisk
plot is the experimental result for the storage elastic modulus
G′. The cross plot is the experimental result for the loss elas-
tic modulus G′′. Both the storage elastic modulus G′ and the
loss elastic modulus G′′ increased as the angular frequency
ω increased. Both the storage elastic modulus G′ and the
loss elastic modulus G′′ exhibit a power law form over two
decades. Furthermore, G′ and G′′ are approximately pro-
portional to ω1/8 (α=0.125=1/8). The G′ of our model is
the line, and the G′′ of our model is the dashed line. The
G′ and G′′ of our model, which fit the typical experimental
results, indicate that our model and the experimental results
are highly correlated.

The mechanical complex impedance of our model has
the same characteristics as the experimental results, i.e.,
power law forms of G’ and G”, and the same slopes of
G’ and G”. The expansion of the equation to explain the
above characteristics is as follows. Our model is repre-
sented as equation (5)—the same equation as (1a) is de-
scribed for readability—because the dynamic viscoelastic
tests were conducted in the linear range of the stress–
strain relationship.

tαr
dα

dtα
(Gx) = f (5)

Because equation (5) takes the form of a frequency
transfer function, the complex shear modulus G∗ can be
expressed in terms of the Laplace operator as follows:

G∗ (s) =
F (s)

X(s)
= G (trs)

α (6)

Equation (7) derived from the mechanical complex
impedance of (6) using s = jω.

G∗(jω) = G

(

j
ω

ωr

)α

(7)

Here, ω is the angular frequency, ωr is the reference
angular frequency scale, defined as ωr = 1/tr. The ref-
erence angular frequency scale ωr is used in the follow-
ing explanations about the frequency domain — Section
IIIA, Section III B and Appendix F — to enhance the
readability of this article.
Then, equation (7) expands to (8a) and (8b) from (4)

with separation of the real and imaginary parts of (7).

G′(ω) = G′(ωr)

(

ω

ωr

)α

(8a)

G′′(ω) = G′′(ωr)

(

ω

ωr

)α

(8b)

Here, G′(ωr) is a constant parameter that represents
the storage elastic modulus, andG′′(ωr) is a constant pa-
rameter that represents the loss elastic modulus. These
parameters have the following relationship (10) because
of a constant parameter that represents the complex
modulus G∗(jωr) derived from (9):

G∗(jωr) = G (j)α = G cos
(π

2
α
)

+ jG sin
(π

2
α
)

(9)
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G =

√

G′(ωr)
2
+G′′(ωr)

2
(10a)

G′(ωr) = G cos(
π

2
α) (10b)

G′′(ωr) = G sin(
π

2
α) (10c)

Equations (11a) and (11b) were derived from (8a) and
(8b) by log-log transformation through the transforma-
tion to dimensionless quantities.

log

(

G′(ω)

G′(ωr)

)

= α log

(

ω

ωr

)

(11a)

log

(

G′′(ω)

G′′(ωr)

)

= α log

(

ω

ωr

)

(11b)

Thus, our model equation represents the same trend
as the experimental results, i.e., power law dependence
of G’ and G”.
The parameters (G and α) of equations (11a) and (11b)

were identified by fitting the experimental results for each
sample. We used the Extended Kalman Filter (EKF) al-
gorithm to identify the parameters (ref. Appendix F for
details) because equations (11a) and (11b) are nonlinear
simultaneous equations—both equations include param-
eters (G and α). The G’ and G” in our model, which fit
typical experimental results, are shown in Fig. 3, showing
that our model and the experimental results are strongly
correlated. It should be noted that the derivative order
α is not an integer (α=0.125=1/8). Our model also fits
the experimental data from all liver samples well. The
coefficient of determination R2 between our model and
the experimental data from the series of G’ and G” in all
samples is approximately 90%. Each data set was fitted
with a pair (G, α), and then the results were averaged.
Tables I and II list the model accuracy evaluation and
fundamental statistics of the model parameters. For ex-
ample, the average data of (G, α) are shown in Tables I
and II.

B. Bode diagram

Typical experimental results of a dynamic viscoelas-
tic test—in this section, a gain diagram and phase
diagram—of a sample are shown in Fig. 4. Figure 4 is a
plot of the same data presented in Fig. 3, the only dif-
ference being the expression of data from dynamic vis-
coelastic tests. Compliance (gain) J —the multiplica-
tive inverse of G∗—decreased as angular frequency ω in-
creased. We found that compliance (gain) J assumes a
power law form over two decades. We also found that
the phase delay φ remained constant over two decades.
The Bode diagram of our model has the same charac-

teristics as the experimental results, namely power law

form of compliance (gain) J and constant phase delay
φ. The expansion of the equation to explain the above
characteristics is as follows. The Laplace operator of the
Bode diagram is as follows:

J(s) =
X(s)

F (s)
=

1

G(trs)α
(12a)

J(jω) =
1

G
(

j ω
ωr

)α (12b)

The compliance (gain) J is defined from equation (12)
as follows:

J(ω) =

∣

∣

∣

∣

∣

1

G(j ω
ωr

)α

∣

∣

∣

∣

∣

=
1

G
(

ω
ωr

)α =
J(ωr)
(

ω
ωr

)α (13)

where J(ωr) is the coefficient that represents the com-
pliance, defined as J(ωr) = Jo = 1/G.

FIG. 4. Bode diagram. The typical experimental results of
a dynamic viscoelastic test — gain diagram (a) and phase
diagram (b) — of a sample. The plots in the gain diagram
and phase diagram show the experimental results. Compli-
ance (gain) J —the multiplicative inverse of G∗—decreased
as the angular frequency ω increased. Compliance J assumes
a power law form over two decades. We also found that the
phase delay φ remained constant over two decades. The lines
are the compliance (gain) J and phase φ results of our model.
The parameters of our model fit the typical experimental re-
sults, showing that our model and the experimental results
are highly correlated.
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Equation (14) is derived from the log-log transforma-
tion of (13) through the transformation to dimensionless
quantities.

log

(

J(ω)

J(ωr)

)

= − α log

(

ω

ωr

)

(14)

In addition, the model equation of the phase delay φ
is derived from (8a) and (8b).

φ (ω) = arg





1

G
(

j ω
ωr

)α



 = − π

2
α = φo (15)

where φo (= −π
2α) is the coefficient that represents

the phase delay. Thus, our model equation represents
the trend observed in the experimental results.
We calculated the compliance (gain) J and phase φ

of our model via identification of the parameter of me-
chanical complex impedance for each sample because the
parameters were the same. The compliance (gain) J and
phase φ results from our model, the parameters of which
fit the typical experimental results, are shown in Fig. 4,
which shows that our model and the experimental results
are strongly correlated. Our model fit the experimental
data from all liver samples well. Each data set was fitted
with a pair (Jo, φo), and then the results were averaged.
Table II lists the fundamental statistics of the model pa-
rameters. For example, the average data of (Jo, φo) are
shown in Tables I and II.

C. Creep test (Step response)

A typical example of the experimental results for a
creep test—the creep response obtained by assuming the
input step-stress—is shown in Fig. 5(a). The strain of
liver samples increased over a time interval of 180 sec-
onds. Figure 5(b) shows a log-log diagram of the same
data described in Fig. 5(a). We found that the time se-
ries data of the creep response exhibited a power law form
over two decades (Fig. 5(b)).
A model equation of strain x(t) in the creep test can

be calculated. We assumed that equation (1a) is valid for
a single creep test, while nonlinearity was evaluated by
a series of creep tests under several applied stresses fc.
Specifically, equation (1a) becomes (16) if (1a) is solved
for the conditions of the creep test. Here, the applied
stress is constant fc.
Strictly and theoretically speaking, the quantity xc

is well defined by equation (16) at small deformations
x < xb based on (1a), but is not defined at deformations
x > xb based on (1b). However, we use here equations
(16) and (1a) also in the nonlinear range x > xb for a
single creep test because the power law is still useful to

determine the quantity xc. The details of this point are
explained in Appendix D.

x(t) =
fc

GΓ(1 + r)

(

t

tr

)α

= xc

(

t

tr

)α

(16)

Here, x is strain, t is time, fc is constant applied stress,
and Γ() is the gamma function. xc is the coefficient deter-
mining the strain value as a parameter, which is defined
as follows:

xc =
fc

GΓ(1 + α)
(17)

In this case, the Riemann–Liouville definition [40] —
but not only this definition— was used to solve the frac-
tional integration of (1a). Equation (18) is derived from
the log-log transformation of (16) through the transfor-
mation to dimensionless quantities.

log

(

x

xc

)

= α log

(

t

tr

)

(18)

Thus, our model equation represents the trend ob-
served in the experimental results. The parameters (xc,
α) of equation (18) were identified by fitting the experi-
mental results in the log-log domain. We used the Least
Squares Method (LSM) algorithm —linear regression—
to identify the parameters of equation (18)for each sam-
ple. We calculated the other independent parameter G
via equation (17). The time series data x(t) from our
model, the parameters of which fit the typical experi-
mental results, are shown in Figs. 5(a) and (b). Figures
5(a) and (b) show that our model and the experimental
results are strongly correlated. Our model fit the exper-
imental data from all liver samples well. The coefficient
of determination R2 between our model and the exper-
imental data from the time series of displacement in all
samples at all stresses exceeded 99%. Each data set was
fitted with a pair (xc, α), and then the results were aver-
aged. Tables I and II list the model accuracy evaluation
and fundamental statistics of the model parameters. For
example, the average data of (xc, α) are shown in Tables
I and II.

D. Nonlinearity measurement

The nonlinear properties of samples were investigated
based on a series of creep tests under several applied
stresses fc. Specifically, we examined the relationship
between the constant applied stress fc and the strain co-
efficient xc in a series of creep tests using several stresses.
Typical experimental results for nonlinearity measure-
ment of the sample are shown in Figs. 6(a) and (b).
Figure 6(b) shows a semi-log diagram of the same data
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FIG. 5. Creep test (Step response). (a) A typical example of experimental results of a creep test—the creep response obtained
by assuming the input step-stress fc. (b) A log-log diagram of the same data described in (a). The plots in (a) and (b) are the
experimental results. The strain of the sample increased over a time interval of 180 seconds. We found that the time series data
of the creep response exhibited a power law form over two decades. The lines are the time series data of our model. Our model
equation represents the trend observed in the experimental results. This figure shows that our model and the experimental
results are highly correlated.

described in Fig. 6(a). Figure 6(a) shows that the rela-
tionship between xc and fc exhibits linear characteristics
under low strain conditions. The stress nonlinearly in-
creased under high strain conditions. Figure 6(b) shows
that the stress increase during high displacement is lin-
ear in the semi-log scale; stress increases exponentially in
the linear scale space. We found that the linear straight
line and nonlinear curves connected smoothly, with the
exponential curve being tangent to the straight line in
the linear region. We modeled the nonlinear properties
of the soft biological tissue based on these results and
considerations, as shown in equations (19a) and (19b).

Gxc = fc {xc < xb} (19a)

Gxbe
xc−xb

xb = fc {xc > xb} (19b)

The other form of equation (19b) is as follows:

Gie
Gn xc = fc {x > 1/Gn} (20)

Here, xc is strain and fc is stress. G is a proportion-
ality factor (referred to as linear viscoelastic stiffness or
linear stiffness herein), xb is the boundary strain between
the linear and nonlinear range (called simply boundary
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strain), Gn is a proportionality factor in log space (called
nonlinear viscoelastic stiffness or nonlinear stiffness), and
Gi is the dependent parameter.

Each parameter should fulfill the following relationship
due to the exponential curve (19b) being tangent to the
straight line (19a). Details of this relationship are shown
in Appendix E.

FIG. 6. Nonlinearity measurement. Typical experimental
results when tr = 1 are shown in (a) linear scale and (b) semi-
log scale. (a) shows that the relationship between strain xc

and stress fc exhibits linear characteristics under low strain
conditions. (b) shows that the stress increase during high
displacement is linear in the semi-log scale; stress increases
exponentially in the linear scale space. We found that the
linear straight line and nonlinear curves connected smoothly,
with the exponential curve tangent to the straight line in the
linear region. The stress–strain relationship of our model,
which fit the typical experimental results, is shown by the line.
Our model and the experimental results are highly correlated.
There is an overlapping area, where the results exhibit both
linear dependence and exponential law dependence. Linearity
holds to a certain degree above the boundary strain xb, and
exponential law dependence holds to a certain degree below
the boundary strain xb.

Gn =
1

xb
, Gi =

Gxb
e

(21)

The following equations (22a) and (22b) are derived
from the natural logarithm of both sides in (19b) and
(20), respectively.

xc
xb

= ln

(

e

Gxb
f

)

{xc > xb} (22a)

Gnxc = ln

(

Gne

G
f

)

{xc >
1

Gn
} (22b)

The parameters (α, G, Gn, Gi and xb) of equations
(19a) and (22b) were identified by fitting the experimen-
tal results for each sample. We used the EKF algorithm
to identify the parameters of equations (19a) and (22b)
(ref. Appendix G for details), as they are nonlinear si-
multaneous equations. The stress–strain relationship of
our model, which fit the typical experimental results, is
shown in Fig. 6, and shows that our model and the exper-
imental results are strongly correlated. Our model also
fit the experimental data from all liver samples well. The
coefficient of determination R2 between our model and
the experimental data in all samples was approximately
95%. Each data set was fitted with a pair (G, Gn), and
then the results were averaged. Tables I and II list the
model accuracy evaluation and fundamental statistics of
model parameters. For example, the average data of (G,
Gn) are shown in Tables I and II.
Thus, we derived the nonlinear equations for our model

shown in (1a) and (1b). This section derived the static
equation of the FDEN model (in the case of α = 0). We
assume here that equations (19a) and (19b) can hold true
in a more general situation for strain x and stress f in
the absence of creep tests. Moreover, we assume that
the nonlinear relationship between xc and fc still holds
at arbitrary α more generally, because coefficients fc and
xc in equation (16) are defined as time-independent pa-
rameters, and these parameters are valid for arbitrary α
in equation (16).

IV. DISCUSSION

The main contribution of this article is the proposal
of a Fractional Dynamics and Exponential Nonlinearity
(FDEN) model to identify the rheological properties of
soft biological tissue. We found from experimental results
that biological tissues have specific properties: i) power
law increase in the storage elastic modulus G′ and the
loss elastic modulus G′′ of the same slope (G′, G′′ ∝ ωα)
; ii) power law compliance (gain) J and constant phase
delay φ in the frequency domain (J ∝ ω−α, φ = −π

2 α)
over two decades; iii) power law dependence between time
and strain relationships (x ∝ tα) over two decades; and
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iv) linear dependence in the low strain range (f ∝ x) and
exponential law dependence (ln f ∝ x) in the high strain
range between stress–strain relationships. The FDEN
model uses only three dependent parameters —such as
α, G, and xb ( or Gn)— and represents the specific prop-
erties of soft biological tissues. The advantage of our
model is that it strongly correlates with various exper-
imental data, as shown in section III. In addition, the
small number of parameters used is valuable because it
is suitable for parameter identification and inverse anal-
ysis. For example, the parameter identification methods
in this article are basic, with only the LSM and EKF
being used. Lastly, the meaning of each parameter is
intuitively understood (e.g., α: ratio of viscoelasticity,
G: linear stiffness, Gn: nonlinear stiffness, xb: boundary
strain between the linear and nonlinear range) and it is
possible to compare the values with those of other tissues.
The details are discussed in the following sections.

A. Viscoelastic model using fractional calculus

We found from experimental results that soft biological
tissues have specific viscoelastic properties, as described
above in i)–iv). Single terms in the fractional dynamics
model (1a) represent the specific properties of soft bio-
logical tissues.
Fractional calculus is an approach to mathematically

describe natural phenomena that are related to viscoelas-
tic behavior [41]. It is a branch of mathematical analysis
concerned with taking real or complex number powers of
differential operators. Fractional dynamics is a field of
study in physics and mechanics concerned with investi-
gating the behavior of objects and systems that are char-
acterized by power law non-locality, power law long-term
memory or fractal-type properties by using integration
and differentiation of non-integer orders, i.e., by frac-
tional calculus methods [42]. Fractional dynamics models
are powerful tools in describing the dynamic behavior of
various materials. The advantages of fractional dynamics
models are their ability to describe real dynamic behav-
ior and the fact they are simple enough for engineering
calculations [43]. The equations for viscoelastic models
are generally based on stress–strain analyses and are tra-
ditionally represented with derivatives of integer order
(ordinary differential equations). In other words, tra-
ditional methods to fit the viscoelastic response include
several spring and dashpot elements. Recently, fractional
dynamics models proved to be efficient in describing rhe-
ological materials such as rubber and tissues, reducing
the number of parameters and showing a power law re-
sponse [44].
Over the last few years, fractional calculus has become

an important tool in the analysis of viscoelastic mate-
rials composed of synthetic polymers [45]. For exam-
ple, Caputo et al. [46–48] found good agreement with
experimental results when using a fractional calculation
for the description of viscoelastic materials and estab-

lished the connection between the fractional calculation
and the theory of linear viscoelasticity [49]. Several au-
thors [50, 51] have also suggested the use of differential
or integral equations of fractional order to describe vis-
coelastic behavior that is intermediate between purely
elastic and purely viscous [52].

Although fractional calculus is widely applied in de-
scribing the solid–liquid duality of synthetic polymers,
it had until recently attracted limited attention in the
field of biological materials, biomechanics, and bio-
viscoelasticity [53]. Suki et al. [54] found the pres-
sure/volume response of a whole lung to be characterized
by fractional calculus. Fractional calculus is also use-
ful in biology-related fields because many tissue-like ma-
terials (polymers, gels, emulsions, composites, and sus-
pensions) exhibit power law responses to applied stress
or strain [55]. Yuan et al. [56] studied lung tissue and
found its fractional order of evolution, while Chen et
al. [57] applied the same model to agarose gels used for
culturing tissues, particularly cartilage. An example of
the power law behavior of elastic tissue was observed
recently for viscoelastic measurements of blood vessels,
where the analysis of these data was most conveniently
performed using fractional order viscoelastic models [55].
Recent studies reveal that fractional calculus can be

used to model smaller components such as cells [57–59].
The framework of fractional calculus has also been used
in research on magnetic resonance elastography [53, 60].
As above, fractional dynamics are gaining popularity in
the field of viscoelasticity, with data and models already
reported for the liver [32–35], breast tissues [37], lung
[54, 61], vessels [44], muscle [38, 39], brain [62], tendons
[63], muscle cells [57], blood cells [58], and living cells [59].
In short, research on fractional calculus has been applied
widely to many fields, including biological materials.

The parameter α in fractional equation (1a) is the
derivative order and is commonly taken to range between
0 and 1. If α is 0, equation (1a) describes the behavior
of a spring where G specifies the spring’s stiffness. If α
is 1, equation (1a) defines a dashpot, in which G defines
the viscosity. Thus, the fractional equation (1a) interpo-
lates between the material behavior of a spring and that
of a dashpot [49]. The rheological element that refers to
equation (1a) was therefore introduced by Koeller and
termed a ‘springpot’ [55, 64]. As such, the derivative or-
der α represents the index of viscosity of the system in
the fractional dynamics model. A viscoelastic material is
more governed by elastic properties than by the viscous
properties when the derivative order α is close to 0, and
vice versa when the derivative order α is close to 1.

The value of the derivative order α was approximately
0.125 (=1/8) from the experimental results presented in
this article, indicating that the characteristics of soft bi-
ological tissue (liver) are intermediate between those of
elastic and viscous bodies and that this tissue is relatively
close to an elastic material.
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B. Fractional calculus for the dynamic viscoelastic
and creep tests

In this article, the viscoelastic properties of soft bi-
ological tissues (liver) have been examined. The simple
empirical equations describing strain creep (equation(16)
and (18)) have been put in a concise mathematical frame-
work. We have chosen to describe viscoelasticity in terms
of a fractional calculation as in equation (1a). Certain
important advantages of fractional calculus must be em-
phasized [44, 54]: i) fractional dynamics models accu-
rately describe complex models with fewer parameters,
ii) they improve curve fitting, principally with power law
responses, and iii) they allow for a physical justification
of fractal structure of soft biological tissue, as described
in the following section IVC.

1. Dynamic viscoelastic test

Measurements of mechanical complex impedance G*
in dynamic viscoelastic tests over a wide range of forc-
ing frequencies (10−1–101 rad/s) in tissue samples re-
vealed that the frequency dependence of rheological be-
havior represents a weak power law relationship over
a wide range of frequencies (G′, G′′ ∝ ωα). For ex-
ample, Fabry [65] reported that a weak power law re-
lationship held over a range of frequencies (10−2–103

Hz) in muscle cells. The storage modulus G’ increases
with increasing frequency according to a weak power law
(G′ ∝ ωα) with a power law exponent of approximately
0.125 (α = 0.125 = 1/8) . The loss modulus G” also fol-
lows the power law (G′′ ∝ ωα) with a power law exponent
of approximately 0.125 (α = 0.125 = 1/8). Fractional
calculus provides a natural framework for describing such
weak power law relationships [63].

In contrast, mechanical models using ordinary differ-
ential equations have long been used, and their qualita-
tive behavior is not representative of the actual behavior
of materials. The characteristics of the frequency depen-
dencies could be similar; however, the slopes of the exper-
imental results do not fit those of the theoretical curves
[43]. The shortcomings of ordinary differential models
can be recognized by comparing the frequency curves ex-
hibited by a material with those predicted by the mod-
els. The weak power law behavior cannot be accounted
for by standard viscoelastic models characterized by or-
dinary differential equations [63]: i) storage modulus G’
should remain constant (G′ = const.) at low frequencies,
which would indicate elastic behavior in ordinary differ-
ential equations and ii) loss storage modulus G” increases
and approaches a power law exponent of 1 (G′′ ∝ ω) at
high frequencies, indicating viscous behavior in ordinary
differential equations.

2. Creep test

Recent studies also indicated that the time domain
data of tissues are well represented by a simple empir-
ical equation involving a power law in time (x(t) ∝ tα).
Some studies also reported that creep responses repre-
sent power law stress to a step input in the time domain.
Fung [1] demonstrated in his theory that a distribution of
time constants proportional to power of time over a finite
range of time constants is appropriate for many tissues
[54]. Djordjevic and co-workers [63] reported that a par-
allel combination of a fractional calculus (springpot) and
a dashpot properly predict the measured values for a rhe-
ological model of cultured smooth muscle cells [55]. As
above, fractional calculus provides a natural framework
for describing such power laws in the time domain [63].
In contrast, mechanical models using ordinary differ-

ential equations lack consistency between their qualita-
tive behavior and the real behavior of materials curves.
Although the characteristics of time dependences could
be similar, the slopes of experimental results do not fit
those of the theoretical curves. The shortcomings of or-
dinary differential models can be recognized by compar-
ing the time domain curves observed for a material with
those predicted by the models [43]. The power law be-
havior cannot be accounted for by standard viscoelas-
tic models characterized using ordinary differential equa-
tions, such that: i) strain should remain constant at suf-
ficient elapsed times (x(t) −→ const at t −→ ∞), which
would indicate elastic behavior in ordinary differential
equations; and ii) exponential increases in transient state
(x(t) = xo(1 − et/T )), which would indicate viscous be-
havior in ordinary differential equations.

C. Fractal structure and the fractional ladder
model

Theoretical aspects of the fractional calculus of soft bi-
ological tissue are partially explained with fractal geom-
etry [66] and holonic systems [67] in nature. Currently,
fractal geometry and fractional calculus are applied to
phenomenological theories for complex systems [41]. Soft
biological tissues also have fractal structures, such as in
Fig. 7. A fractal is a natural phenomenon or a math-
ematical set that exhibits a repeating pattern displayed
at every scale. For example, Schiessel and Blumen [45],
Schiessel et al. [68], and Heymans and Bauwens [52] have
demonstrated that fractional equations, such as (1a), can
be realized physically through the fractal structure of hi-
erarchical arrangements of springs and dashpots like lad-
ders [69]. Panel (a) displays an infinite number of thin
elastic membranes and viscous compartments. Panel (b)
is a magnified region of panel (a), and panel (c) is a mag-
nified region of panel (b), showing the self-similar layered
structure. By allowing the number of structural compo-
nents to extend indefinitely, the self-similarity of biolog-
ical media is revealed. This topology is also depicted in
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Fig. 7, where the alternating elastic and viscous compo-
nents are visualized as a self-similar hexagonal packing of
spheres within spheres [70]. A related work [70] describes
the details of the following layered fractal models of soft
biological tissues based on the schema shown in Fig. 7.
In order to capture these fractal components with the
elastic membranes and viscous saline of biological tissue,
a fractal ladder of springs and dashpots in Fig. 9 is intro-
duced [70]. A paper [70] described the properties of the
model shown in Fig. 9(a), which presents the fractional
derivative term with derivative order 1/2. Similar fractal
tree networks were considered [70] to model other orders
of fractional calculus.
The fractal ladder model is defined with self-recursive

properties, which result from the fractal structure, to ex-
plain the linear fractional model. In other words, the
fractal ladder model is constructed with the same fractal
ladder model as in Fig. 8. For example, the fractional
order term with (α = 1/2) is derived using spring term
(α = 0) and viscous term (α = 1) from the self-similar
properties. The properties P (s) of overall part (a) are
the same as those for the dotted area (b) in Fig. 8 — in
other words, the properties of part (b) are also P(s).
Then, the following equation holds from the self-similar
properties:

P (s) =
1

1
k + 1

P (s)+cs

(23)

Here, P (s) is the Laplace function of overall properties.
The following equation (24) is derived from the expansion
of (23).

P (s)2 + csP (s)− kcs = 0 (24)

The following equation (25) is obtained by solving
equation (24).

P (s) =
−cs+

√
(cs)2+4kcs

2

= k
−

c
k
s+
√

c
k
s( c

k
s+4)

2

(25)

For (cs)/k << 1, the binominal approximation is ap-
plied, yielding the law frequency approximation.

P (s) =
√
kcs1/2 (26)

Thus, P (s) is a fractional order term with α =
1/2. Generally, a fractional order term with α =
n/2m {(0 < α < 1/2) ∧ (n,m ∈ N)} is generated in the
same manner through the iterated calculation of the frac-
tal ladder model using the fractional term. Here, the
fractal ladder model, which was constructed using the
fractional derivative term with αk and αc, is considered.
The properties of overall part P ′(s) are the same as those
for the dotted area. Then,

P ′(s) =
1

1
pksαk

+ 1
P ′(s)+pcsαc

(27)

The following equation is obtained by solving the above
equation.

P ′(s)2 + pcs
αcP ′(s)− pkpcs

αk+αc = 0 (28)

The following equation is obtained by solving the above
equation.

P ′(s) =
−pcs

αc+
√

(pcsαc )2+4pkpcsαk+αc

2

= pk
−

pc
pk

sαc+
√

pc
pk

sαc ( pc
pk

sαc+4sαk )

2

(29)

For pcs
αc/pk << 1, the binominal approximation is

applied, yielding the law frequency approximation.

P ′(s) =
√
pkpcs

(αk+αc)/2 (30)

The 1/4- and 1/8-order fractional terms (springpots)
are derived from the above calculation using (αk, αc) =
(0, 1/2) and (0, 1/4), respectively.
These recursive ladder expansions provide various

derivative order parameters. Specifically, the ladder
model can also be considered as a fundamental mechani-
cal component of the fractional derivative term, allowing
more complex fractal networks, or recursive ladders, to
be constructed.
For instance, consider a recursive ladder model con-

structed by replacing the viscous damper in Fig. 9(a)
with a fractal ladder, producing the arrangement shown
in Fig. 9(b) with derivative order α = 1/4. Similarly,
a recursive ladder may be constructed by replacing the
springs in Fig. 9(b) with a fractal ladder, producing the
arrangement shown in Fig. 9(c) with derivative order
α = 1/8.
Here, we introduced the fractal structure of soft biolog-

ical tissue and the relationship between fractal structure
and fractional calculus geometrically. The calculation in
this section (23)–(30) also reveals that soft biological tis-
sue has holonic properties, where a holon is something
that is simultaneously a whole and a part[67]. For ex-
ample, the overall finite ladder model shown in Fig. 8(a)
functions first as a whole, while the finite ladder model
shown in 8(b) functions first as a part. Thus, the same
finite ladder model acts as a holon: both a whole and a
part.

D. Main contribution

From the perspective of fractional calculus, the main
contribution of this study is to propose integration with
fractional calculus and nonlinear equations, in other
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words, utilizing the nonlinearity of fractional calculus —a
prefactor that switches smoothly from linear line to ex-
ponential curve— to describe soft biological tissue. The
history of using fractional dynamics in the study of vis-
coelastic materials is long standing; however, the nonlin-
earity of the fractional term for soft biological tissue has
not yet been considered in related studies.
The measured exponent α, close to 1/8, suggests that

the liver tissue is mechanically equivalent to a cubed frac-
tal structure (fractal of a fractal of a fractal) whose basic
elements are elastic and viscous elements (refer to Fig.
9). The structure of soft biological tissue is generally
and reasonably considered as a simple fractal structure
with elastic membrane and viscous fluid, as shown in Fig.
7. The experimental results with cubed fractal structure
raise the issue of the actual structure of soft biological
tissue—how it could be related to a cubed fractal struc-
ture, remains obscure.
The fractional model with a single term is most suit-

able for the identification of bio-rheological properties,
while many previous studies also have proposed serial
and/or parallel arrangements of ordinary order models
and fractional order models (such as a fractional gener-
alized Voigt model with a fractional term). The single
fractional derivative term has the strong advantage of
high model accuracy—although the frequency range was
relatively low in this study—and the power law relation-
ship is suitable for parameter identification, as described
in the following sections IVF, IVG, and IVH.

E. Exponential nonlinearity

Figure 6 and equation (19b) show that stress on soft
biological tissue increases exponentially with strain. Ex-
ponential trends are generally known in fields such as
economics and in natural evolutionary processes. For ex-

FIG. 7. Fractal structure of soft biological tissues [70]. A re-
peating pattern with thin elastic membranes and viscous com-
ponents is displayed at every scale. Panel (a) displays an infi-
nite number of thin elastic membranes and viscous compart-
ments. Panel (b) is a magnified view of panel (a), and panel
(c) is a magnified view of panel (b), thus showing the self-
similar layered structure. By allowing the number of struc-
tural components to extend indefinitely, the self-similarity of
biological media is revealed.

ample, value grows exponentially with time, technology
has advanced at an exponential rate [71] (exponential
growth of computing power is known as Moore’s law),
market price in inflation shows exponential growth [72],
and population growth (such as Malthusian Theory of
Population) is exponential. The experimental results of
stress and exponential models imply that the behaviors
in the stress–strain relationship may have similar math-
ematical and physical structures, although the variable
is not time but strain. In this theory, the exponential
growth evolves due to a linear positive feedback mecha-
nism, such as equation (31b); an upward change in stress
induces further increases in stress rather than just incre-
mental additions.

{

dαϕ
dtα = f
∂2ϕ
∂x2 = 0

{−xb < x < xb} (31a)

{ dαϕ
dtα = f

∂2ϕ
∂x2 =

(

1
xb

)2

ϕ
{x > xb} ∨ {x < −xb} (31b)

where ϕ is the intermediate variable between the up-
per and lower equations. We introduce a second-order
partial differential equation here because of the negative
and positive symmetry properties of the stress–strain re-
lationship, as shown in Fig. 10 and equation (32). The

FIG. 8. The fractal ladder model. The model is defined with
self-recursive properties, which result from the fractal struc-
ture, to explain the linear fractional model. The fractal ladder
model is constructed with the same fractal ladder model. This
figure explains that the fractional order term with (α = 1/2)
is derived using spring term (α = 0) and viscous term (α = 1)
from the self-similar properties. The properties P(s) of over-
all part (a) are the same as those for the dotted area (b) and
also (c)— in other words, the properties of parts (b) and (c)
are also P(s).
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FIG. 9. Fractal ladder of springs and dashpots in order to capture these fractal components with the elastic membranes
and viscous saline of biological tissue. Fractal tree networks were considered to model fractional calculus (orders α of 1/2,
1/4, and 1/8 are described in (a), (b), and (c), respectively). These recursive ladder expansions provide various derivative
order parameters of a springpot model (d). Specifically, the ladder model can also be considered as a fundamental mechanical
component of the fractional derivative term, allowing more complicated fractal networks, or recursive ladders, to be constructed.
The parameter α (derivative order and also power law exponent) was approximately 1/8 (= 0.125) according to the experimental
results of the dynamic viscoelastic tests in Figs. (3) and (4). This result suggests that liver tissue has a complex fractal structure
such as in (c), where the liver tissue is mechanically equivalent to a cubed fractal structure (fractal of a fractal of a fractal)
whose basic elements are elastic and viscous elements.

solution for the second-order partial differential equation
is as follows:

−Gxbe−
x+xb
xb = f {x < −xb} (32a)

Gx = f {−xb < x < xb} (32b)

Gxbe
x−xb
xb = f {x > xb} (32c)

Here, the solution for the first-order partial differential
equation only represents positive or negative exponential
stress changes.
The smoothness of a fundamental mathematical func-

tion largely affects the robustness of identification, in-
verse analysis, structure analysis in computer simula-
tions, and optimization using structure analysis. In par-
ticular, the smoothness at a point where the mathemat-
ical function changes (specifically, x = xb, −xb) is im-
portant. Differentiability class is generally used in the
classification of functions according to smoothness, more
specifically, the properties of their derivatives. The differ-
entiability class of our nonlinear model—between equa-
tions such as (19a) and (19b), (32a) and (32b), and (32b)
and (32c)—is C1 at x = xb, −xb; this means curves are
continuous and differentiable at x = xb, −xb. In other
words, curves are joined and their first derivatives are

continuous at x = xb, −xb. Thus, the smoothness of
the function in our nonlinear model is maintained—the
differentiability class is C1—when compared with linear
models. The mathematical process to explain the con-
nectivity is shown in Appendix E. These smooth charac-
teristics are an advantage of our model because the ro-
bustness of calculations in the boundary between linear
and nonlinear characteristics is high.

We can estimate the origin of strain from data in the
nonlinear range due to the constraint condition of param-
eters described in equation (21) because of the properties
of an exponential function. The subtangent, which is a
geometric term meaning certain line segments defined us-
ing the line tangent to a curve at a given point and the
coordinate axes, is constant in an exponential function.
Moreover, the value of the subtangent is xb in our model.
The subtangent can be estimated using the tangent (Gn)
of the semi-log graph of the stress–strain relationship:
xb =

1
Gn

(refer to Fig. 10). This is an important char-
acteristic because the zero strain point of soft biological
tissue is generally difficult to define for the following rea-
sons: i) the zero strain point cannot be defined from
linear data; ii) the deformation of soft biological tissue is
relatively large and is markedly affected by gravitational
force; and iii) the viscoelasticity of soft biological tissue
makes measuring the zero strain point difficult. We can
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estimate the zero point from the value of xb via an expo-
nential function with Gn in the nonlinear range.

F. Time and frequency scale invariant

One attribute of power laws is their scale invariance.
Scaling the argument by a constant factor causes only
a proportionate scaling of the function itself. Scaling
by a constant simply multiplies the original power law
relationship by the constant (parameter α in this article).
Thus, it follows that all power laws with a particular
scaling exponent are equivalent up to constant factors,
as each is simply a rescaled version of the others. There
is no internal time scale that could typify the dynamics,
and no time characteristics are evident.
Time scale invariance during creep tests can be de-

scribed based on the above discussion, and creep response
is not tied to any time scale; thus, it may be regarded
as being scale-free. More specifically, as explained in
this article, obtaining numerous time series data from
creep tests is not necessary due to invariance in the time
scale property. Only two data points (t1, x1) and (t2, x2)
at any time point are sufficient to identify the parame-

ter of equation (18): α = log(x2/x1)
log(t2/t1)

, xc = x1

(t1/tr)α
and

G = fc
xcΓ(1+α) . Naturally, this is only a theory pertaining

to identical conditions, and many data points are prefer-
able to enhance the robustness of measurements.
Frequency scale invariance during dynamic viscoelastic

tests can be described in the same manner. There are no
internal frequency scales that could typify the dynamics,

FIG. 10. Negative and positive symmetry property of stress–
strain relationship to introduce the second-order partial differ-
ential equation (in the case of G = 1000 and xb = 0.1). The
solution of the first-order partial differential equation only
represents positive or negative exponential stress changes.
The solution of the second-order partial differential equation
represents positive and negative exponential stress changes,
such as those shown in this figure.

and no characteristic frequency was evident. Mechani-
cal impedance responses are not tied to any frequency
scale; thus, they may be regarded as being scale-free.
More specifically, obtaining numerous frequency series
data from dynamic viscoelastic tests are not necessary
due to invariance in frequency scales. Only two data
points (ω1, J1) and (ω2, J2) at any frequency point are
sufficient to robustly identify the parameter of equation

(14): α = − log(J2/J1)
log(ω2/ω1)

and Jo = 1/G = J1

(ω1/ωr)
−α . As

for time scale invariance, this is only a theory pertaining
to identical conditions, and many data points are prefer-
able to enhance the robustness of measurements.

G. Strain scale invariance

Strain scale invariance—while nonlinearity is not a
power law—also holds at the linear area and nonlinear
scale. The relationship between stress and strain in the
linear range exhibits strain scale invariance because of
linearity. The relationship between the logarithms of
stress and strain in the nonlinear range also exhibits
strain scale invariance because of the exponential law de-
pendence. This scale invariance produces a strong rela-
tionship for identifying parameters. Theoretically speak-
ing, a two-point data set containing only (xc1, fc1) and
(xc2, fc2) in the linear range is sufficient to identify linear
stiffness G (slope of stress and strain in the linear space):

G = fc2−fc1
xc2−xc1

. Moreover, zero point (xc1, fc1) = (0, 0)

can be included to calculate this process: G = fc2
xc2

. In
addition, a two-point data set in the nonlinear range is
sufficient to identify nonlinear stiffness Gn (slope of stress

and strain in the semi-log space): Gn = ln(fc2/fc1)
xc2−xc1

. Of
course, the aforementioned numbers for this data set are
theoretical for identical situations, and many data points
are preferable to enhance measurement robustness.

In addition, strict classifications between the linear and
nonlinear ranges should not be necessary because of the
smooth connectivity between the linear and nonlinear
properties of soft biological tissues (Fig. 6). There is
an overlapping area where both linearity and exponen-
tial law dependence hold. Linearity holds to a certain
degree beyond the boundary strain xb. Furthermore, the
exponential law dependence holds to a certain degree be-
fore the boundary strain xb. In other words, the data set
in the overlapped area includes information from both
the linear and nonlinear ranges. These properties, which
are common to soft biological tissues and the FDEN
model, are useful for identifying parameters, and it is
possible to identify both linear and nonlinear stiffness
using only data sets derived from the overlapping area:

both G = fc2−fc1
xc2−xc1

and Gn = ln(fc2/fc1)
xc2−xc1

. However, further
research is required to confirm this hypothesis.
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H. Identification algorithm

According to the simple model equation, its power law
properties, and its exponential law dependence, param-
eter identification in the FDEN model is simpler when
compared to other reported models. The small number
of parameters in the FDEN model contributes to a simple
algorithm and parameter identification. These character-
istics may also be effective in inverse analysis of computer
structural simulations of tissue/organ deformation. For
example, the parameter identification methods in this ar-
ticle are basic, with only LSM and EKF being used. The
parameters of the model in the creep test can be identified
using LSM. EKF was used to identify the parameter of
the dynamic viscoelastic tests—mechanical impedance—
because equations (11a) and (11b) are nonlinear simul-
taneous equations. EKF was also used to identify the
parameter of nonlinear models between the stress–strain
relationship because equations (19a) and (22b) are non-
linear simultaneous equations.
The parameters of the model in the Bode diagram

were identified via parameter identification of mechan-
ical impedance in this article. It should be noted that
LSM is sufficient to identify the values of α and G in
(14) using the data set of compliance (gain) J . The cor-
relation between model (15) and the experimental data
of the phase φ should be carefully checked in this case,
as phase data can affect identification of the parameters.

I. Parameter variation

Tables I and II list the model accuracy evaluation and
fundamental statistics of model parameters. Statistical
analysis of the samples used in this study revealed that
the maximum values of α, G, and Gn were approximately
1, 4, and 3 times the minimum values, respectively. These
results indicate that the linear stiffness G and the nonlin-
ear stiffness Gn (also, xb as an independent parameter)
have a large degree of variation when compared with the
ratio of viscoelasticity α. The one limitation of this study
is that the number of samples was insufficient to statisti-
cally analyze the variations in each parameter. We plan
to study other tissue types in order to compare and dis-
criminate between tissues using these static and variable
parameters (e.g., [37]).

J. Limitations

The main limitation of this study is that we only mea-
sured and evaluated liver samples. Similar evaluations
must be performed with other tissues in order to clarify
the universality of the FDEN model. This will allow us
to clarify the applicability of our model to various tissue
types. We believe that the FDEN model can represent
other biological tissues consisting of a single tissue type,

excluding non-soft tissues and tissue exhibiting plastic-
ity. Our previous nonlinear viscoelastic model with four
parameters [32–35] has already been partially evaluated
using breast tissues (fibroglandular tissue, fat, muscle)
[36, 37]. We plan to evaluate the FDEN model using
other tissues in future studies.
The theoretical limitation of this article is in the

derivation of the nonlinear equation: we assume power
law dependence holds in the single creep test. We will
research theoretical discussion of this point in future
work—for example, the relationship with yield strain in
[73]—because this article only covers the feasibility of
power law approximation in the creep test. The coef-
ficient of determination R2 between our model and the
experimental data from the time series of displacement
in all samples at all stresses exceeded 99%, as shown in
Table I. We also describe the feasibility of the approxi-
mation mathematically in Appendix D.
Another limitation of the present study is the lack of

stress relaxation and indentation tests. These are basic
tests to evaluate viscoelastic properties and stress–strain
nonlinearity, respectively. Parameter identification in the
FDEN model using these tests are described in Appen-
dices H and I. Stress relaxation analysis using fractional
viscoelasticity was introduced in related studies [50, 51],
as well as in our work on human stretch applications [39].
Moreover, indentation (in the case of needle insertion and
palpation for medical robotics) using the nonlinear model
has been introduced in related studies [32–37].

V. CONCLUSION

We proposed a simple empirical model using Frac-
tional Dynamics and Exponential Nonlinearity (FDEN)
to identify the rheological properties of soft biological
tissue. The model is derived from detailed material mea-
surements using samples isolated from porcine liver. We
conducted dynamic viscoelastic tests and creep tests on
liver samples using a rheometer. The experimental re-
sults indicated that biological tissue has specific prop-
erties, such as: i) power law increase in the storage
elastic modulus and the loss elastic modulus with the
same slope; ii) power law compliance (gain) decrease and
constant phase delay in the frequency domain over two
decades; iii) power law dependence between time and
strain relationships under constant force; and iv) lin-
ear and exponential dependence that switches smoothly
between stress–strain relationships. Our simple FDEN
model uses only three dependent parameters and repre-
sents the specific properties of soft biological tissue.
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TABLE I. Accuracy evaluation results for the present model.

Equation and
experimental data

Sample number

(number of trials) Avg. of R2 Max. of R2 Min. of R2 S.D. of R2

Equations (11a) and (11b) and dynamic viscoelastic test 11 0.840 0.902 0.751 0.008
Equation (18) and creep results 64 (712) 0.997 1.000 0.950 0.0073

Equations (19a) and (19b) and nonlinear measurement 64 0.986 1.000 0.923 0.018

TABLE II. Fundamental statistics of the parameters when tr = 1 (ωr = 1).

Test Parameter
Sample
number Avg. Max. Min. S.D.

Dynamic viscoelastic test G 11 391.1 518.2 248.2 111.2
Dynamic viscoelastic test α 11 0.131 0.146 0.118 0.011
Dynamic viscoelastic test Jo 11 0.00275 0.00402 0.00192 0.000853
Dynamic viscoelastic test φ 11 -11.85 -10.60 -13.12 0.980
Nonlinearity measurement G 64 544.8 1294 341.8 155.3
Nonlinearity measurement Gn 64 8.547 13.18 5.26 1.604
Nonlinearity measurement xb 64 0.121 0.190 0.076 0.0022
Nonlinearity measurement Gi 64 23.90 39.64 11.35 6.206

in part by the Global Centers of Excellence (GCOE) Pro-
gram and Grants for Excellent Graduate Schools, Japan;
and in part by a Grant-in-Aid for Scientific Research from
the Ministry of Education, Culture, Sports, Science and
Technology (MEXT) (No. 25350577), Japan.

Appendix A: References to authors’ own work

We have conducted studies aimed at developing a rhe-
ological model for soft biological tissues with these char-
acteristics, using simple equations and few parameters,
that is highly correlated with experimental data [32–39].
The scope of these articles is only to propose a model that
is highly correlated with experimental data. The rheo-
logical model in this study relies on experimental data
obtained from biological tissues. We first give the model
equations (A1b) and (A1b).

dα

dtα
(Gx) = f {x < xo} (A1a)

dα

dtα

(

G(1 + a(x− xo)
2)x

)

= f {x > xo} (A1b)

where G is the viscoelastic modulus in the linear re-
gion, a is the coefficient determining the change in stiff-
ness in the nonlinear range, and xo is the threshold of
strain between linearity and nonlinearity. The model
combines a fractional differential equation with a polyno-
mial expression for stress–strain nonlinearity, which con-
sists of four parameters (G, α, a, xo).
The model with (A1b) and (A1b) is derived from com-

prehensive material data obtained from in vitro measure-
ments of porcine liver [32–35]. The model with (A1b)
and (A1b) was also validated using in vitro breast tissue

(fibroglandular tissue, fat, muscle) [36, 37]. The model
(A1b) was partially evaluated in muscle tissue in the lin-
ear range [38, 39].
The limitations of the above model, proposed by the

author in previous studies, compared with the FDEN
model, proposed in this article, are as follows. The two
parameters (a and xo) in the model—both parameters
representing nonlinear properties—correlate and inter-
fere with one another. In addition, the parameter identi-
fication from the experimental data of these two param-
eters (a and xo) is complex; specifically, global searching
and optimization are required.
The physical law was not explicitly introduced in these

articles, while this article explicitly described the laws in
soft biological tissue, such as the power law in the time
and frequency domains and the exponential law in the
stress–strain relationship.
This article also defines a simple identification method

fully using the laws. The relationship between fractal
geometry (also, holonic systems) and fractional calculus
is newly introduced in this article.
Moreover, this article newly found that the parame-

ter α (derivative order and also power law exponent) was
approximately 1/8 (= 0.125) according to the experimen-
tal results of the dynamic viscoelastic tests, as shown in
Figs. 3 and 4. This suggests that liver tissue has a com-
plex fractal structure, such as in Fig. 9(c).

Appendix B: Calculation of shear stress and strain

In the rheology community, the geometry used here,
which comprises two parallel plates in mutual rotation
(Fig.2), is called a plate–plate rheometer. The defor-
mation mode inside it is simple shear. The amount of
shear is not uniform throughout the sample since it is
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proportional to the local distance to the axis of rotation.
Although the global action on the rheometer is torsion,
the usual denominations for strain and stress are shear
strain and shear stress.
Torque T applied to the sample, and the torsional an-

gle θ of the sample, were measured using a plate–plate
rheometer (AR-G2 or AR550; TA Instruments, New Cas-
tle, DE). From these measurements, the conventional
shear strain x and conventional shear stress f were cal-
culated using equations (B1a) and (B1b), respectively:

f =
1

2

2

πR3
T (B1a)

x =
1

2

R

d
θ (B1b)

where d and R are the length and radius of the cylinder
(ref. Fig. 2), respectively. The mean stress and strain
on the sample (half values of outer stress and strain on
the sample) are referred to in the experimental results,
because they are adequate for consideration of the non-
linear properties. R was 20 mm and d was 5 mm in the
experimental setup of the present study.
The equations (B1a) and (B1b) are valid only when

there is no slip between the sample and the plates. Thus,
sandpaper was attached to the top plate and the mea-
surement table to prevent sliding.
In a rheometer, correction of the instrument inertia is

needed to measure the sample properties. The torque
output of the motor comprises the torque required to
overcome the instrument inertia and the torque deform-
ing the sample. The torque measurement is influenced
by the torque required to accelerate and decelerate the
instrument—the oscillating motor shaft and the geom-
etry attached to the shaft. The rheometer used in the
present study provides an inertia correction function, in
which the rheometer collects the inertia of the instrument
prior to each measurement as a setup calibration and cal-
culates only stress loaded on the sample using this col-
lected instrument inertia [74]. The effects of instrument
inertia become negligible via this correction process in
the range of the experimental conditions presented in this
article. The instrument inertia correction does not work
accurately in some conditions, such as high frequency
measurements.

Appendix C: Calculation of dynamic viscoelastic test

A dynamic viscoelastic test is carried out to measure
the data to determine sample properties that depend on
the frequency, e.g., compliance (or gain) J , phase φ,
storage elastic modulus G’, and loss elastic modulus G”.
If a sinusoidal stress f(t) = fosin(ωt) is loaded on the
sample, a sinusoidal strain x(t) = x0sin(ωt + φ) that is
in phase with the applied strain will result. The method
of performing a dynamic viscoelastic test is to apply a
sinusoidal strain with amplitude xo to a sample, over

a range of frequencies, and to monitor the strain with
amplitude fo and phase angle φ. The properties of the
material at a certain angular frequency ω are obtained
using the amplitude of the stress f0, the amplitude of
the strain xo and phase angle φ. Thus, we calculate each
value using the following equations.

G
′

=
fo
xo

cos(φ) (C1a)

G
′′

=
fo
xo

sin(φ) (C1b)

J =
xo
fo

(C1c)

The data sets of J , φ, G’, and G” are collected at
several input angular frequencies ω in the dynamic vis-
coelastic test. The data sets of (G’, G”) at several an-
gular frequencies ω are used to understand mechanical
impedance G∗ in section IIIA. The data sets of (J , φ) at
several angular frequencies ω are used to make the Bode
diagram in section III B.

Appendix D: Power law in creep test with high
stress

The time series data of the creep test exhibited a power
law as described in section III C. Equations (1a) and
(16) well fit the experimental data at several stress val-
ues, and the quantity xc is well identified. In Section
IIID, the exponential nonlinear model of soft biological
tissue is derived from the relationship between xc and fc
from a series of creep tests under several applied stresses,
assuming that equations (1a) and (16) are valid for a sin-
gle creep test. On the other hand, the equations (1a) and
(16) and the quantity xc are theoretically defined only in
the linear range at a small strain x < xb, but are not de-
fined in the nonlinear range at large deformations x > xb
in the FDEN model defined by equations (1a) and (16).
This appendix explains that the power law and equa-

tions (1a) and (16) for a single creep test are still useful
to grasp the quantity xc in the nonlinear range x > xb,
while the quantity α becomes unmeasurable in the non-
linear range x > xb.
The following equation (D1) is equal to (1b)—the

range is x > xb in all of the following calculations.

tαr
dα

dtα
(Gxbe

x−xb
xb ) = f (D1)

Specifically, equation (D1) becomes (D2) if (D1) is
solved for the conditions of the creep test. Here, the
applied stress is constant fc.

e
x−xb
xb =

fc
GΓ(1 + α)

1

xb

(

t

tr

)α

(D2)
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Equation (D3) is derived from (D2) through a division
process using reference values xbc and tb in (D4) at x =
xb for dimensionless quantities.

e
x−xb
xb =

xc
xb

(

t

tr

)α

(D3a)

x− xb
xb

= ln

(

xc
xbc

(

t

tb

)α)

(D3b)

where ln() is the natural logarithm function. The ref-
erence values have the following relationship—the refer-
ence values are at the boundary position between linear
and nonlinear properties in this case.

xbc = xb

(

tr
tb

)α

(D4)

The strain x is defined as follows:

x(t) = xb

{

ln
(

xc

xbc

(

t
tb

)α)

+ 1
}

= xb

{

ln
((

t
tb

)α)

+
(

ln
(

xc

xbc

)

+ 1
)}

= xb

{

ln
((

t
tb

)α)

+ κ
}

(D5)

where κ is defined as follows:

κ = ln (xc/xbc) + 1 (D6)

Again, the strain x is defined as follows from (D5) :

x(t) = xbκ
{

1
κ ln

((

t
tb

)α)

+ 1
}

= xbκ

{

ln

(

(

t
tb

)
α
κ

)

+ 1

}

= xbκ

{

ln

(

(

t
tb

)α′
)

+ 1

}

(D7)

where α′ is defined as follows:

α′ =
α

κ
=

α

ln (xc/xbc) + 1
(D8)

Equation (D9) is derived from the log-log transforma-
tion of (D7).

log
(

x
xb

)

= log

{

ln

(

(

t
tb

)α′
)

+ 1

}

+ log (κ)

= log (t′ + 1) + log (κ)
(D9)

where log() is the common logarithm. t′ is defined
as t′ = α′ ln(t/tb). The first term on the right side in
equation (D7) becomes t′ by approximation of ln(1 +

t′) = t′ + O(t′2) around t′ = 0 using a Taylor series.
The condition t′ << 1 is fulfilled in the experimental
and theoretical conditions presented in this article. This
condition should be checked in the case of a creep test
with larger stress or longer term.

log (t′ + 1) = 1
log10e

ln (1 + t′)

≈ 1
log10e

t′ = 1
log10e

ln

(

(

t
tb

)α′
)

= log

(

(

t
tb

)α′
)

(D10)

Then, equations (D11) and (D12) are derived using
(D9) and (D10):

log

(

x

xb

)

= α′ log

(

t

tb

)

+ log (κ) (D11)

log
(

x
xc

′

)

= α′ log
(

t
tb

)

(D12)

where x′c is defined as follows:

x′c = κxb = xb (ln (xc/xbc) + 1) (D13)

Thus, the power law and equation (18) are still useful
in the nonlinear range of a single creep test. The val-
ues of x′c and α′ are identified through parameter iden-
tification of the experimental data, the same as in the
experiment with the linear range. x′c is also fulfilled fol-
lowing equation (D14) through the expansion of equa-
tion (D13). Equation (D14) represents time-independent
properties for the exponential nonlinear model. Thus,
the data from a creep test with high stress, which results
in large strain over xb, are also appropriate for identify-
ing the nonlinear parameters of the FDEN model (D1).

e
xc

′
−xb

xb =
xc
xbc

(D14)

On the other hand, the data from a creep test with
high stress, which results in large strain over xb, are not
appropriate for identifying the parameter α of the FDEN
model (1)—α′ = α/(ln (xc/xbc)+ 1) is identified through
the data fitting explained in section IIID and Appendix
G. Typical experimental results for the relationship be-
tween fc and the α in a series of creep tests are shown in
Fig. 5. The identified α with low stress is near 1/8—an
appropriate value from the dynamic viscoelastic test—
while the identified α with high stress decreases accord-
ing to fc.
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Appendix E: Parameter dependency

We modeled the nonlinear properties of soft biolog-
ical tissue based on these results and considerations, as
shown in equations (E1a) and (E1b). The following equa-
tions (E1a) and (E1b) describe the static equation of
the FDEN model —meaning, in the case of α = 0 and
tr = 1— assuming that equations (1a) and (2) can hold
true in a more general situation for position x and force
f, as shown in section III D The equations are the same
as equations (19a) and (20).

Gx = f {x < xb} (E1a)

Gie
Gnx = f {x > xb} (E1b)

where x is strain and f is stress. G is linear stiffness, xb
is the boundary strain, Gn is nonlinear stiffness, Gi is the
dependent parameter, and e is Napier’s constant. Each
parameter should fulfill the condition that the exponen-
tial curve (E1b) be tangent to the straight line (E1a) at
x = xb. Equations (E2a) and (E2b) are derived from
equations (E1a) and (E1b);

df

dx
= G {x < xb} (E2a)

df

dx
= Gn(Gi e

Gn x) {x > xb} (E2b)

The continuity of f at xb may thus be

Gie
Gnxb = Gxb (E3)

Moreover, the continuity of df/dx at xb should be

Gn(Gie
Gnxb) = G (E4)

By plugging the left-hand side of equation (E3) into
(E4),

Gnxb = 1 (E5)

Then,

xb =
1

Gn
(E6)

By plugging (E6) into (E4),

GnGie = G (E7)

Then,

Gi =
G

Gne
(E8)

Each parameter may then fulfill the above relationship,
particularly (E6) and (E8). The stress–strain relation-
ship with several Gn in our model is described in Fig.
11 to represent the meaning of the parameter constraint
between Gn and xb. The equations (1b) and (19b) are
derived by pulling the dependency (E6) and (E8) into the
equations (2) and (20), respectively.

Appendix F: Extended Kalman Filter (EKF) for
dynamic viscoelastic test

This section shows the methodology used to identify
the parameter described in section IIIA. The model for
the dynamic viscoelastic test was as follows from equa-
tions (11a)–(11b):

log

(

G′(ω)

G′(ωr)

)

= α log

(

ω

ωr

)

(F1a)

log

(

G′′(ω)

G′′(ωr)

)

= α log

(

ω

ωr

)

(F1b)

G′(ωr) = G cos(
π

2
α) (F1c)

G′′(ωr) = G sin(
π

2
α) (F1d)

where G’, G” and ω are variables; and α and G are
parameters.

We obtained the set of G’ and G” at each value for
angular frequency ω from the experiment. We identified
the parameter from these data using EKF for system
identification (ref. [75]). The system identification in
EKF is generally described as follows:

FIG. 11. The stress–strain relationship with several Gn in
our model to clarify the meaning of the parameter constraint
between Gn and xb. G was set to 1000 Pa. The line shows
stress–strain relationship. The plot shows boundary point.
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θk+1 = f(θk, ψk) (F2a)

yk = g(θk, ζk) (F2b)

where k = 0, 1, 2,... represents the discrete iteration
index (number of data sets in this case), θ is the n-
dimensional state vector, ψ is the n-dimensional system
noise vector, y is the p-dimensional observation vector,
ζ is the p-dimensional observation noise vector, and f()
and g() are the nonlinear vector functions. In the theory
of state-space, (F2a) and (F2b) are known as the sys-
tem model (or state model) and the observation model,
respectively.
The parameter vector is regarded as a state vector in

EKF for system identification. Where the state vector
(parameter vector) θ is a constant vector and the obser-
vation noise vector ζ is a Gaussian white noise with zero
mean, (F2a) and (F2b) are represented as:

θk+1 = Iθk (F3a)

yk = h(θk) + ζk (F3b)

where I is the identity matrix, and h() is the nonlinear
vector function. In the case of system identification for
the dynamic viscoelastic test, the state vector (parameter
vector) θ, observation vector y, and the nonlinear vector
function h() are particularly regarded as follows in the
case of ωr = 1 :

θ =

[

α
G

]

(F4a)

y =

[

logG′

logG′′

]

(F4b)

h(θ) =

[

α logω + log(G cos(π2α))
α logω + log(G sin(π2α))

]

(F4c)

The EKF algorithm (ref. [75]) using (F4a)–(F4c) was
applied to identify the parameter from the data set. It
was not necessary to set initial values for each parameter
θ0, meaning that θ0 was a zero vector.

Appendix G: Extended Kalman Filter (EKF) for
nonlinearity measurement

This section shows the methodology used to identify
the parameter described in section IIID. The model for
the nonlinearity measurement is as follows from equa-
tions (19a) and (22b):

Gxc = fc {xc <
1

Gn
} (G1a)

Gnxc = ln

(

Gne

G
f

)

{xc >
1

Gn
} (G1b)

where fc and xc are variables, G and Gn are param-
eters, and e is Napier’s constant. We obtained the set
of fc at each strain xc from the experiment. We iden-
tified the parameter from these series of data sets using
EKF for system identification. The algorithm to identify
the parameter is the same as in Appendix F, particularly
equations (F2a)–(F3b). In the case of system identifica-
tion for the nonlinearity measurement, the state vector
(parameter vector) θ, observation vector y, and nonlinear
vector function h() are regarded as follows:

θ =

[

G
Gn

]

(G2a)

y =

[

fc {xc < 1
Gn

}
ln fc {xc > 1

Gn
}

]

(G2b)

h(θ) =

[

Gxc {xc < 1
Gn

}
Gnxc + ln( G

Gne
) {xc > 1

Gn
}

]

(G2c)

The EKF algorithm (ref. [75]) using (G2a)–(G2c) was
applied to identify the parameter from the data set. Each
data set affected a single term of the vector, where the
upper term for the vectors was updated via low strain
data, and the lower term for the vectors was updated
via high strain data. Initial values for each parameter θ0
needed to be explicitly set in the case of the nonlinear-
ity measurement. Therefore, we first approximated the
parameters to set the initial values of each parameter θ0.
We used only low strain data (three data sets from mini-
mum strain) for approximation of the parameter G, while
we used only high strain data (three data sets from max-
imum strain) for approximation of parameter Gn. These
approximations of the parameters can be identified using
LSM—simple linear regression of equations (G1a) and
(G1b).

Appendix H: Relaxation test

A model equation of stress in relaxation tests can be
devised as follows. We assumed that equation (1a) is
valid for a relaxation test, while nonlinearity was evalu-
ated by a series of relaxation tests under several applied
strains. Specifically, equation (1a) becomes (H1a) if (1a)
is solved for the conditions of the relaxation test. Here,
the applied strain is constant xc. Equation (H1b) is de-
rived from the log-log transformation of (H1a) through
the transformation to dimensionless quantities (H1b).

f =
Gxc

Γ(1− α)

(

t

tr

)

−α

= fc

(

t

tr

)

−α

(H1a)

log

(

f

fc

)

= log

(

t

tr

)

−α

= −α log

(

t

tr

)

(H1b)
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Here, f is stress, t is time, xc is constant strain, G
is linear stiffness at each strain, and Γ() is the gamma
function. fc is the coefficient determining the stress value
as a parameter, which is defined as follows:

fc =
Gxc

Γ(1− α)
(H2)

The LSM algorithm —linear regression— can be used
to identify the parameters of equation (H1b) for each
sample. We calculated the other independent parameter
G via equation (H2). The nonlinear properties of samples
can be investigated based on a series of relaxation tests
under several applied strains. Specifically, nonlinearity
measures the relationship between the constant applied
strain xc and the stress coefficient fc in the series of re-
laxation tests under several strains.

Appendix I: Indentation test

A model equation for an indentation test—the reac-
tion force measurement during constant velocity strain
change—can be theoretically calculated as follows. It
should be noted that the sensitivity of parameter α from
the steady-state of reaction force f is generally low in
experiments with soft biological tissue because the value

of the derivative order α was 1/8 from the experimental
results presented in this article. Linear stiffness G and
nonlinear stiffness Gn can thus be identified from the re-
action force on an indentation test, when the value of
parameter α is roughly known. We assumed that equa-
tions (1a) and (2)—the FDEN model—are valid for the
indentation test. We collected time series data for force
f(t) on the conditions of the indentation test. Here, the
applied strain is x(t)= vot. Equations (1a)–(2) become
identical to static problems such as (I1a)–(I1c) when the
fractional integrated stress f ’ is considered as follows:

Gx = f ′ {x < 1/Gn} (I1a)

Gnx = ln

(

Gne

G
f ′

)

{x > 1/Gn} (I1b)

f ′ = D(−α)f (I1c)

where D(α) refers to αth-order derivative and D(−α)

refers to the αth-order integral. The numerical fractional
integration, which is necessary in the above calculation,
is introduced in various studies (e.g., [76]). Parameters
(G and Gn) of equations (I1a) and (I1b) can be identi-
fied via the same method introduced in section IIID and
Appendix G, while we use fractional integrated stress f ’
on behalf of stress f.

[1] Y. Fung, Biomechanics: mechanical properties of living
tissues, Biomechanics / Y. C. Fung (Springer-Verlag,
1981).

[2] A. Wineman, Mathematics and Mechanics of Solids 14,
300 (2009).

[3] Y.-C. Fung, Biomechanics: mechanical properties of liv-
ing tissues (Springer Science & Business Media, 2013).

[4] W. Maurel, Y. Wu, N. M. Thalmann, and D. Thal-
mann, Biomechanical models for soft tissue simulation
(Springer, 1998).

[5] H. T. Banks, S. Hu, and Z. R. Kenz, Adv. in Appl. Math.
Mech 3, 1 (2011).

[6] E. Samur, M. Sedef, C. Basdogan, L. Avtan, and O. Duz-
gun, Medical Image Analysis 11, 361 (2007).

[7] A. S. Naini, R. V. Patel, and A. Samani, Biomedical
Engineering, IEEE Transactions on 58, 2852 (2011).

[8] W. Ehlers and B. Markert, Journal of biomechanical en-
gineering 123, 418 (2001).

[9] W. Zhang, H. Y. Chen, and G. S. Kassab, Biomaterials
28, 3579 (2007).

[10] K. Miller, Journal of Biomechanics 33, 367 (2000).
[11] K. Miller and K. Chinzei, Journal of Biomechanics 35,

483 (2002).
[12] J. J. Sarver, P. S. Robinson, and D. M. Elliott, Journal

of biomechanical engineering 125, 754 (2003).
[13] D. W. a. Brands, G. W. M. Peters, and P. H. M. Boven-

deerd, Journal of Biomechanics 37, 127 (2004).
[14] C. Chui, E. Kobayashi, X. Chen, T. Hisada, and

I. Sakuma, Medical and Biological Engineering and Com-

puting 42, 787 (2004).
[15] A. E. Kerdok, M. P. Ottensmeyer, and R. D. Howe,

Journal of Biomechanics 39, 2221 (2006).
[16] M. Sedef, E. Samur, and C. Basdogan, 2006 14th Sym-

posium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems , 201 (2006).

[17] E. Samur, M. Sedef, C. Basdogan, L. Avtan, and O. Duz-
gun, Medical Image Analysis 11, 361 (2007).

[18] N. Tanaka, M. Higashimori, and M. Kaneko, Engineering
in Medicine and Biology Society, Annual International
Conference of the IEEE 2008, 106 (2008).

[19] Z. Gao, K. Lister, and J. P. Desai, Annals of biomedical
engineering 38, 505 (2010).

[20] A. Sadeghi Naini, R. V. Patel, and A. Samani, IEEE
Transactions on Biomedical Engineering 58, 2852 (2011).

[21] K. K. Darvish and J. R. Crandall, Medical engineering
& physics 23, 633 (2001).

[22] J. Kim, B. K. Tay, N. Stylopoulos, D. W. Rattner, and
M. A. Srinivasan, in Medical Image Computing and Com-
puter Assisted Intervention 2003 (Springer, 2003) pp.
206–213.

[23] J.-M. Schwartz, M. Denninger, D. Rancourt, C. Moisan,
and D. Laurendeau, Medical Image Analysis 9, 103
(2005).

[24] J. Kim and M. a. Srinivasan, Medical image computing
and computer-assisted intervention 8, 599 (2005).

[25] H. Liu, D. P. Noonan, Y. H. Zweiri, K. Althoefer, L. D.
Seneviratne, et al., in Intelligent Robots and Systems,
2007. IROS 2007. IEEE/RSJ International Conference



23

on (IEEE, 2007) pp. 208–213.
[26] N. Famaey and J. V. Sloten, Computer methods in

biomechanics and biomedical engineering 11, 351 (2008).
[27] Y. T. Lu, H. X. Zhu, S. Richmond, and J. Middleton,

Journal of Biomechanics 43, 2629 (2010).
[28] a. M. Sims, T. Stait-Gardner, L. Fong, J. W. Morley,

W. S. Price, M. Hoffman, a. Simmons, and K. Schind-
helm, Biomechanics and Modeling in Mechanobiology 9,
703 (2010).

[29] S. Marchesseau, T. Heimann, S. Chatelin, R. Willinger,
and H. Delingette, Progress in Biophysics and Molecular
Biology 103, 185 (2010).

[30] B. Ahn and J. Kim, Medical Image Analysis 14, 138
(2010).

[31] E. Basafa and F. Farahmand, International Journal of
Computer Assisted Radiology and Surgery 6, 297 (2011).

[32] Y. K. Y. Kobayashi, J. O. J. Okamoto, and M. Fujie,
Proceedings of the 2005 IEEE International Conference
on Robotics and Automation , 1644 (2005).

[33] Y. Kobayashi, A. Onishi, T. Hoshi, K. Kawamura,
M. Hashizume, and M. G. Fujie, International Journal of
Computer Assisted Radiology and Surgery 4, 53 (2009).

[34] Y. Kobayashi, A. Kato, H. Watanabe, T. Hoshi,
K. Kawamura, and M. G. Fujie, Journal of Biomechan-
ical Science and Engineering 7, 177 (2012).

[35] Y. Kobayashi, H. Watanabe, T. Hoshi, K. Kawamura,
and M. G. Fujie, in Soft Tissue Biomechanical Modeling
for Computer Assisted Surgery (Springer, 2012) pp. 41–
67.

[36] Y. Kobayashi, M. Suzuki, A. Kato, M. Hatano, K. Kon-
ishi, M. Hashizume, and M. G. Fujie, IEEE Transactions
on Robotics 28, 710 (2012).

[37] M. Tsukune, Y. Kobayashi, T. Miyashita, and G. M.
Fujie, International Journal of Computer Assisted Radi-
ology and Surgery 10, 593 (2014).

[38] Y. Kobayashi, T. Watanabe, M. Seki, T. Ando, and
M. G. Fujie, Advanced Robotics 26, 1253 (2012).

[39] N. Okamura, M. Tsukune, Y. Kobayashi, and M. G. Fu-
jie, in Engineering in Medicine and Biology Society, An-
nual International Conference of the IEEE (IEEE, 2014)
pp. 6919–6922.

[40] R. Hilfer, Applications of fractional calculus in physics
(World Scientific, 2000).

[41] G. Baumann, Fractals in Biology and Medicine , 17
(2011).

[42] V. E. Tarasov, International Journal of Modern Physics
B 27, 1330005 (2013), arXiv:arXiv:1502.07681v1.

[43] T. Pritz, Journal of Sound and Vibration 195, 103
(1996).

[44] D. O. Craiem and R. L. Armentano, Engineering in
Medicine and Biology Society, Annual International Con-
ference of the IEEE , 1098 (2006).

[45] H. Schiessel and a. Blumen, Macromolecules 28, 4013
(1995).

[46] M. Caputo and F. Mainardi, Pure and Applied Geo-
physics PAGEOPH 91, 134 (1971).

[47] M. Caputo and F. Mainardi, La Rivista del Nuovo Ci-
mento 1, 161 (1971).

[48] M. Caputo, The Journal of the Acoustical Society of
America 56, 897 (1974).

[49] a. Schmidt and L. Gaul, Constitutive models for rubber
(2001).

[50] C. Friedrich, Rheologica Acta 30, 151 (1991).

[51] W. G. Gloeckle and T. F. Nonnenmacher, Macro-
molecules 24, 6426 (1991).

[52] N. Heymans and J. C. Bauwens, Rheologica Acta 33, 210
(1994).

[53] M. Tanter, M. Fink, B. Robert, R. Sinkus, and B. Larrat,
2006 IEEE Ultrasonics Symposium , 1033 (2006).

[54] B. Suki, a. L. Barabási, and K. R. Lutchen, Journal
of applied physiology (Bethesda, Md. : 1985) 76, 2749
(1994).

[55] D. Craiem and R. L. Magin, Physical biology 7, 13001
(2010).

[56] H. Yuan, E. P. Ingenito, and B. Suki, Journal of applied
physiology (Bethesda, Md. : 1985) 83, 1420 (1997).

[57] Q. Chen, B. Suki, and K.-N. An, Journal of biomechan-
ical engineering 126, 666 (2004).

[58] S. E. Duenwald, R. Vanderby, and R. S. Lakes, Annals
of Biomedical Engineering 37, 1131 (2009).

[59] M. Balland, N. Desprat, D. Icard, S. Féréol, A. Asnacios,
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