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While it is widely accepted that information is encoded in neurons via action potentials or spikes,
it is far less understood what specific features of spiking contain encoded information. Experimental
evidence has suggested that the timing of the first spike may be an energy-efficient coding mechanism
that contains more neural information than subsequent spikes. Therefore, the biophysical features
of neurons that underlie response latency are of considerable interest. Here we examine the effects
of channel noise on the first spike latency of a Hodgkin-Huxley neuron receiving random input from
many other neurons. Because the principal feature of a Hodgkin-Huxley neuron is the stochastic
opening and closing of channels, the fluctuations in the number of open channels lead to fluctuations
in the membrane voltage and modify the timing of the first spike. Our results show that when a
neuron has a larger number of channels, (i) the occurrence of the first spike is delayed and (ii) the
variation in the first spike timing is greater. We also show that the mean, median, and interquartile
range of first spike latency can be accurately predicted from a simple linear regression by knowing
only the number of channels in the neuron and the rate at which presynaptic neurons fire, but the
standard deviation (i.e. neuronal jitter) cannot be predicted using only this information. We then
compare our results to another commonly used stochastic Hodgkin-Huxley model and show that the
more commonly used model overstates the first spike latency but can predict the standard deviation
of first spike latencies accurately. We end by suggesting a more suitable definition for the neuronal
jitter based upon our simulations and comparison of the two models.

I. INTRODUCTION

How information is encoded and decoded by neurons
is a fundamental question of neuroscience. Although the
coding mechanism used by neurons remains unclear, it is
widely assumed that coding is based on action potentials
or spikes. The most widely assumed coding mechanism
is known as rate coding which emphasizes that informa-
tion that neurons encode about the environment is found
in the mean firing rates of neurons [1]. There are three
ways to calculate the mean: as the average over the dis-
tribution of firing rates over a population of neurons at
a fixed time, or as an average of the distribution of fir-
ing rates of a single neuron over a long time window,
or as an average over a large number of runs of a sin-
gle neuron [2]. Such coding mechanisms are not without
flaws. Averaging over an extended time window is un-
feasible: behavioral experiments have shown that a fly
can react to stimuli and change flight directions in only
30-40ms [3] and humans can recognize visual scenes in
under 150ms [4], so there is simply not enough time for
the brain to average over an extended time period. Fur-
thermore, it is easier experimentally to record a single
neuron and average over N runs than it is to record N
neurons in a single run, so experimental evidence rests
on the assumption that there are populations of neurons
with similar properties. Based on these issues of tim-
ing and the requirement that neurons in a population be
essentially identical, the idea of “rate coding” by all of
these methods has been routinely criticized [5–7].
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An alternative coding mechanism, known as first spike
latency coding, has been used as a meaningful strategy to
understand information encoding by neurons. First spike
latency is defined as the time of the first spike relative to
stimulus onset. In [4], Thorpe argues that the brain does
not have time to evaluate more than one spike from each
neuron for each step of processing behavioral responses
to a stimulus. Therefore, the first spike should contain
most of the relevant information, and several groups have
shown that most of the information about a new stim-
ulus is conveyed very quickly [8–11]. In 2004, the first
direct evidence showing first-spike coding in humans was
released [12]. In this experiment, Johansson et al. ap-
plied objects of various shapes to fingertips at various
angles and forces. They showed that the first spikes con-
tained reliable information about the direction of finger-
tip force and object shape. Moreover, it provided infor-
mation faster than rate coding did. While we do not
claim that either rate coding or first spike latency cod-
ing is the correct one (and recent publications suggest
that both methods are used for information encoding in
animals [13–16]), we focus on first spike latency as an
informative mathematical problem and potential coding
mechanism.

In this study, we investigate the first spike latency of a
Hodgkin-Huxley neuron. We select this neuron for study
because of its close connection to biological reality and
its ability to reproduce almost all single-neuron propeties
[17–19]. One defining property of the Hodgkin-Huxley
neuron model that allows for action potential generation
is the existence of sodium and potassium channels which
transition between open and closed states with voltage-
dependent rate constants. Each channel is composed of
four gates: the sodium channel is composed of three ac-
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tivating gates (known as type m gates) and one inacti-
vating gate (known as a type h gate), and the potassium
channel is composed of four activating gates of type n.
At rest, the activating gates are closed and the inactiva-
tion gate is open, but as a neuron receives synaptic input
from other neurons, the membrane voltage rises, causing
the activating gates to open, which starts the depolar-
ization of the membrane potential. When the voltage is
high enough, the sodium inactivation gate closes while
the potassium gates remain open, which repolarizes the
membrane potential. The dynamics of the n gates and
m gates are similar, but the n gate dynamics are on a
slower time scale [20].

A channel can only conduct when it is considered open,
and a channel is considered open when all the gates
within the channel are open. The most direct approach
to modeling the open and closing of channels is referred
to as the Markov Chain model. In the Markov Chain
model, each of N channels of a particular type functions
as a Markov process, where the channel transitions in-
dependently among discrete configurations, creating a
continuous-time Markov Chain with voltage-dependent
transition rates. However, simulating such a Markov
Chain is computationally exhaustive, so we use a set of
stochastic differential equations developed by Fox and
Lu which well approximates the behavior of the Markov
Chain model [21]. The stochastic equations of Fox and Lu
do not modify the determinstic structure of the Hodgkin-
Huxley equations, and they include stochastic perturba-
tions which account for the opening and closing of chan-
nels. We refer to these stochastic perturbations as chan-
nel noise to be consistent with previous literature [22, 23].
This model was numerically simulated and agrees re-
markably well with dynamical behavior predicted by the
Markov Chain model of the channel states [22, 23]. Our
goal is to understand how channel noise affects the timing
of first spike latency.

Neurons in networks receive input from other neurons
within the network. Experimental studies have shown
that synapses transmit signals in an unreliable fashion
due to stochastic release of transmitters, and so not every
presynaptic spike elicits a postsynaptic response [24–26].
Experimental evidence shows that only 10−30 percent of
presynaptic spikes may elicit any postsynaptic response
[27, 28]. To the best of our knowledge, the first spike
time of a Hodgkin-Huxley model with channel noise and
stochastic input from presynaptic neurons has not been
simulated and is the focus of this paper.

Our paper is organized as follows: In Sec. II we give
a mathematical description of the stochastic Hodgkin-
Huxley neuron with unreliable synaptic input as well as
discuss how we analyze first spike latency from a statis-
tical perspective. Then in Sec. III we analyze how the
parameters of the model affect these first spike latency
times and the distribution of the times. In addition, we
study what effect the number of channels in a Hodgkin-
Huxley neuron has on the first spike latency. We then
conclude with some closing remarks in Sec. IV.

II. THE MODEL

The deterministic dynamics of the Hodgkin-Huxley
model [17] are given by the following set of differential
equations

CV̇ = Isyn(t)− ḡNam
3h(V − ENa)

− ḡKn
4(V − EK)− ḡL(V − EL)

ṅ = αn(V )(1− n)− βn(V )n (1)

ṁ = αm(V )(1−m)− βm(V )m

ḣ = αh(V )(1− h)− βh(V )h,

where

αn(V ) =
0.01(V + 10)

exp[(V + 10)/10]− 1

βn(V ) = 0.125 exp[V/80]

αm(V ) =
0.1(V + 25)

exp[(V + 25)/10]− 1

βm(V ) = 4 exp[V/18]

αh(V ) = 0.07 exp[V/20]

βh(V ) =
1

exp[(V + 30)/10] + 1
.

The values of the parameters along with definitions are
found in Table I. The parameters have been chosen to
match biological values [17] and shifted so that the equi-
librium membrane potential of our Hodgkin-Huxley neu-
ron is set to 0 mV.

TABLE I: Parameter values used for simulation of the
Hodgkin-Huxley model. The resting potential has been set
to 0 mV

Parameter Definition Value

C membrane capacitance 1µF/cm2

ENa sodium reversal potential 120mS/cm2

EK potassium reversal potential 36mS/cm2

EL leak reversal potential 0.3mS/cm2

ḡNa maximal sodium conductance 115mV

ḡK maximal potassium conductance −12mV

ḡL maximal leak conductance 10.6mV

The channel conductances ḡK and ḡNa are the produts
of two factors: an individual channel conductance on the
order of picosiemens and the number of channels in the
area A (given by NNa for the number of sodium chan-
nels and NK for the number of potassium channels). The
sodium channel density is therefore the value NNa/A and
likewise NK/A for potassium channel density which we
will use when discussing the stochastic model. Not every
channel is open at the same time, and so the equations
account for this by multiplying the conductances by a
factor describing the fraction of channels open at a given
time. For sodium channels, this factor is given by the
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m3h term since each sodium channel has three activa-
tion gates of type m and one inactivation gate of type
h. Similarly, the n4 term is used for potassium chan-
nels as each potassium channel consists of four indepen-
dent activation gates of type n [17, 21]. For this paper,
we assume that the sodium channel density is given by
60µm−2 and the potassium channel density by 18µm−2,
where the ratio is derived from biophysical neuron pa-
rameters [22, 29].

Generally, a presynaptic neuron connects to over 104

postsynaptic neurons, and estimates are that the brain is
composed of 100 billion neurons, so each neuron connects
to many others and is connected to many others [2]. To
simplify matters, we assume that our Hodgkin-Huxley
neuron receives current from presynaptic neurons which
spike at some rate λ. We let λ be the same for each presy-
naptic neuron. We express such a presynaptic current as
follows:

Isyn(t) = Q

[
Ne∑
k=1

∑
l

hlkδ(t− tlk)

−
Ni∑

m=1

∑
n

hnmδ(t− tnm)

]
. (2)

In this equation, Ne is the number of excitatory presy-
naptic neurons, Ni the number of inhibitory presynap-
tic neurons, Q = C∆V represents the charge associated
with each voltage change ∆V , tlk is the discharge time
of the lth spike at the kth excitatory presynaptic neuron,
and similar notation represents the inhibitory presynap-
tic neurons [30]. To account for the fact that not every
presynaptic spike elicits a postsynaptic response [24–26],
we introduce the random variable hlk where hlk = 1 with
probability p (the probability of a successful postynaptic
response) and hlk = 0 with probability 1−p (the probabil-
ity of no postsynaptic response). As we indicated earlier,

experimental evidence suggests that reasonable values for
the parameter p are in the range 0.1− 0.3 [27, 28].

First we choose the values for the parameters in the
Isyn(t) expression [Eq. (2)]. Each excitatory presynaptic
neuron which induces a voltage change to our Hodgkin-
Huxley model instantaneously increases the voltage by a
value of Q which for this model will be set to 0.5mV .
This value is near experimental observations for neurons
in the rat visual cortex and the cat visual cortex [31–35].
Experiments have shown that mammalian vestibular nu-
cleus neurons fire spontaneously in the awake animal at
baseline firing rates of 30 − 100 Hz (and can increase to
several hundred Hz) [36, 37] (in humans 40 Hz is consid-
ered a typical firing rate associated with consciousness)
[38]. Thus in order to see the trend of first firing times as
a function of the spiking rate of presynaptic neurons, we
focus on the interval of 30− 100 Hz. We further assume
that the number of presynaptic neurons is 2000 (since
only a fraction of the 104 presynaptic neurons will pro-
vide input) and the excitatory to inhibitory ratio of the
presynaptic neurons is Ne : Ni = 4 : 1, the ratio found
in the mammalian cortex [39]. While we do not claim
that these parameter values are exact across all species,
they are biologically plausible values which allow us to
examine how the first spike latency time is affected by
underlying parameters in the model.

In the limit of infinitely many channels, m3h and n4

accurately model the fraction of open channels. Real neu-
rons, on the other hand, only have finitely many chan-
nels, so fluctuations in the number of open channels have
an effect on the membrane voltage. The channel noise
model developed by Fox and Lu is a stochastic version of
the Hodgkin-Huxley system to include fluctuations in the
number of open channels. The Fox and Lu system to ac-
count for finitely many channels is given by the following
twelve stochastic differential equations [21, 22]:

CV̇ = [Isyn(t)− ḡNay31(V − ENa)− ḡKx4(V − EK)− ḡL(V − EL)]

ẋ = AKx + 4αnx0e1 +
1√
NK

SKξK (3)

ẏ = ANay + 3αmy00e1 + αhy00e4 +
1√
NNa

SNaξNa.

The vector x is composed of components xi, (i =
1, 2, 3, 4), representing the proportion of potassium chan-
nels with i open gates of type n. The entries of y are
denoted as yij , (i = 0, 1, 2, 3 and j = 0, 1), representing
the proportion of sodium channels with i open m sub-
units and j open subunits of type h. The quantities x0
and y00 are defined by using the fact that

∑
i xi = 1 and

similarly for the y vector. The vectors ei are unit vectors

with 1 in the ith entry. The matrices AK , ANa, SK , and
SNa are given in the appendix. Moreover, ξK and ξNa

are vectors of independent Gaussian white noise terms.
While the system above is valid for a large number of
channels, it has been shown to be a very accurate rep-
resentation of the Markov chain model even for a small
number of channels [22].

We are interested in understanding the time to first
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spike and the variability of this spiking time across tri-
als. A spike occurs when the voltage V (t) crosses some
threshold θ. Hence we define the random variable T as

T = inf {t ≥ 0|V (t) ≥ θ} . (4)

We consider θ to be a fixed constant of approximately
35mV , although the exact value is not important since it
shifts the spike time by only a fraction of a milisecond.
In order to study typical first firing times, many studies
have looked at the expectation of T , denoted by 〈T 〉, and
the trial-to-trial variability (or jitter) of T defined as the
standard deviation of T . These values generally provide
useful information when the distribution is not skewed.
However, based on our simulations of Eq. (3), the distri-
bution of spike times is heavily skewed (see Fig. 1). For
this reason, we choose instead to compare median values
as a better measure of the central tendency of data and
to use the interquartile range (IQR) as a better measure
of trial-to-trial variability, where the interquartile range
is defined to be the difference between the first quartile
and third quartile of a data set. Median first spike laten-
cies and IQRs have begun to be used more in biological
experiments [40, 41], but actual simulations comparing
these values to those of means and standard deviations
have, to the best of our knowledge, not been done.

The parameters of Eq. (3) that we vary in these sim-
ulations are the presynaptic firing rates, the probabil-
ity of successful transmission of presynaptic spikes to
our Hodgkin-Huxley neuron, and the number of chan-
nels in the neuron. As the number of channels grows,
the dynamics of the stochastic Hodgkin-Huxley neuron
converges to that of the deterministic Hodgkin-Huxley
model. From the structure of the stochastic Hodgkin-
Huxley model [Eq. (3)], it is clear that fewer channels
lead to stronger fluctuations. Furthermore, having Ne

independent excitatory presynaptic neurons, each firing
at rate λ, is statistically equivalent to having one ex-
citatory presynaptic neuron firing at rate λNe. To ac-
count for the less than certain successful transmission
from the presynaptic neuron, we modify this rate term to
be λNep, where p is the probability of a successful trans-
mission. Since Ne is a fixed parameter, we can eliminate
one parameter by considering λp as a single parameter
and thus viewing the probability term p as rescaling the
rate. Thus, the two parameters we will look at are the
product λp which we will refer to as the “effective rate”
and the number of channels (NK and NNa). The param-
eters we use for the numbers of channels can be found in
Table II.

III. RESULTS AND DISCUSSION

All simulations were based on the system of stochas-
tic differential equations Eq. (3). We used the Euler-
Maruyama method [42, 43] with time step ∆t = 50µs
and with 2000 presynaptic neurons providing spike train

FIG. 1: (Color online) Examples of the distribution of first
spiking times obtained from the set of equations Eq. (3) show-
ing positive skewness. Parameters used for low noise plots
(panels (a) and (c)) were NNa = 1800, and NK = 540
while for high noise plots (panels (b) and (d)), they were
NNa = 600, and NK = 180. For low rate plots (panels (a)
and (b)), the parameters for the synaptic input current were
λ = 25 Hz and p = 0.10, while for high rate plots (panels
(c) and (d)), the parameters were λ = 100 Hz and p = 0.30.
Panel (e) shows no channel noise with high synaptic input.

TABLE II: Membrane area and corresponding number of
channels

Membrane Area Number of Channels

(µm2) NNa NK

5 300 90

10 600 180

20 1200 360

30 1800 540

inputs of rate λ. Initial conditions were given by the rest-
ing state of the neuron shifted so that V (0) = 0 mV. The

mean first spike latency is defined as 〈t〉 = 1
N

∑N
i=1 ti

where N is the number of trials (we used N = 1000) and
ti is the time of the first spike for the ith trial. The stan-

dard deviation (or jitter) is defined as J =

√
〈t2〉 − 〈t〉2

[30, 44, 45]. The median is defined as t(N
2 ) and the in-
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terquartile range is defined as t( 3N
4 ) − t(N

4 ) where t(j) is

the jth order statistic.

We first discuss the behavior seen in Fig. 1. The his-
tograms shown in Fig. 1 are based on 2, 000 simulations
of Eq. (3). The input current into the Hodgkin-Huxley
neuron determines its firing rate. Ignoring the stochas-
ticity of the input current for the moment, the neuron is
in the silent regime (i.e. no firing) for I < 6.27µA/cm2,
in a bistable regime where the fixed point coexists with
a stable limit cycle for 6.27µA/cm2 < I < 9.78µA/cm2,
and in a periodic firing regime for I > 9.78µA/cm2. Tak-
ing the stochasticity into account, the average stimulat-
ing current Īsyn determines the dynamical regime of the
neuron. Following Luccioli et al. [46], the average stim-
ulating current is given by Īsyn = Cλp∆V (Ne − Ni).
With the parameters defined earlier, this simplifies to
Īsyn = (0.6µA · s/cm2)λp. Therefore, the low input
current panels in Fig. 1 [panels (a) and (b)] presents a
stochastic neuron in the silent regime, and the high input
current [panels (c) and (d)] illustrate a stochastic neuron
in the periodic firing regime.

In our model, there are two mechanisms that lead a
neuron to fire: the stochastic synaptic current and the
intrinsic channel noise. Therefore, we expect to see some
juxtaposition of the distributions from both sources in
the first spike latency distributions in Fig. 1 [46, 47].
The multipeak distributions in panel (b) (low firing rate
panel) shows this clearly: each peak is primarily due
to one or the other of the two firing mechanisms. Fur-
ther evidence of the reasoning behind the multipeaks can
be observed in panel (e) in which the channel noise has
been eliminated. With the absence of this extra source
of noise, the histogram lacks a multipeaked distribution.
The very small fluctuations in the channel noise lead to
a distribution with a very long tail as seen in panel (a).
This tail overlaps with and masks the low synaptic in-
put peak. This behavior is similar to that illustrated by
Luccioli et al. for the low rate behavior [46]. Increases
in the average synaptic current and in the amplitude of
intrinsic channel noise lead to faster first spike latency,
which is consistent with the fact that a neuron fires as
soon as a threshold value is reached. The associated shift
in the distribution toward a faster first spike latency and
less heavy tails is seen in panels (c) and (d) of Fig. 1.
As both of these current increases lead to a shortening of
the first spike latency, the multipeaks tend to merge at
the low end and the resulting distributions are smoother
than in the low firing rate cases illustrated in panels (a)
and (b). As we will see in the next sections, some statis-
tical properties of these distributions can be accurately
modeled by a linear regression depending on the synaptic
input rate and the intrinsic channel noise.

Our next goal is to compare the mean with the median
and the IQR with the standard deviation of the distribu-
tion of first spike latencies for different channel areas and
effective rates (recall that the effective rate is the quan-
tity λp, where λ is the Poisson rate of each presynaptic
neuron and p is the probability of successfully producing

a postsynaptic response).

A. Mean/Standard Deviation vs. Median/IQR

As previously stated, the skewness of the data suggests
using the median and IQR to analyze typical first spike
latencies and the IQR to study their variability rather
than using the mean and standard deviation. For each of
the channel areas in Table II, we plotted the resulting val-
ues of means, medians, IQRs, and standard deviations,
see Fig. 2. We then calculated the Pearson Correlation
Coefficients r [48] to measure the strength of correlation
between the statistics of interest and the effective firing
rate, the results of which are shown in Table III .

TABLE III: Pearson Correlation Coefficients r of the rela-
tionship between Effective Rate and Statistical Measures for
various Membrane Areas

Membrane Area Mean Median IQR Standard Deviation

5 -.9376 -.9690 -.9070 -.6959

10 -.9783 -.9764 -.9362 -.6955

20 -.9583 -.9757 -.9515 -.6061

30 -.9659 -.9710 -.9529 -.7335

Since neuronal first spike latency (FSL) is heavily de-
termined by firing rates of input neurons [49], we would
like to be able to predict the median firing time knowing
the effective rate. For this reason, the Pearson’s Corre-
lation Coefficient gives us an idea about how linear the
data is, and thus values close to r = −1 suggest we can
closely estimate the statistics of the first spike latency.
We first note that the mean and median values are both
strongly correlated with the effective rate, with the me-
dian first spike time slightly more correlated with the
effective rate. The values of the mean first spike latency
are greater than those of the median first spike latency,
which results from the positive skewness of the data. One
naturally expects that when there is an increase in input
from the presynaptic neurons, the postsynaptic neuron
should fire sooner. In fact, that trend is observed in
Fig. 2, where we show data from simulations when the
membrane area is 10µm2 and 30µm2 as a representative
sample of statistical behavior. We can therefore see that
the effective rate can be used as a good predictor for de-
termining the values of the mean and median first spike
latencies. This is a key result of this work: despite the
randomness of the presynaptic input and the randomness
of the intrinsic channel noise, a simple linear regression
yields high accuracy for predicting a number of statisti-
cal properties of the distribution of first spike latencies
for a biologically plausible range of values.

The results in Table III suggest that IQR is a better
measure for the spread of the first spike latencies than
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FIG. 2: (Color online) Plots of the mean, median, IQR, and standard deviation (STD) of the result of 1000 simulations of the
set of equations Eq. (3) for each value of effective rate for two channel areas (10µm2 and 30µm2). The plots show that the
mean, median, and IQR are modeled exceptionally well by a linear function, whereas the standard deviation is not.

the standard deviation, and that the effective rate more
accurately predicts the spread of data in terms of IQR
compared to the standard deviation. The reason is that
the combination of the stochastic opening and closing of
channels along with unreliable synaptic input can cause
large outliers due to noise being able to drive voltage
away from the threshold thereby delaying the time to first
spike. These outliers have a much stronger effect on the
standard deviation than on the IQR. For this reason, the
effective rate does a poorer job estimating the neuronal
jitter than it does estimating the IQR as a measure of the
spread of the data. We also see that for a fixed channel
area, there is much more variability in the measurements
of standard deviation for smaller effective rates, but that
the spread decreases as the effective rate increases. This
is due to the fact that when the effective rate is higher,
the postsynaptic neuron receives more input and there-
fore the voltage drifts toward the threshold more quickly,
thereby reducing the probability of an outlier.

B. Effect of Channel Number on FSL

We now explore the effect of changing the number of
channels on the distribution of first spike latencies. As
a result of Eq. (3), increasing the number of channels
reduces the fluctuations in voltage due to the stochastic
opening and closing of the gates. Figure 3 shows the
median first spike latency as the channel area increases
for various values of the effective rate. For clarity, we do

not include every effective rate value used in the previous
section, but we use a sufficiently broad range in order to
understand trends in the behavior of first spike latency
times.

We recall that the number of sodium channels is 60×A
where A is the channel area (in units of µm2), and the
number of potassium channels is 18×A. That is, the total
number of channels is directly proportional to the channel
area. From the structure of Eq. (3), we know that the
Wiener processes are scaled by a factor of N−1/2, where
N is the number of channels. By increasing the channel
area, the variance of the Wiener processes decreases by
a factor proportional to N−1 ∝ A−1, and so a larger
number of channels of a neuron leads to a smaller effect
of the stochastic opening and closing of the gates within
the channels.

We first discuss the effect of channel noise on the me-
dian first spike latency. From Fig. 3, we see that as the
number of channels increases, there is a delay in the me-
dian time to spike as well as an increase in the spread
of firing times. Conversely, when there are fewer chan-
nels, the median times until first firing are close to each
other regardless of synaptic input rate. Because there are
more excitatory than inhibitory neurons, the presynaptic
neurons provide a net positive voltage increase, so there
is a net drift for the voltage to increase toward the fir-
ing threshold. The simulations show that the presence of
noise helps to accelerate this voltage increase. Addition-
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FIG. 3: (Color online) Median first spike latency and IQR for various effective firing rates as a function of the change in the
number of channels in the Hodgkin-Huxley neuron. Lines show best fit linear regression for various effective rates. Top line to
bottom line show best linear fits for circles, triangles, pluses, and stars respectively.

ally, we note that when the noise is weaker (i.e., when
there is a larger number of channels), the median firing
time can nevertheless be short for strong enough synap-
tic input. Because there are two sources of stochastic
effects, the channel noise and the synaptic input fluctua-
tions, it follows that when the channel noise in the neuron
is weak, the synaptic input becomes the primary factor
for voltage fluctuations. This effect is observed in Fig. 3.

As discussed in the previous section, we find the IQR
to be a better measure of the spread of first spike latency
statistics than the standard deviation. For this reason,
we show the IQR instead of the standard deviation in
Fig. 3. The effects observed for the IQR are essentially
the same as those observed for the median.

C. Comparison to Subunit Noise Model

An alternative model to incorporate stochasticity into
each gating variable is referred to as the subunit noise

model, where each gating variable equation in the original
Hodgkin-Huxley model is perturbed by Gaussian white
noise. This set of stochastic differential equations was
first proposed by Fox and Lu as a Langevin equation de-
scription for the dynamics of the subunits, and was de-
rived by applying a system size expansion to the states of
populations of subunits [21]. Such a system is represented
by the following set of stochastic differential equations:

CV̇ = Isyn(t)− ḡNam
3h(V − ENa)

− ḡKn
4(V − EK)− ḡL(V − EL)

dn

dt
= αn(V )(1− n)− βn(V )n+ ξn(t) (5)

dm

dt
= αm(V )(1−m)− βm(V )m+ ξm(t)

dh

dt
= αh(V )(1− h)− βh(V )h+ ξh(t)

(6)
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where the ξ’s are independent Gaussian white noises with
zero mean and covariance function

〈ξx(s)ξx(t)〉 =
αx(1− x) + βxx

N
δ(t− s).

Here, x is either m,h, or n, and N is the number of Na+

channels for the m and h subunits or the number of K+

channels for the n subunits. Equations (5) have been
used extensively to account for fluctuations in the gat-
ing variables and hence in the fraction of open channels
[50–54]. One reason for its popularity is that it maintains
the original structure of the Hodgkin-Huxley model (with
the addition of noise terms). Despite its widespread use,
numerical studies have revealed inaccuracies such as volt-
age fluctuations that are too weak [55], firing rates that
are too low (and hence mean interspike intervals that are
too long), and overstated information transfer rates [56].
Such discrepancies can be explained as follows: the quan-
tities m, h, and n represent the fraction of open subunits,
whereas the quantities that influence the membrane po-
tential are the products m3h and n4, the fraction of open
channels. In the limit of infinitely many channels, m3h
and n4 correctly model the fraction of open channels,
but for finitely many channels, there is no guarantee that
fluctuations in these terms will model fluctuations in the
total fraction of open channels. In other words, the sub-
unit noise model assumes that

〈
m3h

〉
= 〈m〉3 〈h〉, which

is not correct for a neuron with only finitely many chan-
nels.

Let us consider a case study of the subunit noise model
Eq. (5) using an area of 30µm2. The plots of the median,
mean, standard deviation, and IQR are shown in Fig. 4.
The Pearson correlation coefficients are: mean (-.9781),
median (-.9694), standard deviation (-.9714), and IQR
(-.9528). The standard deviation for the subunit noise
model has a much stronger linear correlation with the
effective rate λp of presynaptic neuron firing than the
channel noise model. As discussed in [55], the fluctua-
tions in membrane voltage due to the intrinsic noise are
much weaker than those resulting from the synaptic in-
put from presynaptic neuron. Because the inputs from
the presynaptic neurons cause the membrane voltage to
have a net drift toward the threshold, the probability of
having a first spike time which deviates greatly from the
mean spiking time is very small. Therefore, we expect the
values for the mean, median, IQR, and standard devia-
tion to have strong correlation values, which is observed
in Fig. 4.

Moreover, for a membrane area A = 30µm2, the sub-
unit noise model typically has a larger mean, median, and
IQR but a smaller standard deviation than the channel
noise model (with the value of the IQR larger than that
of the standard deviation). As pointed out in [56], the
subunit noise model has a longer mean spike interval (i.e.
lower firing rate). For that reason, we expect an overall
delay in the time until the first spike and hence we see
an increase in the mean and median first spike latency,
and this delay is observed in our simulations. We also

FIG. 4: (Color online) Plots of the subunit noise model Eq. (5)
comparing the median (top plot), IQR (second plot), Mean
(third plot), and the standard deviation (bottom plot) for
different values of the effective rates λp for the case when
noise perturbs subunit fractions. The parameter for the area
of the neuron is A = 30µm2.

observed that although some trials had a large first spike
latency, they did not deviate as far from the central ten-
dency of the distribution as they did in the channel noise
model. The delay in the mean and median first spike la-
tency as well as the observation of large first spike latency
times which are relatively closer to the median of the dis-
tribution compared to the channel noise model explains
the increase in IQR and the lower value for standard de-
viation in the former.

Although the subunit noise model maintains the orig-
inal structure of the Hodgkin-Huxley neuron model, the
subunit noise model and the channel noise model show
widely different behavior for the standard deviation of
first spike latencies for different effective rates and chan-
nel areas. As previous literature has shown [55, 56], the
channel noise model maintains high accuracy for pre-
dicting the original Markov Chain model whereas the
subunit model does not. Our numerical results imply
that the traditional definition of neuronal jitter (stan-
dard deviation) is not an appropriate statistical measure
of first spike latency. The fact that standard deviation
is well-predicted in the inaccurate subunit noise model
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and poorly predicted in the more accurate Fox and Lu
model [Eq. (3)] suggests that the traditional definition
of neuronal jitter is ill-suited for describing variations in
the first spike latency.

IV. CONCLUSIONS

In this paper, we have sought to examine the effects
of channel noise on first spike latency. Because real neu-
rons have finitely many channels, the stochastic opening
and closing of these channels leads to fluctuations in the
membrane voltage that are not accounted for in the de-
terministic Hodgkin-Huxley model. In order to account
for these fluctuations, we used the Fox and Lu system
size expansion model because (a) it is a highly accu-
rate approximation to the gold standard Markov Chain,
and (b) it is a far more computationally efficient model
than the Markov Chain [21, 22]. We first looked at sta-
tistical descriptions of the first spike latency, and we
demonstrated that the median/IQR were better statis-
tical descriptions of the first spike latency distribution
than the mean/standard deviation. We noted that the
distribution of spike times is positively skewed, which
leads to poor predictions of the neuronal jitter (defined
as the standard deviation of the spike latency distribu-
tion). Moreover, we established the surprising result that
statistics of the first spike latency distribution could be
accurately predicted by a simple linear regression despite
the presence of both intrinsic channel noise and the ran-
domness of synaptic input from other neurons in the net-
work. Our work suggests that despite the randomness
within the model, accurate measures of parameters of a
stochastic neural system can lead to highly accurate pre-
dictions of first spike latencies through a simple linear
function.

We then analyzed the effect of channel noise on the
median first spike latency and on the IQR of first spike
latencies. We showed that as the channel number in-
creases, the effective firing rate becomes the determining
factor in the distribution of first spike latencies. This
is due to the fact that increasing the channel number
decreases the amplitude of the fluctuations in the mem-
brane voltage, so the residual fluctuations in voltage are
increasingly due to the randomness of presynaptic neural
firing. The results from our simulations agree with previ-
ous literature that channel noise contributes importantly
to spike timing by increasing fluctuations in spike timing
but decreasing first spike latency [57]. An application
of such a result is in “stochastic facilitation,” or the im-
provement of information processing due to noise. As we
previously noted, we showed that the presence of channel
noise in a neuron causes spiking to occur more quickly.
Bi and Poo showed that when the postsynaptic neuron
fires within 20ms after the presynaptic neuron fires, the
synaptic efficacy increases, leading to long-term potentia-
tion [58]. Our results would suggest that the fluctuations
of the membrane potential due to the stochastic opening

and closing of membrane channels helps facilitate spike-
timing dependent plasticity.

Lastly, we showed that the standard deviation may
be an inappropriate definition for studying first spike la-
tency variations. To understand why, we compared the
channel noise model to that of a subunit noise model in
which the individual gating variables themselves are per-
turbed with independent Gaussian white noise. The sub-
unit noise model was first introduced by Fox and Lu as
a simplification of their system size expansion [21]. The
subunit noise model is more commonly used due to the
fact that it retains the original structure of the Hodgkin-
Huxley model. As we noted earlier, the subunit noise
model assumes that

〈
m3h

〉
= 〈m〉3 〈h〉, which is gen-

erally not true when the system contains finitely many
channels. This assumption leads to weaker voltage fluc-
tuations and lower firing rates [55, 56]. Our simulations
show that compared to the channel noise model, the sub-
unit noise model increases the mean and median time to
first spike but decreases the neuronal jitter. The neuronal
jitter can be predicted far more accurately from know-
ing the effective rate in the subunit noise model than in
the channel noise model. In other words, using standard
deviation as a definition for neuronal jitter is accurate
only for the subunit noise model and not for the channel
noise model. However, this may lead to serious errors
in model applications because the channel noise model is
much more accurate (closer in replicatng dynamics of the
Markov Chain model) than the subunit noise model for
describing neurons with biological channel noise. For this
reason, we suggest that the IQR rather than the standard
deviation is a more appropriate measure of the spread of
first spike latencies.

To summarize, the main contributions of our paper are
(a) to demonstrate that the median and IQR are bet-
ter statistical measures to describe the first spike latency
distribution than the mean/standard deviation, (b) to
demonstrate that a simple linear regression is highly ac-
curate for estimating the IQR, mean, and median first
spike latency from knowing only the effective firing rate
for different numbers of channels, and (c) to provide evi-
dence that using standard deviation as a measure of neu-
ronal jitter may be improperly applied as a result of us-
ing the more common subunit noise model despite its in-
accuracy by producing weaker voltage fluctuations than
predicted by the Markov Chain model.

As a continuation of this work, we are in the process
of studying the effects of channel noise on the synchro-
nization of neurons in a network. Research has shown
a strong correlation between abnormal synchronization
and brain disorders including epilepsy, Parkinson’s dis-
ease, Alzheimer’s disease, and schizophrenia. Study-
ing the effects of channel noise on synchronization pro-
vides a mathematical framework towards understanding
how neurons regulate synchronization in the presence of
noise [59–61].
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Appendix

The matrices used for numerical simulations and in-
cluded in Eq. (3) are defined as:

AK =


−3(αn + βn) 2βn 0 0

3αn −2(αn + βn) 3βn 0

0 2αn −(αn + 3βn) 4βn
0 0 αn −4βn



ANa =



−(2αm + βm + αh) 2βm 0 0 βh 0 0

2αm −(αm + 2βm + αh) 3βm 0 0 βh 0

0 αm −(3βm + αh) 0 0 0 βh
0 0 0 −(3αm + βh) βm 0 0

αh 0 0 3αm −(2αm + βm + βh) 2βm 0

0 αh 0 0 2αm −(αm + 2βm + βh) 3βm
0 0 αh 0 0 αm −(3βm + βh)


SK and SNa are the square root matrices of the following diffusion matrices:

DK =


4αnx̄0 + (3αn + βn)x̄1 + 2βnx̄2 −3(αnx̄1 + 2βnx̄2) 0 0

−(3αnx̄1 + 2βnx̄2) 3αnx̄1 + 2(αn + βn)x̄2 + 3βnx̄3 −(2αnx̄2 + 3βnx̄3) 0

0 −(2αnx̄2 + 3βnx̄3) 2αnx̄2 + (αn + 3βn)x̄3 + 4βnx̄4 −(αnx̄3 + 4βnx̄4)

0 0 −(αnx̄3 + 4βnx̄4) αnx̄3 + 4βnx̄4



DNa =



d1 −2(αmȳ10 + βmȳ20) 0 0 −(αhȳ10 + βhȳ11) 0 0

−2(αmȳ10 + βmȳ20) d2 −(αmȳ20 + 3βmȳ30) 0 0 −(αhȳ20 + βhȳ21) 0

0 −(αmȳ20 + 3βmȳ30) d3 0 0 0 −(αhȳ30 + βhȳ31)

0 0 0 d4 −(3αmȳ01 + βmȳ11) 0 0

−(αhȳ10 + βhȳ11) 0 0 −(3αmȳ01 + βmȳ11) d5 −2(αmȳ11 + βmȳ21) 0

0 −(αhȳ20 + βhȳ21) 0 0 −2(αmȳ11 + βmȳ21) d6 −(αmȳ21 + 3βmȳ31)

0 0 −(αhȳ30 + βhȳ31) 0 0 −(αmȳ21 + 3βmȳ31) d7



with diagonal elements:

d1 = 3αmȳ00 + (2αm + βm + αh)ȳ10 + 2βmȳ20 + βhȳ11

d2 = 2αmȳ10 + (αm + 2βm + αh)ȳ20 + 3βmȳ30 + βhȳ21

d3 = αmȳ20 + (3βm + αh)ȳ30 + βhȳ31

d4 = αhȳ00 + (3αm + βh)ȳ01 + βmȳ11

d5 = αhȳ10 + 3αmȳ01 + (2αm + βm + βh)ȳ11 + 2βmȳ21

d6 = αhȳ20 + 2αmȳ11 + (αm + 2βm + βh)ȳ21 + 3βmȳ31

d7 = αhȳ30 + αmȳ21 + (3βm + βh)ȳ31

and where:

x̄i =

(
4

i

)
αi
nβ

4−i
n

(αn + βn)4

ȳij =

(
3

i

)
αi
mβ

3−i
m αj

hβ
1−j
h

(αm + βm)3(αh + βh)

Although these matrices involve a slight approximation
to those found in the original Fox and Lu literature [21],
simulations showing remarkable agreement between the
original Fox and Lu system and the system of equations
in Eq. (3) can be found in [22]. The primary purpose of
this approximation is to guarantee that the square roots
of the diffusion matrices exist.
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