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Abstract

Bacteria such as Vibrio alginolyticus swim through a fluid by utilizing the rotational motion of their he-

lical flagellum driven by a rotary motor. The flagellar motor is embedded in the cell body and turns either

clockwise (CW) or counterclockwise (CCW), which may lead to straight forward or backward swimming,

or reorientation of the cell. In this paper we investigate the dynamics of the helical flagellum by adopting the

Kirchhoff rod theory in which the flagellum is described as a space curve associated with orthonormal triads

that measure the degree of bending and twisting of the rod. The hydrodynamic interaction with the flagel-

lum is described by the regularized Stokes formulation. We focus on two different types of instabilities; (1)

whirling instability of a rotating helical filament in the absence of a hook and (2) buckling instability of a

flagellum in the presence of a compliant hook that links the flagellar filament to the rotary motor. Our sim-

ulation results show that the helical filament without a hook displays three regimes of dynamical motions;

stable twirling, unstable whirling, and stable overwhirling motions depending on the physical parameters

such as rotational frequency and elastic properties of the flagellum. The helical filament with a hook expe-

riences buckling instability when the motor switches the direction of rotation and the elastic properties of

the hook change. Variations of physical parameter values of the hook such as the bending modulus and the

length make an impact on the buckling angle which may subsequently affect the reorientation of the cell.
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I. INTRODUCTION

Monotrichous bacteria such as V. alginolyticus swim through a fluid by rotating their helical

flagellum. The rotational motion of the flagellum is driven by a rotary motor which is embedded in

the cell body and connected to the flagellar filament through a hook. The motor and the flagellum

turn together either clockwise (CW) or counterclockwise (CCW), which leads to straight forward

or backward swimming, or the reorientation of bacteria [1–3]. Here we investigate the dynamics

of a helical flagellum in which the motor is anchored in space and rotates at a given frequency. We

consider two different types of instabilities: (1) whirling instability of a rotating helical flagellum

in the absence of a hook, and (2) buckling instability of a rotating helical rod in the presence of

a compliant hook which links the helical filament to the rotary motor. The hook is much more

flexible than the flagellar filament, and its length is substantially shorter than the length of the

filament.

Wolgemuth et al. [4] studied the whirling instability of a rotating elastic rod that is intrinsically

straight and immersed in a Stokes flow by using slender body theory. They found a critical rotat-

ing frequency that classifies the dynamical motions of the rod into two categories; whirling and

twirling. Lim et al. [5] and Lee et al. [6] further classified the dynamical steady states into three

different regimes; twirling, whirling, and overwhirling. Twirling is a stable motion in which the

elastic rod returns to a straight state and rotates at a constant speed. Whirling is an unstable motion

in which the rod tilts slightly away from the rotational axis with a certain angle, but continues to

rotate about the rotational axis. Overwhirling is a stable motion in which the rod bends with a

large amplitude and rotates at a constant speed. They found that twirling and overwhirling coexist

as stable dynamical states at subcritical spinning frequencies, which was also observed in Manghi

et al. [7] and Wada and Netz [8].

In this paper, we investigate the dynamics of a rotating elastic rod that is intrinsically a left-

handed helix and immersed in a Stokes fluid. The motor end of the rod is tethered in space but is

able to rotate at a prescribed frequency, whereas the other end is free to move around in the fluid.

As in the case of the intrinsically straight rod, we find from our simulation results that a rotating

helical rod also exhibits three dynamical regimes while the rod keeps its helical shape. It is also

observed that the critical frequencies for the transition between the three regimes change as we

vary the physical parameters such as the elastic and geometric properties of the rod and the fluid

viscosity.
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Son et al. [3] discovered that the monotrichous bacterium V. alginolyticus flicks when there

occurs a buckling instability of the hook. Buckling of the hook plays a significant role in determin-

ing the swimming pattern and the chemotaxis of single-flagellated bacteria [3, 9]. V. alginolyticus

swims backward by turning the motor CW while the hook is under tension. Then it suddenly

changes the rotational direction of the motor to CCW, which causes the bacterium to swim for-

ward and its hook to be in a compressed state. The onset of compression of the hook may trigger

the buckling instability of the flagellum followed by the flicks of the bacterium. The length of

the hook is about 100 nm [10] which is very short compared to that of the helical filament (4-5

µm). The bending modulus of the hook is 2-3 orders of magnitude smaller than that of the helical

filament, and thus the hook can be easily bent. For more detailed information on the role of the

hook in the swimming process of bacteria, the reader may refer to the experimental and theoretical

works in [3, 11, 12].

Here we model a hook as an intrinsically straight rod and connect it to the helical flagellum

at one end and to the rotary motor at the other end. Then we change the rotational direction of

the motor from CW to CCW to investigate the buckling instability of the flagellum which may

subsequently affect the reorientation of the cell. We vary the physical parameters of the hook such

as the bending and twist moduli and the length of the hook to explore how these parameters affect

the buckling angle which is defined as the angle between the rotational axis and the helical axis.

We shall see that the buckling angle depends substantially on the bending modulus and the length

of the hook, but is independent of the twist modulus.

In order to investigate the fluid-mechanical interaction of the helical flagellum regarding two

different types of instabilities, we use the regularized formulation [13] for a Stokes flow combined

with the unconstrained Kirchhoff rod theory for an elastic rod. This method was first developed

by Olson et al. [6, 14] in which the elastic rod is represented by a space curve together with

orthonormal triads that measure the amount of bending and twisting along the rod. The small

length scales associated with bacterial motility permit the use of Stokes flow in which the inertial

effects are ignored just as in a very low Reynolds number flow. The elastic rod applies force and

torque to the fluid and moves at the local fluid velocity while the triads rotate at the local angular

fluid velocity obtained by the regularized fundamental solution of the Stokes flow.
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II. MATHEMATICAL MODEL

We use the Kirchhoff rod theory to model a helical flagellum of bacteria such as V. alginolyticus,

see Fig. 1 for a schematic diagram of our computational model. Kirchhoff rod theory uses a

space curve X(s, t) to describe the centerline of the flagellum and an associated orthonormal triad

{D1(s, t),D2(s, t),D3(s, t)} to represent the amount of bending and twisting of the flagellum.

Here, t is time and s is a Lagrangian coordinate along the rod with 0 ≤ s ≤ Lh+Lf , where Lh and

Lf are the lengths of the hook and the helical flagellar filament, respectively. The initial shape of

the helical centerline X(s, 0) is described as follows [15]:

X(s, 0) = (r(s) cos(αs), r(s) sin(αs), s) , (1)

where α is the wave number and the helical radius r(s) is a variable function defined as

r(s) =







0 , 0≤s≤Lh

r0

(

1− e−q(s−Lh)
2

)

, Lh ≤ s≤Lh + Lf .
(2)

The helical radius is 0 for the hook (0≤s≤Lh) which is a straight rod, and then increases gradually

to be r0 for the helical flagellar filament (Lh ≤ s≤Lh + Lf), see Fig. 1.

The vector D3(s, t) is initially defined as a unit tangent vector to the helical flagellum in (1),

and the other two vectors, D1(s, t) and D2(s, t), are perpendicular to the tangent vector following

the right-hand rule, i.e., normal and binormal vectors to the flagellum. Note that this initial con-

figuration of the centerline and the triad of the helical flagellum is in the equilibrium state in the

absence of external forces, and that their deformation gives rise to the internal energy and force.

Now we equip the bottom end of the hook with a rotary motor. The motor point is tethered in

space at Xmot = X(0, 0) and turns either CW or CCW at a prescribed angular frequency ω. This

can be done by defining the orthonormal triad of the motor point as follows:

D1
mot(t) = (cos(2πωt),− sin(2πωt), 0), (3)

D2
mot(t) = (sin(2πωt), cos(2πωt), 0), (4)

D3
mot(t) = (0, 0, 1), (5)

where t is the time in seconds and ω is the rotation rate in Hz. The sign of ω determines the

direction of rotation, i.e., ω > 0 corresponds to CCW rotation and ω < 0 corresponds to CW

rotation when the rod is viewed towards the motor from the helical filament. The rotation of the

motor applies the torque to the helical flagellum through the straight hook which may also rotate.
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FIG. 1. (Color online) A schematic view of a computational model for a left-handed helical flagellum. The

helical flagellar filament is linked to a compliant hook which is linked to a rotary motor that is tethered in

space and turns either counterclockwise (CCW) or clockwise (CW). The motor is represented by a single

material point.

Let N(s, t) and F(s, t) be the moment and the force, respectively, which are transmitted across

a section of the rod at the Lagrangian coordinate s at time t. Let f(s, t) and n(s, t) be the applied

force and the torque densities, respectively. Then the momentum and angular momentum balance

equations are described as follows:

0 = f +
∂F

∂s
, (6)

0 = n+
∂N

∂s
+

(

∂X

∂s
× F

)

, (7)

where all the variables may be expanded in the basis of the orthonormal triad as follows:

F =
3

∑

i=1

FiD
i, N =

3
∑

i=1

NiD
i, f =

3
∑

i=1

fiD
i, and n =

3
∑

i=1

niD
i. (8)

The constitutive relations are given by

Ni = ai

(

∂Dj

∂s
·Dk − Ωi

)

, (9)
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where (i, j, k) is any cyclic permutation of (1, 2, 3), and

Fi = bi

(

Di ·
∂X

∂s
− δ3i

)

, i = 1, 2, 3, (10)

where δ3i is the Kronecker delta. The coefficients a1 and a2 are the bending moduli, and a3 is the

twist modulus of the rod. The coefficients b1 and b2 are the shear moduli, and b3 is the stretching

modulus which controls the degree of the inextensibility of the rod. The strain twist vector Ω =

(Ω1,Ω2,Ω3) designates the intrinsic property of the elastic rod in which κ ≡
√

Ω2
1 + Ω2

2 is the

intrinsic curvature and Ω3 is the intrinsic twist of the rod of which the sign determines the helical

handedness of the rod. A negative value of Ω3 corresponds to a left-handed helix and a positive

value of Ω3 corresponds to a right-handed helix. We assume that the helical rod is intrinsically left-

handed throughout this work. The constitutive relations above can be derived from a variational

argument of the elastic energy potential for the unconstrained version of the Kirchhoff rod

E =
1

2

∫ L

0

[

a1

(

∂D2

∂s
·D3 − Ω1

)2

+ a2

(

∂D3

∂s
·D1 − Ω2

)2

+ a3

(

∂D1

∂s
·D2 − Ω3

)2

+b1

(

D1 ·
∂X

∂s

)2

+ b2

(

D2 ·
∂X

∂s

)2

+ b3

(

D3 ·
∂X

∂s
− 1

)2
]

ds,

(11)

where L = Lh + Lf is the total length of the rod. Note that, in the limit b3 → ∞, the rod becomes

completely inextensible. In this work, we choose the value of b3 sufficiently large to make the rod

almost inextensible and set a1 = a2 which implies that the rod is isotropic.

The helical rod is immersed in a viscous fluid which is governed by the incompressible regu-

larized Stokes equations

0 = −∇p + µ∆u+ g, (12)

0 = ∇ · u, (13)

where µ is the fluid viscosity. The unknown variables u, p, and g are the fluid velocity, pressure,

and the external force per unit volume applied to the fluid, respectively, and they are functions of

the fixed Cartesian coordinates x and the time t. The fluid force density g in Eq. (12) is given by

g(x, t) =

∫ L

0

(−f(s, t))ψǫ(x−X(s, t))ds+
1

2
∇×

∫ L

0

(−n(s, t))ψǫ(x−X(s, t))ds, (14)

where the radially symmetric blob function ψǫ is defined as

ψǫ(r) =
15ǫ4

8π(|r|2 + ǫ2)7/2
, (15)
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where ǫ is the regularization parameter and r = x − X for a point x in the fluid [13, 14]. The

blob function ψǫ is a bell-shaped function with infinite support and satisfies
∫∫∫

R3 ψǫ(r) dr = 1,

spreading most of the force and moment within a ball with the radius ǫ and the center at the rod

X. Eq. (14) describes how we apply the force and torque generated in the rod to the fluid, and this

implies that the rate at which the elastic rod works on the fluid is written in terms of the force and

moment applied to the fluid by the rod [16].

Together with Eqs. (6)-(10) and (12)-(14), the coupled system of equations closes with the

addition of the following equations:

w(x, t) =
1

2
∇× u(x, t), (16)

∂X(s, t)

∂t
= u(X(s, t), t), (17)

∂Di(s, t)

∂t
= w(X(s, t), t)×Di(s, t), i = 1, 2, 3. (18)

Eq. (16) is the relation between the fluid angular velocity w and the fluid velocity u, both of

which are solved using a regularized Stokes formulation. The interaction between the elastic

rod and the fluid is described in Eqs. (17) and (18) which are the no-slip conditions for the

velocity and the angular velocity, respectively. These equations imply that the centerline of the rod

translates at the local fluid velocity and that the triad rotates at the local fluid angular velocity. The

numerical method we used here is a grid-free Lagrangian method for thin filamentous structures

that capture the bend and twist of an elastic rod at zero Reynolds number. The local linear and

angular velocities are represented as a superposition of regularized fundamental solutions and

hence we only need to evaluate the linear and angular velocities at the centerline of the elastic rod.

See [6, 14] for a more detailed description of both mathematical formulation and its numerical

scheme.

Table I shows the computational and physical parameters used in this paper. The fluid viscosity

µ is the same as that of water. We compute the intrinsic strain vector Ω = (Ω1,Ω2,Ω3) from

the initial shape of the helical filament given in Eqs. (1) and (2). Since the radius of the helical

filament increases continuously from 0 to r0, the intrinsic strain vector is also a variable function.

The intrinsic curvature κ =
√

Ω2
1 + Ω2

2 and twist Ω3 given in Table I are the values of the helical

filament with a constant radius r0. Note that we use the exponent k = 2 in Eq. (2) and therefore

the majority of our filament model has approximately a constant helical radius r0. In the following

7



TABLE I. Computational and physical parameters

Parameters (symbol) Value

Fluid viscosity (µ) 0.01 × 10−4 g/(µms)

Meshwidth for flagellum (∆s) 0.03125µm

Number of material points of the rod 149

Regularization parameter (ǫ) 5∆s

Time step (∆t) 3× 10−8 s

Helical radius of filament (r0) 0.14µm

Length of filament (Lf ) 4.5µm

Intrinsic curvature of filament (κ) 1.8461µm−1

Intrinsic twist of filament (Ω3) 3.1270µm−1

Bending modulus of filament (a1 = a2 = a) 0.05 gµm3/s2

Twist modulus of filament (a3) 0.05 gµm3/s2

Shear modulus (b1 = b2) 2.0 gµm/s2

Stretch modulus (b3) 2.0 gµm/s2

Length of hook (Lh) 0.0938µm

Bending modulus of relaxed hook (arelax) 0.0001−0.0008 gµm3/s2

Bending modulus of loaded hook (aload) 0.0006−0.0012 gµm3/s2

Twist modulus of hook (ahook3 ) (0.1−1)× a3 gµm3/s2

section, we investigate how the physical parameters pertaining to the filament and the fluid affect

the dynamics of a rotating rod.

III. RESULTS AND DISCUSSION

A. Whirling instability of a rotating helix with no hook

The helical filament is equipped with a motor which is fixed at the bottom end of the filament

and rotates at a prescribed angular frequency. The twist generated by the rotary motor is being

transmitted along the filament and reaches its free end which leads to the rotation of the whole

helical filament. In this section, we investigate the whirling instability of a rotating helical filament
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in the absence of the hook. As in the previous studies in [4–6] where the rotating rod is intrinsically

straight, we observe three different dynamical states as the rotational frequency varies between

separate simulations. When the motor rotates at low speed, the helical rod spins about its rotational

axis which remains straight. This is called a stable twirling motion. As the rotational frequency

increases, the standing helical filament becomes unstable, and it bends below the motor point and

rotates steadily with a large amplitude, which is referred to as a stable overwhirling state. The

unstable steady motion in between is called a whirling state.

Fig. 2 shows two stable dynamical motions of a rotating helical filament that is initially tilted

away from the axis of rotation. The filament is intrinsically helical and reaches either a stable

twirling (top) or a stable overwhirling (bottom) when the rotational frequency is given as 1400 Hz

and 1500 Hz, respectively. This suggests that there exists a critical frequency ωc that separates

overwhirling from twirling. When the angular frequency ω is lower than the critical frequency

ωc, the helical filament rotates and is relaxed to a stable twirling motion. However, at a higher

frequency, ω > ωc, the helical filament of which the axis is straight becomes unstable and gets

to a stable overwhirling state. Note that, depending on whether the rotational motor frequency

is far from or close to the critical frequency, it determines how fast the helical rod reaches either

stable twirling state or stable overwhirling state and also determines the rotational speed, called

crankshafting frequency, of the rod as a whole.

When the rod is intrinsically straight and rotates with a small initial perturbation, Wolgemuth

et al. [4] derived the following relation between the critical frequency and various physical param-

eters using the weakly nonlinear theory

ωc ∼
4

π

(

1

RL

)2
a

µ
, (19)

where R is the thickness of the rod, L is the length of the rod, µ is the fluid viscosity, and a is

the bending modulus. Our simulation results show that the critical frequency that distinguishes

overwhirling from twirling depends on the physical properties of the helical filament and the sur-

rounding fluid in the same fashion as predicted by the theory in [4], even though our model filament

is intrinsically helical whereas the filament in [4] is intrinsically straight.

Fig. 3 shows the dynamical state of the rotational filament when we change the rotational fre-

quency and one of four different parameters; the bending modulus (upper-left), twist modulus

(upper-right), fluid viscosity (lower-left), and the length of the flagellar filament (lower-right).

When one of the parameters varies, all the other parameter values are held fixed. The x-axis and
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t=0s t=0.0168s t=0.042s t=0.06s t=0.12s

t=0s t=0.024s t=0.03s t=0.06s t=0.12s

FIG. 2. (Color online) Time evolution of two stable dynamical motions of a rotating helical filament with

the path (blue) traced out by the free end. The filament is intrinsically helical and the initial configuration

is tilted away from the axis of rotation. The filament reaches either a stable twirling (top) or a stable

overwhirling (bottom) when the rotational frequency is given as 1400 Hz and 1500 Hz, respectively. The

motor turns CCW in both cases.

y-axis represent one of the physical parameters and the angular frequency of the motor, respec-

tively. The red circles denote the stable overwhirling state, and blue crosses denote the stable

twirling state. The figure demonstrates that there exists a critical frequency of the motor, below

which the filament approaches a stable twirling state, but above which the filament stabilizes in the

overwhirling state. The dashed lines indicate the best fit of the critical frequency ωc to a function

of the form y = cxm, where c is a constant and m is the order of the power function and they

are determined by using the least square approximations. We can see from Fig. 3 that the critical

frequency is linearly dependent on the bending modulus a (a), independent of the twist modulus

a3 (b), inversely proportional to the fluid viscosity µ (c), and inversely proportional to the square

of filament length Lf (d), which are consistent with the relation in Eq. (19) for the case of an in-

trinsically straight rod. Specifically, we obtain m ∼ 0.9472 in (a), m ∼ 0 in (b), m ∼ −0.9994 in

(c), and m ∼ −2.0536 in (d).

We also vary the radius r0 of the helical filament to investigate the dependence of the critical

frequency on the helical geometry. Fig. 4 shows the dynamical states of the rotating filament for

various rotational frequencies ω and helical radii r0. Here, we fix the helical pitch at 2πp with

p = 1.5 µm and the twist modulus at a3 = 0.05 gµm3/s2. In (a), we consider two different

bending moduli a = 0.005 gµm3/s2 and a = 0.01 gµm3/s2 with the filament length being fixed
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FIG. 3. (Color online) The dynamical states of the rotating filament for various (a) bending modulus of

the filament, (b) twist modulus of the filament, (c) fluid viscosity, and (d) the filament length. Red circles

represent stable overwhirling motions, and blue crosses represent stable twirling motions. The dashed lines

indicate the best fit of the critical frequency ωc to a function of the form y = cxm.

at Lf = 4.5 µm. Next in (b), we vary the filament length Lf = 4.5 µm, 5.5 µm, and 6.5 µm with

the bending modulus being a = 0.005 gµm3/s2. For various bending moduli and filament lengths,

the critical frequency ωc decreases as the helical radius r0 of the filament increases. In fact, we

find that ωc is approximately proportional to r−0.4
0 in all the cases considered here, see the dashed

lines which indicate the best fit of the critical frequency ωc to a function of the form ωc = c rm0 ,

where c and m are obtained by the method of least squares.

Fig. 5 shows a subcritical bifurcation diagram resulted from the simulations. The gray area

refers to stable twirling state and the white area refers to stable overwhirling state. HB stands for

a Hopf bifurcation point at which a stable twirling state is changed into an unstable twirling state.
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FIG. 4. (Color online) The dynamical states of the rotating filament as functions of the helical radius. We

choose two different bending moduli with a fixed filament length in (a) and three different filament lengths

with a fixed bending modulus in (b). The helical pitch and the twist modulus are fixed at 2πp with p = 1.5

µm and a3 = 0.05 gµm3/s2, respectively. Red circles represent overwhirling motions, and blue crosses

represent twirling motions. The dashed lines are best fitted to a function, ωc ∼ r−0.4
0 , where r0 is the helical

radius.

CF stands for a cyclic fold where stable overwhirling and unstable whirling states coalesce. These

two bifurcation points determine a bistable region of the two stable states which is the region

enclosed by the two vertical dotted lines. Within the bistable region, the helical rod goes to a

stable twirling state when the initial tilt of the rod is small; however, the rod approaches a stable

overwhirling state when the rod is initially tilted with a large degree. Here the degree of the initial

tilt is the mean curvature of the helical axis of the initial flagellum. Thus the open circles which

separates the bistable region indicate the dependence of the critical frequency ωc on the degree

of the initial tilt of the rod. The filled circles are representative simulations that induce stable

overwhirling state.

B. Buckling instability of a compliant hook

V. alginolyticus is a single-flagellated bacterium of which the flagellum is a left-handed he-

lical filament with its bottom end linked to a short flexible hook. The rotation of the hook and

the flagellum is driven by a rotary motor which is embedded into the cell surface [3, 17]. The

12



FIG. 5. Subcritical bifurcation diagram. The gray area refers to stable twirling state and the white area refers

to stable overwhirling state. The solid lines represent the stable states and the dashed lines represent the

unstable states. In the region between the two vertical dotted lines which is determined by HB (bifurcation

point) and CF (cyclic fold), the helical rod is in the bistable states separated by the dashed curve which

corresponds to the unstable whirling state. The empty circles in the bistable region that are obtained from

simulations indicate the critical values of motor frequency and the initial mean curvature of the axis of the

helical filament. The filled circles are representative simulations that induce stable overwhirling state.

typical rotational frequency of the motor is approximately 571 ± 12 Hz [18]. The flagellum of

the bacterium is covered by a sheath that prevents the filament from transforming [19, 20]. This

persistence of the helical handedness of the filament allows the single-flagellated bacterial cell

to swim unidirectionally, either backward with CW rotation or forward with CCW rotation in a

straight line [21] unless the flagellum bends and flicks the cell body .

Buckling of the hook plays a significant role in determining the swimming pattern and the

chemotaxis of single-flagellated bacteria. V. alginolyticus swims backward by turning the motor

CW while the hook is under tension. Then it suddenly changes the rotational direction of the

motor to CCW, which induces the bacterium to swim forward and its hook to be in a compressed

state. This state of the hook is called relaxed where the hook is unloaded and leads to its buckling

followed by the flick of the cell. After the bacterial cell flicks, the hook is under load and becomes

stiffer again, which is called a loaded state, leading to the steady forward swimming. In the
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two different states, the hook takes two different values of the bending modulus while the twist

modulus of the hook remains the same. Note that the bending modulus of the loaded hook is

always larger than that of the relaxed hook and that the shear and stretch moduli are the same as

those of the helical filament.

First we determine the bending and twist moduli of the filament that preserves the intrinsic

geometry, namely the helical radius and pitch, even during the rotational motion of the filament.

It is known that the flagellar filament of V. alginolyticus does not undergo chiral transformation

during locomotion [9, 17], which implies that the flagellar filament keeps its helical shape to be

left-handed at all times. We fix the rotational frequency at 570 Hz [18], and the intrinsic helical

radius and pitch at 0.14 µm and 1.49 µm, respectively [9, 22]. We have varied the values of

the twist and bending moduli from 0.01 gµm3/s2 to 0.08 gµm3/s2 and found that the value of

0.05 gµm3/s2 retains the intrinsic property of the helical filament to within 2.5%, and hence we

choose this value to be our default value. Note that, in the previous studies [3, 23], bending

modulus of the helical filament of V. alginolyticus is assumed to be on the order of 10−2.

Fig. 6 illustrates the time evolution of the exemplary dynamical motion of a helical flagellum

of V. alginolyticus and its corresponding buckling angle when the motor is anchored in space and

rotates at the rate of 570 Hz [18]. The buckling angle is defined as the angle between the rotational

axis and the helical axis which may subsequently affect the reorientation of the cell. The motor

initially turns CW and then reverses to CCW at time t = 0.06 s. The bending modulus of the hook

alternates between two values depending on the states. For the loaded hook, the bending modulus

is given as aload = 11 × 10−4 gµm3/s2, and for the relaxed hook, the bending modulus is given

as arelax = 2 × 10−4 gµm3/s2. We draw the trails of some fluid markers (red) which are spread

initially around the flagellum to see the direction of the fluid velocity.

In the loaded state in which the motor turns CW, the wave propagates down toward the motor

and pumps the fluid downward, see the fluid markers in Fig. 6(a)-(b). In the relaxed mode in

which the motor turns CCW, the hook buckles and hence the filament moves away from the axis

of rotation, see Fig. 6(c). Once the hook becomes stiff again in the second loaded state, the filament

returns back to the original straight state and may lead to forward swimming, which means that

the wave propagates from the motor to the proximal end and pumps the fluid upward during CCW

rotation, see the fluid markers in Fig. 6(d)-(e). We can clearly see the occurrence of the buckling

instability from (c) and the bottom panel of Fig. 6.

In order to explore the effect of the elastic moduli and the length of the hook on the buckling
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(a)  t = 0.000 s (b)  t = 0.015 s (c)  t = 0.084 s (d)  t = 0.105 s (e)  t = 0.180 s
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FIG. 6. (Color online) Dynamical motion of a rotating helical flagellum of V. alginolyticus (top) and its

corresponding buckling angle (bottom) when the motor is tethered in space. The angular frequency of the

motor is set to be 570 Hz. The motor initially turns CW and then switches to CCW at t = 0.06 s. The

bending moduli of the hook in relaxed and loaded states are given as arelax = 2 × 10−4 gµm3/s2 and

aload = 11× 10−4 gµm3/s2, respectively.

dynamics, we focus on the dynamics of the flagellum right after the motor begins to spin CCW

in the relaxed state. While the motor continuously turns CCW at the rate of 570 Hz, the hook is

in the relaxed state from t = 0 to t = 0.03 s and then becomes stiff from t = 0.03 in the loaded

state. In general, the filament goes through the buckling instability in the relaxed state of the hook

when the buckling angle increases. Then the buckling angle decreases in the loaded state when

the filament moves toward the axis of the rotation, see Fig. 6.

Fig. 7 shows the time evolution of buckling angles for various bending moduli of the hook as

the hook is in the relaxed state followed by the loaded state. The bending modulus of the loaded

hook varies while that of the relaxed hook is fixed at arelax = 2 × 10−4 gµm3/s2 in the left panel

(a), and the bending modulus of the relaxed hook varies while that of the loaded hook is fixed at

aload = 11× 10−4 gµm3/s2 in the middle panel (b). We can see that the maximum buckling angle

does not depend on the bending modulus of the loaded hook (a), but solely depend on that of the
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FIG. 7. (Color online) Buckling angles with various bending moduli of the hook. The first two panels show

the time evolution of the buckling angle of the hook for various bend moduli when the bending modulus

of the relaxed hook is fixed as arelax = 2 × 10−4 gµm3/s2 (left) and when the bending modulus of the

loaded hook is fixed as aload = 11 × 10−4 gµm3/s2 (middle). Right panel illustrates the maximum angle

of the buckled hook with various pairs of relaxed and loaded bending moduli. The filled circles indicate the

threshold whether or not the bucked hook comes back toward the straight state within 1◦.

relaxed hook (b). In fact, the maximum buckling angle is inversely proportional to the bending

modulus of the relaxed hook, which is also confirmed in Fig. 7(c) which displays the maximum

buckling angle for various bending moduli of the loaded and relaxed states of the hook. As shown

in [3], our simulation results confirm that the bending stiffness of the relaxed hook plays a key role

in the buckling instability and the determination of a new swimming direction.

Whereas the bending modulus of the relaxed hook is solely related to the maximum buckling

angle and thus the reorientation of swimming direction, the bending modulus of the loaded hook

also plays an important role in the restoration of the buckling angle. When the bending modulus

of the loaded hook is too small, the hook does not go back to the state of the zero buckling angle as

shown in Fig. 7(a). We find that there is a threshold for the loaded bending modulus, above which

the axis of the helical filament returns back to be aligned to the rotational axis with the deviation

being less than 1◦. Fig. 7(c) shows the threshold of the loaded bending modulus indicated by the

filled circles which is independent of the relaxed bending modulus of the hook.

We also investigate the effect of the twist modulus and the length of the hook on the buckling
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FIG. 8. (Color online) Time evolution of buckling angles for various twist moduli of the hook (a) and

hook lengths (b). The bend moduli of the relaxed hook and loaded hook are fixed at arelax = 2 × 10−4

gµm3/s2 and aload = 11 × 10−4 gµm3/s2, respectively. The twist modulus of the hook in the right panel

is ahook3 = 0.05 gµm3/s2.

dynamics. While the bend moduli of the hook in the two different states are fixed as arelax =

2 × 10−4 gµm3/s2 and aload = 11 × 10−4 gµm3/s2, we vary the twist modulus of the hook ahook3

to be 1 ∼ 10 times smaller than that of the helical filament given in Table I. Fig. 8(a) shows the

time evolution of the buckling angle for various twist moduli of the hook as the hook is initially in

the relaxed state and then later in the loaded state. It is shown in Fig. 8(a) that the buckling angle

is independent of the twist modulus of the hook.

Unlike the twist modulus of the hook, the length of the hook substantially affects the buckling

angle, see Fig. 8(b) which shows the time evolution of buckling angles for various lengths of the

hook. Here the bending moduli of the hook is the same as in Fig. 8(a) and the twist modulus of

the hook is given as ahook3 = 0.05 gµm3/s2. For small values of the hook length from Lh = 3∆s

to Lh = 6∆s, the maximum buckling angles range from 18◦ to 25◦, and the optimal buckling

angle is achieved at Lh = 5∆s. When the hook length Lh is smaller than 3∆s, the maximum

buckling angle is almost zero, i.e., buckling instability does not occur, see the case of Lh = 2∆s

in Fig. 8(b). This is because a shorter rod needs a larger load for the buckling instability, which is

implied by Euler’s column formula. Note that a typical hook is approximately 100 nm long which
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corresponds to around 3∆s in our case.

As the hook length increases further from Lh = 7∆s to 13∆s, a longer hook buckles more

readily as predicted in Euler beam theory [3, 24]. However, the maximum buckling angle rapidly

drops to be close to zero, see Fig. 8(b). This is because the longer hooks collapse easily to form a

flattened S-shape or a loop so that the buckled hook is aligned with the filament axis that remains

close to its original rotational axis. This implies that, even though a long hook can easily buckle,

it may have no influence on the reorientation of swimming direction.

IV. SUMMARY AND CONCLUSIONS

We have investigated the dynamics of the helical flagellum by adopting the Kirchhoff rod theory

combined with the regularized Stokes formulation which governs the surrounding fluid. When a

motor at the bottom end of the rod is tethered at a point in space and rotates at a given frequency, we

have observed two stable dynamical states, twirling and overwhirling, depending on the angular

frequency of the motor and the initial perturbation of the helical axis. A low angular frequency

of the motor leads to the stable twirling motion of the helical rod. As the angular frequency of

the motor increases to a certain range, the rod resides in a bistable region, taking either twirling or

overwhirling motions depending on the initial perturbation from the straight axis of the helical rod.

For a sufficiently large rotational rate, the helical rod takes the stable overwhirling motion only.

The critical frequency of the transition from the twirling motion and overwhirling one depends on

the elastic and geometrical properties of the helical rod and the fluid viscosity, which confirms the

theory in literature. The subcritical feature of the bifurcation diagram still remains independent of

the physical properties.

We have also observed that the helical rod with a compliant hook experiences buckling instabil-

ity when the motor switches the direction of rotation and the elastic properties of the hook change.

We have found that the buckling angle, which affects the reorientation of the cell body, depends

substantially on the bending modulus and the length of the hook, but is independent of the twist

modulus. Here we have investigated the role of the hook that may determine the swimming pat-

tern of single-flagellated bacteria by looking at the buckling angle. However, the helical flagellum

in our model is fixed in space without a cell body. A more comprehensive study on the role of

the hook requires the motion of the cell body to which the flagellum is attached, which will be

considered in future work.
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