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Evolutionary games on graphs describe how strategic interactions and population structure deter-
mine evolutionary success, quantified by the probability that a single mutant takes over a population.
Graph structures, compared to the well-mixed case, can act as amplifiers or suppressors of selection
by increasing or decreasing the fixation probability of a beneficial mutant. Properties of the associ-
ated mean fixation times can be more intricate, especially when selection is strong. The intuition
is that fixation of a beneficial mutant happens fast (in a dominance game), that fixation takes very
long (in a coexistence game), and that strong selection eliminates demographic noise. Here we show
that these intuitions can be misleading in structured populations. We analyze mean fixation times
on the cycle graph under strong frequency-dependent selection for two different microscopic evolu-
tionary update rules (death-birth and birth-death). We establish exact analytical results for fixation
times under strong selection, and show that there are coexistence games in which fixation occurs
in time polynomial in population size. Depending on the underlying game, we observe inherence
of demographic noise even under strong selection, if the process is driven by random death before
selection for birth of an offspring (death-birth update). In contrast, if selection for an offspring
occurs before random removal (birth-death update), strong selection can remove demographic noise
almost entirely.

PACS numbers: 02.50.Ga, 87.23.Kg, 87.23.Cc, 87.18.-h

I. INTRODUCTION

Evolutionary game theory models Darwinian selection
among genetically hard-wired strategic traits or behav-
iors in a population [1, 2]. Often the interaction between
behaviors is cast into an evolutionary game, and the per-
formance in this evolutionary game determines the rate
at which strategies spread. As payoffs from the game
are mapped to fitness, i.e. the expected number of off-
spring in the near future, more successful behaviors have
a higher tendency to spread in the population. In in-
finitely large populations this spreading of successful be-
haviors due to Darwinian selection is described by the
deterministic replicator dynamics [3–7]. In finite pop-
ulations fluctuations cannot be neglected and the evolu-
tionary dynamics become stochastic [8–12]. A parameter
that governs the interplay between the determinism of se-
lection and intrinsic stochasticity in finite populations is
the strength of selection [13]. Neutral evolution emerges
in absence of selective differences. If selection acts, the
stochastic evolutionary dynamics become payoff depen-
dent, which can be the same in each state (constant se-
lection) or entirely state dependent (frequency-dependent
selection), whereby the state is defined as the number of
mutants. In the case of frequency-dependent selection
the probability that one strategy replaces another can be
fairly complicated. In particular, structure of the pop-
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ulation itself influences the evolutionary game and the
potential success of strategic behaviors [14–18].

In stochastic evolutionary game dynamics the event of
interest is fixation of a mutant [19]. Two quantities have
been of special interest: the fixation probability and the
expected fixation time [13, 20–24]. Fixation probabili-
ties have served as the gauge whether a graph can be
an amplifier of suppressor of selection [14, 25]. An open
problem is the general quantification of fixation times
in graph structured populations. Fixation times quan-
tify the expected time new traits need to take over the
population. For constant selection, recent findings have
established that evolution can slow down substantially
in populations where selection is amplified [26], and that
there are no obvious relations between fixation proba-
bilities and fixation times on graphs [17]. In addition,
structured population dynamics may be different if se-
lection occurs before or after random death of individu-
als [25, 27]. Here we seek to start closing this gap using
analytical procedures in an evolutionary game between
resident strategy and a mutant strategy. To this end, we
consider dynamics on the simplest structure, in which
exactly one individual occupies a node on an undirected
cycle graph [28], and focus on strong selection [13].

This manuscript is organized in the following way.
First, we introduce the stochastic evolutionary dynam-
ics. We review the well-mixed population and discuss the
analytical expressions for fixation probabilities, sojourn
times and fixation times. Then, we introduce the transi-
tion probabilities of birth-death and death-birth updat-
ing on cycle graphs. In the results section, we consider
neutral evolution and briefly address constant selection
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before we turn to strong frequency dependent selection.
Then, we discuss standard cases of two player-two strat-
egy games between a mutant strategy A and a resident
strategy B, given by the payoff matrix

A B
A a b
B c d

(1)

We consider strategic dominance games of the mutant
strategy in which A always has a higher payoff (a > c,
b > d), coordination games in which both mutants and
residents receive highest payoffs when interacting with
their own types (a > c, b < d), and coexistence games
in which both mutants and residents receive highest pay-
offs when interacting with the other respective strategy
(a < c, b > d). As particular examples, we discuss the
Prisoner’s Dilemma (where defection dominates cooper-
ation) an the and the Snowdrift Game (where defection
and cooperation can coexists).

II. EVOLUTIONARY GAME DYNAMICS

First we describe the discrete-time Markov chain model
resulting from subsequent birth and death events in a
population of finite fixed size. Two key assumptions are
that we start with a single mutant individual and that
no further mutations occur. Thus, on a cycle graph, the
mutant population can only grow as a cluster. We also
make the assumption that replacement graph and inter-
action graph are identical [28]. The resulting Markov
chain eventually gets absorbed either of the boundary
state of no or all mutants. The population size is N
and we denote the evolutionary transition probabilities
by T i±. Here, i is the number of mutant individuals that
at any time can increase or decrease by exactly one. The
process stays in state i with probability 1− T i+ − T i−.

We can then examine the fixation probability of a
group of i type A individuals, φi, as well as other quan-
tities of interest without specifying the transition prob-
abilities. The fixation probability follows from solving
the backward Kolmogorov equation φi = T i+φi+1 +
T i−φi−1+(1−T i+−T i−)φi recursively [see e.g. 13, 19, 29]
and is given by

φi =
1 +

∑i−1
k=1

∏k
l=1

T l−

T l+

1 +
∑N−1
k=1

∏k
l=1

T l−

T l+

(2)

where only the ratios of transition probabilities enter.
To characterize the expected time scale of the evo-

lutionary process, one can consider two different quan-
tities. First, the mean unconditional fixation time de-
scribes the expected time the process takes to reach ei-
ther extinction or fixation of the mutant, which occurs
with probability one. Second, the mean conditional fix-
ation time describes the expected number of time steps
the process takes to fixation of the mutant, which occurs

with probability φ1. One way to derive an expression
for mean fixation times is to think about the expected
time spent in each intermediate state (including waiting
times) j = 1, 2, . . . , N−2, N−1, which are called sojourn
times. The sojourn time of a particular state j can be
found by considering its escape process. Say that at time
t0, the process is in state j. Then, the probability that
it either stays or ever returns to that state j (denoted as
the super-script) is given by

rj = (1− T j+ − T j−) + T j+ φj+1,j + T j− φj−1,j (3)

Here, φk,l is the probability to start in state k and ever
return to state l (φk,k = 1) [30], which is not conditioned
on fixation. The conditional probability to start in state
i, return a positive number of time steps t to that state,
but then escape is given by

φi,j (rj)t−1 (1− rj) (4)

The first factor of Eq. (4) describes the probability to ever
get from i to j, the second factor describes recurrence
such that the total time spent amounts to exactly t time
steps, and the third factor describes definite escape from
state j.

The mean sojourn time in state j, starting from one
mutant, i = 1, is thus given by the first moment of this
conditional probability

t1,j =

∞∑
t=1

φ1,j (rj)t−1 (1− rj)t (5)

This geometric sum can be solved exactly, and inserting
the definition of rj we obtain an exact expression for the
mean sojourn time of state j, t1,j = φ1,j/(1 − rj). The
mean unconditional fixation time is then given by the
sum over all sojourn times [28, 30, 31]

t1 =

N−1∑
j=1

φ1,j

T j+(1− φj+1,j) + T j−(1− φj−1,j) (6)

The mean conditional fixation time can be found in a
similar way, only resorting to conditional transition prob-

abilities of the Markov process T̃ i→j =
(
φj/φi

)
T i→j

[31], from which we find the probabilities to start in i
and ever visit j under the condition of fixation in N ,

φ̃i,j =
(
φj/φi

)
× φi,j . Consequently, the mean sojourn

time in state j conditioned on fixation, starting from a
single mutant, can be expressed by the mean uncondi-
tional sojourn time

t̃1j =
φj

φ1
t1,j (7)

such that the mean conditional fixation time can be cal-
culated by

t1→N =

N−1∑
j=1

φj

φ1
φ1,j

T j+(1− φj+1,j) + T j−(1− φj−1,j) (8)

whereby the stationary probabilities to ever go from state
i to state j, φi,j are derived in the book by Ewens [31].
We repeat them in our Appendix, Eqs. (B1) and (B2).
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A. Well-mixed population

The reference case for evolutionary game dynamics is
the well-mixed population [32]. In the well-mixed pop-
ulation, an expected payoff is calculated taking into ac-
count interactions between all individuals. This is equiv-
alent to a fully connected unweighted graph. Here, we
briefly recall the properties of the Moran process of fre-
quency dependent selection in well-mixed populations.
Formally, the Moran process is introduced as a birth-
death process, but in a well-mixed population, the order-
ing of a fitness-proportional birth and a random death
event does not have any influence on the dynamics as
long as we include self replacement, which is commonly
assumed [25].

The well-mixed population assumes that there are in-
teractions between all individuals, which lead to an av-
erage payoff, and in turn determines selection via a spe-
cific choice of payoff to fitness mapping [33–35]. In this
paper, we focus on an exponential payoff to fitness map-
ping [36]. If i and N − i are the numbers of A and B
individuals, the expected payoff of any A individual is
given by πA = a (i − 1)/(N − 1) + b (N − i)/(N − 1).
The expected payoff of any B individual is given by
πB = c i/(N − 1) + d (N − i − 1)/(N − 1). Then, the
Moran process is a Markov chain with transition proba-
bilities to neighboring states given by

T i+wm =
i eβπA

i eβ πA + (N − i)eβ πB
N − i
N

, (9)

T i−wm =
(N − i)eβ πB

i eβ πA + (N − i)eβ πB
i

N
. (10)

These transition probabilities are non-linear functions of
the number of mutant individuals. For most types of
game in well-mixed populations, the states between all-
mutant and all-resident have different probabilities to in-
crease or decrease the number of mutants.

There are two popular mechanisms often used to de-
scribe evolutionary dynamics on graph structured popu-
lations [14, 27, 37–39]. First, in the death-birth process,
there is random death of an individual and subsequent
selection among its neighbors for filling the vacant spot.
Thus, competition is only among individuals of the im-
mediate neighborhood of the vacant spot. Second, in
the Birth-death process, there is selection for birth of
an identical offspring within the entire population, be-
fore random death of a neighbor of the reproducing in-
dividual occurs. Hence, the death-birth process models
random death which precedes local competition, whereas
the birth-death process models global completion which
precedes random death. The basic difference between
the two update mechanism on the cycle are depicted in
Figure 1, and described in more detail in the following.

AB BBB

AB BAB
e�(a+b)

e� 2 b

e�(c+d)e�(a+b)e�(c+d)

e�(c+d) e�(c+d)

selected randomly for removal

compete for vacant spot

winner places an offspring

(b) death-birth update (dB)
selected for reproduction 

select random
neighbor

(c) birth-death update (Bd)

offspring replaces
neighbor

(a) possible transition in one time-step (fitness above node)

e� 2 d

e� 2 d e� 2 d

FIG. 1: (color online) Example of a possible transition.
During a single time step, one possible event is that the num-
ber of mutants (A) increases by one at the expense of one
resident (B) (shown in a) (otherwise it could decrease by one,
or stay constant). These transitions are driven by the fitness
values of the nodes involved. We use the exponential payoff
to fitness conversion with selection intensity β, shown for each
node above. The fitness from a mutant-mutant interaction is
exp(β a), from a the mutant-resident interaction it is exp(β b),
and from a resident-resident interaction it is exp(β d). Tran-
sitions from i to i+ 1 mutants can be described by the death-
birth update rule (b), Eqs. (11)-(12), or by the birth-death
update rule (c), Eqs. (A1)-(A2). These basic local rules mat-
ter for the time scale of the process of fixation (takeover or
extinction of mutants).

B. Death-birth process on a cycle

The death-birth update on a cycle works as follows.
Each node of the graph represents one individual. First,
all individuals play the evolutionary game with their two
neighbors. Then a random individual is selected for re-
moval. The neighbors of this empty spot then compete
for placing an identical offspring. The number of mutants
only changes when random death occurs at the bound-
ary, as mutants grow in a cluster. There are two sites
that can be chosen for random death at the boundary
of residents and mutants, which occurs with probability
2/N . Competition among the two neighbors of the va-
cant spot then leads to a probability that a mutant fills
the spot. Let fA and fB be the fitness values of the two
neighbors of the vacant spot. Then, the probability that
the A individual’s offspring occupies the vacant spot is
fA/(fA+fB) = 1/(1+fB/fA), resulting in the transition
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probabilities

T i+dB =



2
N

1
1+e−β(2b−2d) if i = 1

2
N

1
1+e−β(a+b−2d) if 1 < i < N − 2

2
N

1
1+e−β(a+b−c−d)

if i = N − 2
1
N if i = N − 1

0 if i = 0, N

(11)

and

T i−dB =



1
N if i = 1
2
N

1
1+e+β(a+b−c−d)

if i = 2
2
N

1
1+e+β(2a−c−d)

if 2 < i < N − 1
2
N

1
1+e+β(2a−2c) if i = N − 1

0 if i = 0, N

(12)

The states with one mutant individual or one resident
individual are special in the sense that there is no com-
petition, only random selection for removing that last
individual. Interestingly, for 2 < i < N − 2, the expan-
sion of a cluster of A players does not depend on the
payoff parameter c. This makes sense as the only indi-
vidual affected by c had to be subject to random death
before selection. Similarly, the expansion of a B-cluster
does not involve the payoff parameter b. Note also that
since all transition probabilities are determined by pay-
off differences, this process is invariant under adding a
constant to each payoff value, and multiplication of the
payoff matrix with a positive real number changes the
strength of selection.

C. Birth-death process on a cycle

For the frequency dependent birth-death (Bd) update
on a cycle, with exponential payoff to fitness mapping,
we find more complicated transition probabilities. The
transition from one mutant to a cluster of two mutants
occurs with probability

T 1+
Bd =

eβ 2b

eβ 2b + 2eβ(c+d) + (N − 3)eβ 2d
(13)

and the extinction of a single mutant occurs with proba-
bility

T 1−
Bd =

eβ(c+d)

eβ 2b + 2eβ(c+d) + (N − 3)eβ 2d
(14)

In similar fashion we find

T i+Bd =


eβ(a+b)

Fi
if 1 < i < N − 1

eβ(a+b)

FN−1
if i = N − 1

0 if i = 0, N

(15)

and

T i−Bd =


eβ(c+d)

Fi
if 1 < i < N − 1

eβ 2c

FN−1
if i = N − 1

0 if i = 0, N

(16)

where we used the abbreviations Fi for the total fitness
of the population in state i, see Appendix A. Again,
the birth-death process is invariant under adding a con-
stant to the payoff values. In this case, there are only
three states for which the ratio of transition probabilities
ti−Bd/t

i+
Bd deviates from the constant value e−β(a+b−c−d),

we obtain a different value only for i = 1, 2, N − 2, and
N − 1.

III. RESULTS

A. Neutral evolution

Neutral evolution means that the probability to in-
crease or to decrease the number of mutants on the cycle
are always the same, irrespective of the number of mu-
tant individuals. On a cycle, this probability is the same
for any number of mutants as long as neither mutant or
resident is extinct. The probably to increase or decrease
the number of mutants also becomes independent of the
specific update mechanism used and simply amounts to
1/N . Under any of the two update rules we thus find

φidB = φiBd =
i

N
(17)

for the fixation probability starting from i mutants. For
the fixation times stating from one mutant we obtain

t1dB = t1Bd =
1

2
(N − 1)N (18)

for the mean unconditional fixation times, and

t1→NdB = t1→NBd =
1

6
(N − 1)N(N + 1) (19)

for the mean conditional fixation times. For the well-
mixed population the the mean unconditional fixation
time of the neutral process is t1wm = N HN−1, where
Hk = 1+1/2+· · ·+1/k is the harmonic number, which in-
creases logarithmically for large k. Thus, fixation or loss
is slower on the cycle graph, where it scales as∼ N2. Also
the mean conditional fixation time on the cycle (∼ N3)
is much longer than in a well mixed population, where it
only scales quadratically in N , t1→Nwm = N(N − 1). Of-
ten, the times under neutral evolution set the reference
against which the mean times under selection are mea-
sured [13, 25, 30].

B. Constant selection

For constant selection we assume fA = eβ r and fB = 1.
In this case, the death-birth process and the birth-death
process are inherently different (see Appendix). The
death-birth process under strong constant selection in
favor of the mutant, β r → ∞, leads to mean sojourn
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times that are constant proportional to N . The birth-
death process under strong constant selection leads to
mean sojourn times in state j that are equal to j. Ulti-
mately, this leads to

t1→NdB = t1dB →
N2

3
(20)

t1→NBd = t1Bd → N
N − 1

2
, (21)

where the conditional and unconditional fixation times
are identical because the fixation probability quickly con-
verges to 1. We can also make a quick comparison of
the Moran process on the ring (the Bd process) and the
Moran process in a well-mixed population. In Appendix
D calculate approximations for these two strongly related
processes for finite but large r, resulting in the mean con-
ditional fixation times t1→NBd ≈ N(N − 1)/2 + N(N −
2)e−β r and t1→NWM ≈ N HN−1 + 2N HN−2 e−β r. These
relations are able to describe how the mean fixation times
approach the value of the strong selection limit value for
any population larger than N = 2.

C. Strong frequency-dependent selection

Now, we discuss the semi-analytical solutions given by
Equations (6) and (8), for frequency-dependent selection.
We focus on the limiting case of strong selection, β →∞,
to obtain further analytical insights. These insights can
guide our intuition as to how strong frequency dependent
selection and spatial structure impact times to extinction
or fixation in structured populations of finite size.

We now quantify how the different update rules on the
cycle behave in the strong selection limit in order to de-
velop an intuition for the limiting behavior of fixation
probabilities, as well as mean fixation times. We focus
on non-trivial sets in payoff-space, e.g. a+ b > c+ d, and
exclude special cases which are of measure zero in param-
eter space, e.g. b = d. We start with the dB update on
the cycle. The limiting cases of β →∞ for the transition
probabilities to increase the number of A individuals are
given by

T 1+
dB →

{
2
N if b > d

0 if b < d
(22)

T i+dB →
{

2
N if a+ b > 2d

0 if a+ b < 2d
(23)

T
(N−2)+
dB →

{
2
N if a+ b > c+ d

0 if a+ b < c+ d
(24)

T
(N−1)+
dB → 1

N
(25)

In the same way, we obtain the limiting cases of the tran-
sition probabilities to decrease the number of A individ-

uals:

T 1−
dB → 1

N
(26)

T 2−
dB →

{
2
N if a+ b < c+ d

0 if a+ b > c+ d
(27)

T i−dB →
{

2
N if 2a < c+ d

0 if 2a > c+ d
(28)

T
(N−1)−
dB →

{
2
N if a < c

0 if a > c
(29)

where again, the last step before B fixes in the population
is independent of the game.

The spread of a single A mutant is impossible under
strong selection if the payoff of A against B is lower than
the payoff of B against itself. However, the loss of the
single A mutant occurs with an expected waiting time
proportional to the size of the population. Fixation of A
can only occur under strong selection if this initial step
is possible (b > d) and if additionally a+ b > 2d, as well
as a+ b > c+ d.

If there is an unstable mixed Nash equilibrium in the
game (which is then a coordination game), fixation of A
is only possible in a subset of all games. Generally, un-
der the dB process fixation and extinction may still take
long in large populations, as the non-vanishing transition
probabilities are proportional to N−1.

In contrast, the transitions rates of the Bd process
(evolutionary Moran process on graphs [27]) can become
independent of the population size, The limiting cases for
the transition probabilities are given by the following con-
ditions, where it is important to note that for non-trivial
transition probabilities, all the payoff relations have to
be fulfilled,

T 1+
Bd →

{
1 if 2b > c+ d, b > d

0 if 2b < c+ d or b < d
(30)

T i+Bd →
{

1
2 if b > a, a+ b > c+ d, a+ b > 2d

0 if b<a, a+b<c+d, or a+b<2d
(31)

T
(N−1)+
Bd →

{
1
2 if b > a, a+ b > 2c

0 if b < a or a+ b < 2c
(32)

and

T 1−
Bd →

{
1
2 if c > d and c+ d > 2b

0 if c < d or c+ d < 2b
(33)

T i−Bd →
{

1
2 if c+ d > a+ b, c+ d > 2b, c > d

0 if c+d<a+b, c+d<2b, or c<d
(34)

T
(N−1)−
Bd →

{
1 if 2c > a+ b, c > a

0 if either 2c < a+ b, c < a
(35)

Hence, the last transition before extinction or fixation of
A can become entirely deterministic. All other transi-
tions have a non-trivial limiting case of 1/2, independent
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of the size of the population, which is due to the fact that
the selection (birth) step comes first, which determinis-
tically selects the best performing individual(s). This
selection step is then followed by the death step, which
can only select one of the two neighbors of the parent.
Thus, under strong selection, fixation in a Bd process
can occur at a much faster rate than fixation in a dB
process. In addition, it is possible that strong selection
on the cycle becomes static; neither increase or decrease
of the mutant strategy A are possible.

For comparison we again consult the well-mixed popu-
lation, where, based on Eqs. (9) and (10), the dynamics
always depends on the payoff in the form of relations be-
tween expected payoffs πA, πB . As a consequence, the
strong selection limiting cases in the well-mixed popula-
tion are

T i+wm →
{
N−i
N if a i

N−i + b > c i
N−i + d

0 if a i
N−i + b < c i

N−i + d
(36)

T i−wm →
{

i
N if a i

N−i + b < c i
N−i + d

0 if a i
N−i + b > c i

N−i + d
(37)

The dynamic time scales of fixation or extinction pro-
cesses are generally population size dependent, but de-
pend on the payoff matrix only implicitly. For sufficiently
large but finite population size N , the mean uncondi-
tional fixation time of a strategic dominance game or a
suitable coordination game is proportional toN log[N−1]
plus a constant (in fact Euler’s constant [40]), but gener-
ally diverges exponentially for coexistence games [30, 41].

IV. DISCUSSION

A. Strategic dominance

We speak of strategic dominance if in any one shot in-
teraction, A does always better than B, i.e. a > c, b > d.
In the well mixed population, this immediately leads to a
relation for the transition rates for any strength of selec-
tion, T i+wm ≥ T i−wm. In structured populations, additional
conditions on the payoffs may be required for this to be
fulfilled.

For the death-birth process the strong selection lim-
iting case leads to the following payoff relations. If the
three inequalities a+b > 2d, a+b > c+d, and 2a > c+d
hold, we obtain limiting cases of the transition rates and
sojourn times,

1 2 . . . i . . . N − 2 N − 1

T i+dB
2
N

2
N . . . 2

N . . . 2
N

1
N

T i−dB
1
N 0 . . . 0 . . . 0 0

t1i N
3

N
3 . . . N

3 . . . N
3

2N
3

(38)

A single mutant has an extinction probability of only one-
third, but a probability to reach fixation of two-thirds:
once the mutation spreads to two or more individuals, it

is bound to take over with certainty. The fixation times
can again be calculated by summation over the sojourn
times, using Eqs. (6) and (8), which leads to

t1dB →
N2

3
(39)

and

t1→NdB → N2

2
− N

6
(40)

In both cases, the leading order term is quadratic in the
population size N .

The second case of non-vanishing fixation probability
of a single mutant is when 2a < c+ d. Then, fixation of
the dominant mutant takes considerably longer on aver-
age but the fixation probability of a single mutant is still
2/3:

1 2 . . . i . . . N − 2 N − 1

T i+dB
2
N

2
N . . . 2

N . . . 2
N

1
N

T i−dB
1
N 0 . . . 2

N . . . 2
N 0

t1i N
3 N N−3

3 . . . N N−i−1
3 . . . N

3
2N
3

(41)

such that the mean fixation times become

t1dB →
N3 − 5N2 + 12N

6
(42)

t1→NdB → 3N3 − 15N2 + 34N

12
(43)

Hence for large population size, conditional fixation takes
on average 50% longer than unconditional fixation.

Mutant-fixation with non-vanishing probability in the
birth-death process requires the four conditions 2b >
c + d, a + b > 2d, a < b, and a + b > 2c. As a result,
we find the following transition probabilities and sojourn
times

1 2 . . . i . . . N − 2 N − 1

T i+Bd 1 1
2 . . . 1

2 . . . 1
2

1
2

T i−Bd 0 0 . . . 0 . . . 0 0
t1i 1 2 . . . 2 . . . 2 2

(44)

The mutant fixes with probability one. We obtain fixa-
tion times linear in population size

t1Bd = t1→NBd → 2N − 3 (45)

We can also find generic payoff matrices in which the
mutant neither spreads nor goes extinct, despite strategic
dominance of one strategy.

B. Coordination games

In coordination games, the interactions between two
individuals of the same type always yield higher payoffs
than interactions between two different types, hence the
payoff relations for all coordination games are a > c and
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b < d. In a well-mixed population, A can then not in-
vade B and vice versa. Coordination games are used to
study evolution of technological standards [42], emerge in
a subset of strategies in collective risk dilemmas [43, 44],
and have a population genetic equivalent in genetic un-
derdominance (heterozygote disadvantage) between two
alleles of the same gene [45].

In the death-birth process, the limiting cases of the
transition matrix (22)-(25) immediately tell us that a mu-
tant A cannot invade, and we obtain

1 2 . . . i . . . N − 2 N − 1

T i+dB 0 0 . . . 0 0 0 1
N

T i−dB
1
N

2
N . . . 2

N . . . 2
N 0

t1i N 0 . . . 0 . . . 0 0

(46)

Thus, the conditional mean fixation time is not a mean-
ingful quantity to compute. The unconditional mean fix-
ation time, which only measures extinction of A, follows
as

t1dB → N (47)

This asymptotic relation holds for all coordination games
under strong selection.

The birth-death process leads to limiting cases in
which the single mutant cannot invade. If the inequali-
ties c > d and d+ c > 2b hold, we discover the following
transition probabilities and sojourn times

1 2 . . . i . . . N − 2 N − 1

T i+Bd 0 1
2 . . . 0 0 0 0

T i−Bd
1
2 0 . . . 0 . . . 0 0

t1i 2 0 . . . 0 . . . 0 0

(48)

The mutant goes extinct with probability one in two time
steps on average,

t1Bd → 2 (49)

C. Coexistence

In coexistence games, it is always better for a indi-
vidual to interact with an individual that plays a differ-
ent strategy. The payoff relations are a < c and b > d.
Such strategic interactions emerge when cooperators gen-
erate a benefit that can be exploited by both cooperators
and defectors [46]. A coexistence game was the original
motivation to study a game in an evolutionary context,
namely the Hawk-Dove game [1], which allows a coex-
istence of such behaviors, in which common strategies
outperform rare strategies [47].

In order to observe non-vanishing fixation probability
of a single A mutant in the death-birth process, we re-
quire the following payoff-conditions to hold: a+b > c+d,
a+ b > 2d, and c+ d > 2a as an additional relation that
determines the speed to fixation. Then, we can sum-
marize the limiting cases of transition probabilities and

sojourn times as follows

1 2 . . . i . . . N − 2 N − 1

T i+dB
2
N

2
N . . . 2

N . . . 2
N

1
N

T i−dB
1
N 0 . . . 2

N . . . 2
N

2
N

t1i N
3 N N−1

3 . . . N N−i+1
3 . . . N 2N

3

(50)

In this case of coexistence game, the mean unconditional
fixation time sums up to a cubic polynomial in N

t1dB → N2N − 1

6
(51)

and the mean conditional fixation time amounts to

t1→NdB → N
3N(N − 1)− 2

12
. (52)

If the coexistence game does not fulfill c + d > 2a we
obtain

1 2 . . . i . . . N − 2 N − 1

T i+dB
2
N

2
N . . . 2

N . . . 2
N

1
N

T i−dB
1
N 0 . . . 0 . . . 0 2

N
t1i N

3
N
3 . . . N

3 . . . N 2N
3

(53)

which is slightly different than (38). Thus

t1dB → N
N + 2

3
(54)

t1→NdB → N
3N + 5

6
(55)

There are two generic regimes of payoffs which lead to
significantly different fixation times in coexistence games.
In the first parameter regime, the mutation can go extinct
even after it has spread to intermediate frequencies, and
the fixation times scale in leading order with N3. In the
second regime the times scale with N2, because in (50),
the process can go down from i again, but not so in (53),
which make the process more efficient.

The birth-death process under a coexistence game
requires the following five relations between payoffs in
order to lead to non-vanishing fixation probability of the
mutant: 2b > c + d, a + b > c + d, a + b > 2d, a < b,
and a + b > 2c, which together result in φ1 → 1 and
the same transition probabilities, sojourn times and fixa-
tion times we have already discovered for strategic domi-
nance, Table (44). Note that, if we relaxed the condition

a + b > 2c, such that T
(N−1)+
Bd → 0 and T

(N−1)−
Bd → 1,

fixation would take infinitely long to occur. Similarly, in

coexistence games with a+b < c+d, we find T
(i>1)+
Bd → 0

but T 1+
Bd → 1, and at the same time T 1−

Bd → 0 but

T
(i>1)−
Bd → 1/2, T

(N−1)−
Bd → 1: the process gets trapped

between the states 1 and 2, see Figure 2.
In coexistence games the intuition is that mean fixation

times tend to infinity [41]. For both the death-birth and
the birth death process on the cycle graph, we have shown
that there are generic subsets of game parameters that
allow fixation of the mutant with non-vanishing probabil-
ity in a finite amount of time. Compared to a dominance
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game, the time scales in such coexistence games may be
longer by a factor N in the death-birth process, but iden-
tical for the birth-death process.

D. Prisoner’s dilemma vs. snowdrift game

We now turn to two concrete examples of social
dilemma situations. We denote cooperators as the resi-
dent type and defectors as the mutant type. First, a game
between a cooperative resident strategy C and a defec-
tive mutant strategy D is the prisoners’ dilemma game,
where cooperation corresponds to to offer a benefit to the
co-player at a cost smaller than the benefit:

D C
D 0 benefit
C −cost benefit-cost

(56)

The distribution of the conditional fixation times of this
game, for both death-birth and birth-death update rules
are shown in Figure 3. We assumed benefit= 8 and
cost= 5 and measured the mean conditional fixation
times for the death-birth and the birth-death processes.
Due to the inherent stochasticity of the death-birth pro-
cess even under very strong selection, the fixation time
is considerably larger and more variable (compare (38)
with (44)).

Second, in the snowdrift game there is a benefit to the
cooperator even when facing a defector. Cooperation still
comes at a cost, but this cost is shared under mutual
cooperation. A respective example payoff matrix of this

0.0 0.5 1.0 1.5 2.0 2.5
100

101

102

103

104

Selection intensity β

C
on
d.
fix
at
on
tim
e
(B
d)

c=8.0, a+b<2c
c=4.0, a+b<2c
c=3.0, a+b>2c

A B
A 1.0 6.0
B c 0.5

FIG. 2: (color online) The conditional mean fixation
time of the birth-death process in a coexistence game
critically depends on payoff parameters. If all condi-
tions are met, reaction (45) predicts the strong selection limit
(N = 10). However, the behavior with increasing selection
strength can depend on a single parameter of the payoff ma-
trix, e.g. c, for which we show various curves t1→N1 (β) (payoffs
as inset). If a + b > 2c it follows that t1→NBd → 2N − 3 = 17
(dashed line), but if a + b > 2c it follows that t1→NBd → ∞
(∼ econst.×β). The neutral mean fixation time is N(N − 1)/2
and for intermediate selection strength, speedup can be ob-
served [30].
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FIG. 3: (color online) Trajectories and distributions of
conditional fixation times in the Prisoner’s dilemma
game, determined from simulations. The population size was
N = 10 individuals on a cycle. The payoff matrix in Eq. (56)
was used with benefit= 8 and cost= 5. a: Single independent
realizations in which the defective mutation reached fixation
for the dB process and the Bd process, darker shade β = 1,
lighter shade β = 10. b: Histograms of 104 independent
realizations in which the defective mutation reached fixation.
The mean conditional fixation time of the death-birth (dB)
process is 48.4 (standard deviation 15.5), while for the birth-
death (Bd) process it is 16.9 (standard deviation 4.0). In the
dB case, (38) yields t1→N → N2/2−N/6 ≈ 48.3, while in the
Bd case, (44) yields t1→N → 2N − 3 = 17 (β = 10).

form of coexistence game is

D C
D 1 8
C 3 4

(57)

This payoff configuration leads to the cases (50) for the
death-birth process, and to (44) for the birth-death pro-
cess. Hence with Eq. (51) we expect long fixation times
in the death-birth precess, and fast fixation in the birth-
death process, Eq. (45). Our simulations show that fixa-
tion times in the death-birth process of this coexistence
game tend to be extremely widely distributed, Figure 4,
whereas the death-birth processes fixation times are nar-
rowly distributed around the mean for strong selection.
For comparison, in the neutral case, 4 (c), rare events of
long fixation times are less common.

These examples show that while in birth-death driven
evolutionary dynamics in structured populations an ad-
vantageous mutant can take over quickly under strong
selection, the inherent stochasticity of the death-birth
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driven dynamics can lead to a wide distribution of fixa-
tion times. For coexistence games, birth-death processes
can again lead to fast fixation in times of order N , and
death-birth process fixes in times of order N3, but with
a very wide distribution. This leading order is much
smaller than in the well-mixed population case, in which
fixation times tend to infinity for strong selection [30, 48].

0 50 100 150 200 250
0.00

0.02

0.04

0.06

0.08

0.10

Conditional fixation time

P
ro
ba
bi
lit
y

0 50 100 150 200 250
0.00

0.02

0.04

0.06

0.08

0.10

Conditional fixation time

P
ro
ba
bi
lit
y

(a)

(b)

dBBd

dBBd

β=10

β=1

0 100 200 300 400
0.000

0.002

0.004

0.006

Conditional fixation time

P
ro
ba
bi
lit
y

(c)
β=0

β=10

dB

FIG. 4: (color online) Conditional fixation time dis-
tributions in the snowdrift game, obtained from simu-
lations. The population size was N = 10 individuals on the
cycle. We show histograms of 104 independent realizations in
which the defector type reached fixation. The payoff matrix
(57) was used. a: For β = 1, the mean conditional fixation
time of the death-birth (dB) process is 263.2 (standard devi-
ation 198.7), while for the birth-death (Bd) process it is 10.3
(standard deviation 10.7). b: For β = 10, the mean condi-
tional fixation time of the death-birth (dB) process is 218.1
(standard deviation 168.9), while for the birth-death (Bd)
process it is 17.0 (standard deviation 4.0). In the dB case,
(43) yields t1→N ≈ 223.3, while in the Bd case, (45) yields
t1→N → 2N − 3 = 17. c: For neutral evolution, β = 0, the
mean conditional fixation time is 165 according to Eq. (19)
(only death-birth process shown). From the simulates we cal-
culated a mean of 158.3 (standard deviation 92.0). These
values are smaller than in the strong selection case, and the
fixation time distribution is concentrated around smaller val-
ues and rare events of long fixation time are less common.

V. SUMMARY AND CONCLUSIONS

Selective forces of stochastic evolutionary dynamics in
structured populations are driven by the underlying up-
date rule [25–27] and by how payoff is translated into

fitness [49]. Here we focus on strong selection on the cy-
cle graph [28] and an exponential payoff to fitness map-
ping. Using both analytical calculations and simulations,
we show that outcomes of the death-birth process may
differ drastically from outcomes of the birth-death pro-
cess. Under strong selection, transitions in the death-
birth process remain stochastic (proportional to 1/N), as
the random death-step before selection always depends
on population size. The maintenance of this degree of
demographic noise is surprising, as for neutral evolution
conditional fixation times are of leading order N3, and
there are games for which the strong selection fixation
times are also of this leading order (or of leading order
N2). Under the birth-death process, fitness effects can
eliminate dependence on population size, and transition
rates become constant under strong selection. Hence, the
leading order of mean fixation times is N . For dominance
games, both the death-birth and the birth death pro-
cess can lead to non-vanishing fixation probability and
finite fixation times when the payoff of mutants interact-
ing with a resident, b, is sufficiently large compared to
all other payoffs. This condition ensures that the mu-
tant can invade and stays advantageous at the bound-
ary between residents and mutants. For the example of
a strategic dominance game, such as the the prisoner’s
dilemma, not all payoff configurations allow mutant in-
vasion [28]: if the cost of cooperation is sufficiently low, a
population of cooperators is immune to invasion and fix-
ation of a defective mutant under both update processes.
This result stands in contrast to the well-mixed popu-
lation. If the payoff configuration is such that defective
mutants can invade, i.e for high benefit and low cost, the
speed of fixation is expected to take long and fixation re-
mains highly stochastic for the death-birth process, even
under strong selection. For a birth-death update driven
process, rapid takeover by an advantageous mutant can
be observed, see Figure 5.

Stochastic evolutionary dynamics of coordination
games on the cycle graph show closest resemblance to
their well-mixed counterpart: under strong selection, mu-
tants cannot invade, and the respective extinction times
are short (of order N in the death-birth process, of order
1 in the birth-death process), see Figure 5. The snowdrift
game promotes coexistence of cooperators and defectors
in well-mixed populations under strong selection [13, 30].
For this game on the cycle the evolutionary dynamics
can get trapped at intermediate numbers of mutants of
either kind and fixation would also take infinitely long.
There are coexistence game payoff configurations that
permit mutant invasion, on the cycle, again when b is
the dominating payoff. In such cases, fixation times of
the death-birth process tend to be much longer and ex-
perience a broader distribution than fixation times of the
birth-death process.

Our analytical results focus on mean fixation times,
but the simulation results highlight that future work has
to focus on other features of the fixation time distribu-
tion, such as higher moments. Overall our work high-
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FIG. 5: (color online) Overview of fixation probabil-
ity and times in the strong selection limit, comparing
the well-mixed population with dynamics on the cy-
cle. a: In case of the well-mixed population, the results have
been worked out previously [30]. Most importantly, for coex-
istence games the fixation times under strong selection tend
to infinity for any population size. b: In spatial populations,
the update process matters. Already the constant selection
cases show differences comparing Bd to dB update processes.
For strong frequency dependent selection not only fixation
times, but also fixation probabilities can differ. As opposed
to the well-mixed population, there are generic subsets of co-
existence games for which fixation occurs in a finite number
of time steps, with averages depending on the game. This
leads to distinct strong selection limit cases (see IV). E.g.,
compare Eq. (52) (conditional fixation time is of leading or-
der N3) with Eq. (55) (conditional fixation time is of leading
order N2). Note that there also are coexistence games with
payoff configurations such that strong selection works entirely
against fixation of the mutant (comparable to coordination
games).

lights that selective advantage might not guarantee fixa-
tion within a desired time frame, even on graphs that are
deemed not to be a suppressor or amplifier of selection.
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Appendix A: Transition probabilities of the birth-death process

The transition probabilities of the birth-death process on the cycle graph for any strength of selection, in full form,
are given by

T i+Bd =


eβ 2b

eβ 2b+2eβ(c+d)+(N−3)eβ 2d if i = 1
eβ(a+b)

2eβ(a+b)+(i−2)eβ 2a+2eβ(c+d)+(N−i−2)eβ 2d if 1 < i < N − 1
eβ(a+b)

2eβ(a+b)+(N−3)eβ 2a+eβ 2c if i = N − 1

0 if i = 0, N

(A1)

and

T i−Bd =


eβ(c+d)

eβ 2b+2eβ(c+d)+(N−3)eβ 2d if i = 1
eβ(c+d)

2eβ(a+b)+(i−2)eβ 2a+2eβ(c+d)+(N−i−2)eβ 2d if 1 < i < N − 1
eβ 2c

2eβ(a+b)+(N−3)eβ 2a+eβ 2c if i = N − 1

0 if i = 0, N

(A2)

Appendix B: The probability to ever visit j, starting from i

The probabilities to ever go from any internal state i to any other internal state j are useful when calculating
sojourn times [30, 31],

φij =

∑N−1
k=i

∏k
m=j+1

Tm−

Tm+∑N−1
k=j

∏k
m=j+1

Tm−

Tm+

if i > j, (B1)

φij =

∑i−1
k=0

∏k
m=1

Tm−

Tm+∑j−1
k=0

∏k
m=1

Tm−

Tm+

if i < j, (B2)

which hold for any birth-death process with absorbing boundaries [50].

Appendix C: Constant selection on cycle graphs

We speak of constant selection if the fitness of mutants is fA > 1 and the fitness of residents is fB ≡ 1, irrespective
of the number of mutants. Often, the success of the mutant is given by r > 1, where the fitness of the resident is 1.
We can then define q = fB/fA = e−βr, and strong constant selection (β r →∞) in favor go the mutant means q → 0.
In the following we derive exact expressions for transition probabilities, sojourn times and the fixation time under
strong constant selection.

In case of the birth-death process we find q = T j−Bd /T
j+
Bd for all j and get φi+1,i

Bd = 1 − (1 − q)/(1 − qN−i), and

φi,i+1
Bd = (1− qi)/(1− qi+1). Then, we obtain the fixation probability [25, 26, 51]

φiBd =
1− qi
1− qN , (C1)

as well as the sojourn times

t1jBd =
1

T j+Bd (q)

1− q
1− qj

1

1−q
1−qN−j + q

(
1− 1−qj−1

1−qj
) (C2)

In the strong selection limit q → 0 we obtain T j+Bd → 1/j, and we can immediately see that

t1jBd → j (C3)

and summing over all sojourn times case leads to

t1Bd → N
N − 1

2
(C4)
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which is equal to t1→NBd as the mutant fixes with probability 1.

For the death-birth process, we obtain T 1−
dB /T

1+
dB = (1 + q)/2, T i−dB/T

i+
dB = q for 1 < i < N − 1, and

T
(N−1)−
dB /T

(N−1)+
dB = 2q/(1 + q). Since the first and last state are special due to the structure of random death

and subsequent competition, we obtain a more complicated expression for the fixation probability

φidB =
1 + 1+q

1−q
1−qi−1

2

1 + qN−2 + 1+q
1−q

1−qN−2

2

(C5)

With the appropriate values of φj+1,j
dB and φj,j+1

dB , the expected sojourn times become

t1 1
dB =

1

2
N

1
1+q

(
1− φ2,1dB

)
+ 1

N

(C6)

t1 jdB =
2(1− q)

3− q − (1 + q)qj−1
1

2
N

1
1+q

(
1− φj+1,j

dB

)
+ 2

N
q

1+q

(
1− φj−1,jdB

) (C7)

t
1 (N−1)
dB =

2(1− q)
3− q − (1 + q)qN−2

1

1
N + 2

N
q

1+q

(
1− φN−2,N−1dB

) (C8)

For strong selection, q → 0, we observe that φidB → 1, φj+1,j
dB → 0 and φj−1,jdB → const. for all j, respectively. For the

sojourn times we can now see that

t1 1
dB →

N

3
(C9)

t1 jdB →
N

3
(C10)

t
1 (N−1)
dB → 2N

3
(C11)

(C12)

and hence the mean fixation time amount to

t1→NdB = t1dB →
N2

3
(C13)

Appendix D: Constant selection approximation for the Bd process (cycle and well-mixed)

Here we are interested in finding approximations of the conditional mean fixation times for finite but large values
of the product β r. In this case, we can perform a Taylor expansion to linear order in the quantity q = e−β r = fB/fA,
as defined above. For the well-mixed case we obtain φ1WM ≈ 1 − q and φi>1

WM ≈ 1, as well as T i−WM/T
i+
WM = q for

all 0 < i < N . To calculate the conditional mean fixation time of the well-mixed population we here resort to an
equation that does not involve mean sojourn times [50]

t1→NWM =

N−1∑
k=1

k∑
l=1

φlWM

T l+WM

qk−j (D1)

and sort this equation in all terms involving directly q0 or q1

t1→NWM =

N−1∑
k=1

sk(q) + q

N−2∑
k=1

sk(q) (D2)

whereby sk(q) = φkWM/T
k+
WM. Now we use Eq. (9) with eβπA = eβ r and eβπB = 1, which is equivalent to setting the

payoff a = b = r/2 and c = d = 0, we get the linear in q approximation

1

T k+WM

≈ N

N − k +
N

k
q (D3)
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to result in

s1 ≈
N

N − 1
− q N

N − 1
+ q N (D4)

sk>1 ≈
N

N − k +
N

k
q (D5)

Then, the first sum of Eq. (D2) amounts to

N−1∑
k=1

sk(q) ≈ N HN−1 + q N HN−2 (D6)

and the second sum solves similarly. We thus obtain

t1→NWM ≈ N HN−1 + 2 q N HN−2 (D7)

In case of the birth-death process on the cycle, we use the mean sojourn times from Eq. (C2), the definition of the

mean fixation time of Eq. (8), and 1/T k+Bd = k + (N − k)q, to result in

t1→NBd ≈ NN − 1

2
+ q N(N − 2) (D8)
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