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We study a network of N identical leaky integrate and fire model neurons coupled by α-function

pulses, weighted by a coupling parameter K. Studies of the dynamics of this system have mostly

focused on the stability of the fully synchronized and the fully asynchronous splay states, which

naturally depends on the sign of K, i.e. excitation vs inhibition. We find that there is also a rich

set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N − 1, 1)

states, which have synchronized clusters of size N − 1 and 1, as well as splay states of clusters with

equal size greater than 1. Additionally, we find limit cycles that clarify the stability of previously

observed quasi-periodic behavior. Our framework exploits the neutrality of the dynamics for K = 0

which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a

continuous flow on a codimension 3 subspace, with the sign of K determining the flow direction. This

reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which

the new attracting states lie. Using high-precision numerical simulations, we describe completely

the sequence of bifurcations and the stability of all fixed points and limit cycles for N = 2, 3 and 4.

The set of possible attracting states can be used to distinguish different classes of neuron models.

For instance from our previous work[12] we know that of the types of partially synchronized states

discussed here, only the (N − 1, 1) states can be stable in systems of identical coupled sinusoidal

(i.e. Kuramoto type) oscillators, such as theta neuron models. Upon introducing a small variation

in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent

fixed points in which neurons need not fire coincidently.

I. INTRODUCTION

Pulse-coupled oscillator networks are oscillator

networks in which the oscillators do not commu-

nicate continuously; instead, the oscillators each

evolve completely independently of each other, ex-

cept when an oscillator reaches some threshold

level, and then undergoes a“firing event.” When

an oscillator fires, it then emits a “pulse” which in

some way alters the evolution of the other oscilla-

tors in the network. Pulse-coupled oscillator net-

works are natural models for a variety of systems

in nature, such as the cardiac pacemaker, neural

networks, and most famously, swarms of fireflies

that flash in unison. Beginning with the pioneer-

ing work of Winfree [1] and Peskin [2] in the 1960’s

and 1970’s, these systems have been studied ex-

tensively; it is impossible to summarize in a short

discussion all the important work in the vast litera-

ture on this topic. We are mainly interested in the

subclass of systems in which the individual oscilla-

tors have identical dynamics, and also affect each

other in the same way; in this case the oscillator

network has “all-to-all” coupling. All-to-all models

are a highly idealized class, since they ignore the

possible effects of network architecture, but they

are often analytically tractable due to their inher-

ent symmetries, and hence have received particular

attention in the work on pulse-coupled networks.

All-to-all networks of identical oscillators have

the (sometimes) desirable property that synchrony

cannot be broken; in other words, the sync states,

which we define as states such that all oscillators

have the same phase, are preserved by the dynam-

ics. This is because when the oscillators simulta-

neously reach threshold and fire, the effect of the

firings is the same on each oscillator in the network,

so they all remain in sync. However, this does not

imply that synchrony is stable; this depends sen-

sitively on the form of the coupling. For example,

Mirollo and Strogatz [3] proved that synchrony is

stable in all-to-all networks with excitatory delta

function coupling (when one oscillator fires, all oth-

ers advance discontinuously by the same amount,

up to but not exceeding their thresholds). But in

networks with continuous pulses, synchrony is not
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always stable, as was first shown by Abbott and

Van Vreeswijk [4] for leaky integrate-and-fire (LIF)

networks with excitatory alpha function coupling.

Note that an α-function pulse attains its maximum

magnitude at time τ = 1/α after the onset of the

pulse, so there is a delay inherent the effect of α-

function coupling unlike the case of delta function

coupling.

Synchrony is of course a highly symmetric con-

figuration of states; not surprisingly, all-to-all net-

works have a variety of other states which are sym-

metric in the sense that they are invariant under

some permutations of the oscillators, and which

may or may not be dynamically stable. At the

other extreme from synchrony are splay states, in

which the oscillators all evolve according to the

same periodic function, but equally staggered in

phase. Splay states can be stable, for example in

all-to-all networks with inhibitory delta function

coupling [5]. There are many studies of splay states

and their stability [4, 6–10]. The stability of splay

states can often be analyzed in the continuum limit

as the number oscillators N →∞, since the distri-

bution of the oscillator phases becomes stationary

for splay states in this limit. In Refs. [9, 11] Olmi,

Torcini and Politi have thoroughly analyzed this

problem for networks with alpha function coupling,

using a perturbative approach in 1/N to study the

stability of splay states. Of course, the analysis of

splay states in continuum limit models sheds little

light on their behavior for small N networks, which

is the primary focus of this paper.

It may be tempting to conclude that the di-

chotomy between sync and splay states is the whole

story, but this is far from the case. All-to-all net-

works of identical pulse-coupled oscillators have a

variety of partially synchronized states: if N =

n1 + n2 + · · · + nM is any partition of N , then

the network has partially synchronized states with

ni oscillators in each of M synchronized clusters.

And partially synchronized states with synchro-

nized clusters of different sizes can also be stable.

For example, we will see systems with N = 4 os-

cillators which have stable partially synchronized

states with a (3, 1) configuration (i.e. a cluster of

three oscillators in sync, the remaining one out of

phase with the cluster of three).

For inhibitive coupling, we also find stable sates

consisting of M distinct, equally-sized clusters

(ni = N/M) in a splay configuration, where

N = ni × M . For N = 4 and 6 we find sta-

ble (2,2), (2,2,2) and (3,3) partially synchronized

splay states. Note that for systems of identical

coupled sinusoidal (i.e. Kuramoto type) oscilla-

tors, (N − 1, 1) states are the only possible stable

asynchronous configurations [12]; this is a conse-

quence of the invariance under the action of the

Möbius group on the state space. The existence

of stable (2,2) states in the case of pulse-coupled

networks implies that the dynamics of these net-

works cannot be replicated by Kuramoto networks.

For inhibitive coupling and N < 7, the only sta-

ble partially synchronized states are (N − 1, 1) or

equal-cluster splay configurations. In contrast, us-

ing numerical simulations for 100 oscillators, van

Vreeswijk found [7] clustered states which were nei-

ther equally-sized nor in a splay configuration nor

of the (N − 1, 1) variety.

The organization of this paper is as follows: we

begin by setting up a standard model of N iden-

tical LIF neurons with alpha function pulse cou-

pling, which has an N + 2 dimensional state space.

We reduce the dynamics down one dimension by

constructing a return map that relates consecu-

tive states right after a complete cycle of N firing

events. We accomplish a further reduction in di-

mension by assuming that the coupling is small;

in the limit of weak coupling the discrete dynam-

ics of the firing event map can be approximated

by the continuous dynamics of an associated ODE

model of lower dimension (one dimension lower for

exponential pulses, two dimensions lower for alpha

function pulses). So for example the system with

N = 3 oscillators and alpha function pulses, which

has a five dimensional state space, can be reduced

to a two-dimensional flow. We investigate the dy-
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namics of our reduced systems numerically, and

map out in parameter space some of the different

stable configurations we observe. These include,

not surprisingly, stable sync and splay states, but

also a variety of partially synchronized states and

limit cycles, including (2, 2) configurations as well

as the (3, 1) configurations mentioned above. We

conclude with a discussion of our findings and fu-

ture directions for this work.

II. MODEL

We begin by setting up a classic all-to-all LIF

network, as described in Ref. 4. A state of this

model is an N + 2 dimensional vector (x, s, b) =

(x1, . . . , xN , s, b), where xi ≤ 1. Here the xi rep-

resent the voltages of the N individual oscillators,

and s and b are auxiliary variables that determine

a global field through which the oscillators are cou-

pled. Provided that all xi < 1, the state variables

xi, s and b evolve according to the equations

ẋi = a− xi +Ks, i = 1, . . . , N,

ṡ = α (−s+ b)

ḃ = −αb
(1)

where a > 1, α > 0 and K are constant parame-

ters. Since a > 1 we are modeling supra-threshold

LIF neurons, which are equivalent to phase rota-

tors, because they fire periodically in the absence of

coupling. The parameter α determines the shape

of the pulses emitted when oscillators fire, and K

is a coupling constant (which can be any real num-

ber). We assign weights wi > 0 to the oscillators,

and assume
∑
wi = 1; wi = 1/N when the N

oscillators are weighted equally. The rationale for

introducing the weights wi is that if an initial con-

dition for the equal weight model withN oscillators

consists of M < N clusters of synchronized oscil-

lators, then this partial synchrony is never broken,

and the evolution of this state reduces to a model

for M oscillators, but with different weights if the

clusters are not all equal in size.

Firings occur when one or more of the variables

xi reach the threshold x = 1; when this happens

we reset xi to 0, b is augmented by wiα and s is

unchanged. If oscillator i fires at time t0, the global

field s(t) is augmented by the function wiφ(t− t0)
where φ(t) is the alpha function pulse defined by

φ(t) = α2te−αt.

(The parameter α determines the time τ = 1/α at

which φ(t) attains its maximum value.) Between

firings, s(t) obeys the ODE

s̈+ 2αṡ+ α2s = 0,

so s(t) has the form (A+Bt)e−αt and hence would

decay to 0 in the absence of firings. Notice that

since a > 1, firings will eventually occur; if not,

then s(t) would decay to 0, but then each oscillator

reaches threshold in finite time.

III. DIMENSIONAL REDUCTIONS

Following Zillmer et. al. [8], we transform the

continuously evolving system described above to

a discrete dynamical system on a state space one

dimension lower by use of a return map. The idea

is to look at a snapshot of the model immediately

after one or more of the oscillators has fired and

reset to 0. Note that it is possible for the oscillator

variables xi to drop below x = 0; indeed, this can

happen for large negative K, even if we assume

our initial condition has all xi > 0. However, if we

define the width of a state by δ = maxxi−minxi,

then we claim that eventually δ will drop below

and remain less than 1. To see this, observe that

between firings, δ satisfies the ODE δ̇ = −δ, and

hence decays exponentially between firings. If δ ≥
1 when a firing occurs, then we must have some

xi ≤ 0 and hence δ does not increase due to this

firing; this implies that we must eventually obtain

δ < 1. And once a state has δ < 1, this condition

holds for the subsequent evolution of that state.

So we may as well only consider post-firing states

with all xi ≥ 0.

If we assume that the Nth oscillator has fired

and reset, then we can take as our state space the
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set X of vectors (x, s, b) with

x = (x1, . . . , xN−1), 0 ≤ xi < 1.

If we identify 0 and 1 then X is just the prod-

uct of the (N − 1)-fold torus TN−1 with R2. Let

F (x, s, b) ∈ X denote the evolution of the state

(x, s, b) ∈ X after one complete cycle of N firings

(each oscillator fires once). The discrete dynamics

of the return map F completely capture the con-

tinuous dynamics of the original model, on a state

space of dimension N+1, one less than the original.

In the case of equal weights wi, the state space X

can be partitioned into (N − 1)! fundamental do-

mains, which are the open sets in which the vari-

ables x1, . . . , xN−1 are distinct and have the same

ordering; these fundamental domains are each in-

variant under F and have identical dynamics, so

we can restrict our attention to any one of these

domains, say X0 given by

0 ≤ xN−1 ≤ · · · ≤ x1 < 1.

The boundaries of the fundamental domains con-

sist of states with at least one cluster of two or more

identical xi, and are invariant under the dynamics.

The dynamics on the boundary components can be

viewed as systems with fewer oscillators but possi-

bly unequal weights wi.

Our approach differs from that of

Zillmer et. al. [8], where only the case of equal

weights wi is considered. They describe the

dynamics by an “event-driven map” that is the

result of a single firing event. In their formulation

the states can be taken as configurations of points

0 ≤ xN−1 ≤ · · · ≤ x1 ≤ 1, together with a vector

(s, b). Their firing map is given by taking the new

configuration of points after oscillator #1 fires

and resets to zero, and then shifting each index

down by one. An advantage of their formulation

is that the fixed points of the single-firing map are

exactly the splay states. A disadvantage is that

the single firing map is discontinuous at partially

synchronized states. In our formulation the return

map F is continuous on the full state space and

has a richer set of fixed points, including both the

sync and splay states, various types of partially

synchronized states and also higher order periodic

points of the single-firing map.

We next explain how to accomplish an additional

reduction of two more dimensions in the limit of

small coupling K → 0. Consider the system in

the case K = 0; then the equations for the oscil-

lator states xi are uncoupled and independent of

the variables s and b, although the evolution of s

and b still depends on the firing times of the oscil-

lators. Suppose (x, s, b) ∈ X; then after N firings

x is unchanged, so we have

F (x, s, b) = (x, s′, b′)

for some s′, b′ ∈ R. We can describe the evolution

of the variables s and b as follows: Let s0 and b0
be their initial values, and sj, bj their values after

the jth firing, j = 1, . . . , N . Assume the oscillators

fire in order 1, 2, 3, . . . , N and let t1, . . . , tN be the

times between consecutive firings; then

t1 + · · ·+ tN = T,

where T > 0 is the time for each oscillator to go

from reset x = 0 to threshold x = 1. Then we have(
sj
bj

)
= exp(tjA)

(
sj−1
bj−1

)
+

(
0

wjα

)
,

where j = 1, . . . , N and A is the matrix governing

the evolution of s and b:

A = α

(−1 1

0 −1

)
.

Inductively, we see that we can express(
sN
bN

)
= exp(TA)

(
s0
b0

)
+ v(x),

where the vector v(x) depends on α, the weights wi
and the vector x through the inter-spike times tj.

Since A has repeated eigenvalue −α < 0, this iter-

ation converges exponentially to the unique fixed

point given by(
s0(x)

b0(x)

)
= [I − exp(TA)]−1v(x).

The codimension 2 submanifold X̃0 given by states

(x, s0(x), b0(x)) is invariant and attracting in the

full state space X for the system with K = 0.
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Now suppose K 6= 0; then for K sufficiently close

to 0, the system will continue to have a codimen-

sion 2 invariant and attracting subspace X̃K , which

we can parameterize in the form

(x, sK(x), bK(x)), x = (xi), 0 ≤ xi < 1,

with i = 1, . . . , N − 1. The dynamics of F on

X̃K are completely determined by the dynamics in

the vector x, and reduce to the identity map for

K = 0. Let us denote temporarily the return map

for a given K by FK , and expand at K = 0 to first

order in K on the full state space X:

FK(x, s, b) ≈ F0(x, s, b) +KG(x, s, b)

for some function G on X. Let us also expand the

functions sK and bK :

sK(x) ≈ s0(x) +Ku(x),

bK(x) ≈ b0(x) +Kv(x)

for some functions u and v on TN−1. Then on the

reduced state space X̃K we have an expansion to

first order in K

FK(x, sK(x), bK(x))

≈ F0(x, s0(x)+Ku(x), b0(x)+Kv(x))

+ KG(x, s0(x), b0(x)).

The dynamics in x on X̃K are given by the first

component of FK(x, sK(x), bK(x)) The first com-

ponent of F0(x, s0(x) + Ku(x), b0(x) + Kv(x)) is

just x, which has no K-dependence. So we see

that to first order in K, the dynamics in x on X̃K

are given by a function of the form

x 7→ x +Kg(x),

where g is just the first component of

G(x, s0(x), b0(x)). Notice that if we instead ex-

pand FK on X̃0, namely expand FK(x, s0(x), b0(x))

to first order in K, we get the same first order

expansion! In other words, if we use the approxi-

mate values s0(x) and b0(x) instead of the correct

values sK(x) and bK(x) to determine the dynamics

in x along the invariant subspace X̃K , we will be

correct to first order in K.

So we see that in the K → 0 limit, the dynamics

of our model reduce to an iteration of the form

x 7→ x + Kg(x), where g is a function on the

torus TN−1. This discrete iteration is just Euler’s

method for ẋ = ±g(x) on TN−1 with time step

|K|, so we ultimately see that in the K → 0 limit,

the dynamics of our original system reduce to the

continuous dynamical system ẋ = ±g(x) on TN−1,

where the ± is the sign of K (the observation that

the dynamics reduce to a continuous system in the

K → 0 limit can also be found in Refs 13 and

14. Thus we obtain a reduction of three dimen-

sions from the original model. The function g(x)

depends only on the parameters a and α, not on

K. Observe that in the K → 0 limit, the dynam-

ics for excitatory (K > 0) and inhibitory (K < 0)

coupling are identical under time reversal.

IV. ATTRACTORS AND BIFURCATIONS

In this section we describe the dynamics of the

reduced model ẋ = ±g(x) on TN−1, focusing on

the stability and bifurcations of fixed points and

limit cycles as a function of the parameter α. Our

results are based on numerical solutions of the orig-

inal discrete system for small |K| and values of a

slightly above the threshold 1 (such as a = 1.05).

We start by reviewing the case of two identical

coupled oscillators (N = 2 and w1 = w2) studied in

the classic paper of Ermentrout, van Vreeswijk and

Abbott [6]. The dynamics reduce to a flow on the

unit circle T 1. For small α the flow has the simplest

possible fixed point structure, namely one sink and

one source. For K → 0− the stable fixed point is

the synchronized state x1 = 0 and the unstable

fixed point is the splay state. (Note that the splay

fixed point is not x1 = 1
2

in this representation since

ẋ is not constant. For K = 0 each oscillator fires

with period T = ln (a/(a− 1)) so the inter-spike

period for a splay state is T/2 = ln
√
a/(a− 1).

This gives x1 = a −
√
a(a− 1) > 1

2
in the K → 0

limit.) As discussed in Ref. [6] the splay fixed point

undergoes a pitchfork bifurcation at a threshold

value αc. The two states born at this bifurcation
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sync + 
(1,1)B
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B
C

A

FP (nA, nR) IFP # in T 2 total
(1, 0) 1 1 1
(0, 1) �1 1 �1

sync

(1,1)A + 
(1,1)C

(1,1) A 

N = 2{ {

↵
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splay + 
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(1,1) 

↵
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  ⇒↵
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x⇤
1

↵c

C

A
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w1 6= w2

K ! 0� K ! 0+

K ! 0� K ! 0+

1

0

FIG. 1. Case N = 2 with symmetric coupling w1 = w2: pitchfork

bifurcation (PF) for K → 0−; attractors in the K → 0 limit for

fixed a; pitchfork bifurcation for K → 0+. (Black circles are

attractors, white circles repellors.)

are equivalent in the sense that each maps to the

other under a single firing (and exchange of in-

dices). For α > αc both sync and splay states

are stable for K → 0−. As α increases further the

basin of attraction of the splay grows, approaching

all of T 1 for large α.

For K → 0+ the flow direction is reversed, re-

sulting in a stable splay and unstable sync state

for small α. The two states born at the pitchfork

bifurcation of the splay state are now stable, and

converge to the sync state in the large α limit. The

attractors and bifurcations in the K → 0 limit for

N = 2, w1 = w2 and fixed a are shown in Figure 1.

Our analysis for N > 2 will place considerable

emphasis on partially synchronized subspaces of

TN−1, which lie in the codimension one boundaries

between fundamental domains. As mentioned ear-

lier, these subspaces are invariant under the flow

for ẋ = ±g(x) and are equivalent to systems of

fewer than N oscillators but with possibly unequal

weights wi. With this in mind, we consider here

the case of N = 2 oscillators with unequal weights

w1 6= w2. We find that the number of fixed points

is the same as in the symmetric case, but instead

of a pitchfork there is a saddle-node bifurcation at

which two additional fixed states are born. For

K → 0− the basin of attraction of the stable asyn-

chronous state approaches the full state space T 1,

in the large α limit. For K → 0+ the two sta-

ble asynchronous states approach the sync state in

this limit. The attractors and bifurcations in the

PF

sync + 
(1,1)B

SN

B
C

A

FP (nA, nR) IFP # in T 2 total
(1, 0) 1 1 1
(0, 1) �1 1 �1

sync

(1,1)A + 
(1,1)C

(1,1) A 

N = 2{ {

↵

sync

splay + 
sync 

splay

(1,1) 

↵

in
cr

ea
se

   
  ⇒↵

N = 2 w1 6= w2↵

x⇤
1

↵c

C

A
B

w1 6= w2

K ! 0� K ! 0+

K ! 0� K ! 0+

1

0

FIG. 2. Case N = 2 with asymmetric coupling w1 6= w2: bi-

furcation diagram for K → 0−; saddle-node bifurcation (SN) for

K → 0−; attractors in the K → 0 limit for fixed a.

K → 0 limit for N = 2, w1 6= w2 and fixed a are

shown in Figure 2.

Now we are ready to consider the system with

N = 3 identical oscillators, which reduces to a flow

on the torus T 2 (x3 = 0). We represent T 2 as the

unit square 0 ≤ x1, x2 ≤ 1 with 0 and 1 identified.

The diagonal x1 = x2 separates T 2 into two trian-

gular fundamental domains with edges consisting

of partially synchronized (2,1) states. The edges

are invariant under the flow for ẋ = ±g(x) and the

dynamics on each edge is that of the N = 2 system

with weights 1
3
, 2

3
, depicted in Figure 2.

The simplest dynamics again occur for small α.

The dynamics for K → 0− on the fundamental do-

main 0 ≤ x2 ≤ x1 ≤ 1 are represented in the lower

left triangle in Figure 3. The vertices of this tri-

angle correspond to the synchronous state, which

is attracting, and the fixed point in the interior is

a splay state, which is repelling. Each edge has a

saddle point that is repelling along the edge. The

dynamics for small α and K → 0+ have reversed

flow direction, so have splay attracting and sync

repelling. Note that the actual locations of the

splay and edge saddle points are typically far from

the centrally positioned points shown in Figure 3,

which is a schematic representation chosen to illus-

trate the relevant dynamical structures clearly.

It is instructive to check the count of indices of

all of the fixed points, which must be zero for any

flow on the full state space T 2. The index of a fixed

point is defined to be (−1)r, where r is the dimen-
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{

FP (nA, nR) IFP # in T 2 total
(2, 0) 1 1 1
(1, 1) �1 3 �3
(0, 2) 1 2 2

FP (nA, nR) IFP # in T 2 total
(2, 0) 1 6 6
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basins

N = 3

=

=

sync

Hopf

splay +
sync

DSN

splay

(2,1)

LC

↵

(2,1) + 
splay + 
sync

K ! 0� K ! 0+

sp

sp

sp

sp

sp

sp

FIG. 3. N = 3 schematic Hopf bifurcation followed by double

saddle node (DSN) bifurcation; attractors in the K → 0 limit

for fixed a. (Crosses denote saddles; darker shade indicates at-

tracting direction.)

sion of the unstable manifold of the fixed point.

For a 2D flow, attracting and repelling fixed points

have index +1, and saddle points have index −1.

Combining this fundamental domain with its re-

flection in the diagonal, we see that the full state

space T 2 has one sync, two splay and three saddle

fixed points, which gives a total index of zero, as

expected.

Upon increasing α, our numerical simulations re-

veal that the splay fixed point in the interior of the

triangle undergoes a Hopf bifurcation at some αH .

For K → 0− the Hopf bifurcation is subcritical,

so the resulting limit cycle for α > αH is repelling

and the splay fixed point becomes attracting. For

K → 0+ the limit cycle becomes the new attractor

for α > αH through a supercritical Hopf bifurca-

tions.

This section has so far focused on fixed points

for the K → 0 limit continuous dynamical system

ẋ = ±g(x) which are the K → 0 limits of cor-

responding fixed points for the discrete dynamical

system defined by the return map F . Moreover, the

stability behavior of the fixed points in the contin-

uous dynamical system is also the same as that of

the corresponding fixed points in the discrete sys-

tem, for sufficiently small |K|.

sp

sp

sp

(2
, 1

)

(2, 1)

(2
,1

)

splay

sync

syncsync

(2
,1

)

(2, 1)

(2
, 1

)

K ! 0� K ! 0+

FIG. 4. Schematic of a double saddle-node bifurcation for K→
0−.

In contrast, when the continuous system in the

limit K → 0 has an attracting limit cycle, then for

sufficiently small |K| > 0 then the corresponding

discrete system will exhibit the discrete analogue of

a limit cycle, which is a stable quasiperiodic orbit

near the limit cycle. This is consistent with the

quasiperiodic behavior observed numerically and

attributed to a Hopf bifurcation by van Vreeswijk

[7] and also discussed further by Mohanti and Politi

[15]. This limit cycle, however, does not exist for

arbitrary large α.

As α increases further, the limit cycle (LC)

grows until it becomes tangent to a point on each

edge. Then a somewhat unusual bifurcation oc-

curs; along each edge, the point of tangency bifur-

cates into a sink and a source along the edge to-

gether with a pair of saddle points on either side of

the edge. After this “double saddle node” bifurca-

tion, the remnant of the limit cycle is a heteroclinic

cycle connecting the three edge sources for K → 0−

(sinks for K → 0+) and the three saddles born in

fundamental subdomain containing the limit cycle.

This bifurcation is depicted in Figure 4.

This double saddle-node bifurcation creates a

new attracting fixed point on each edge; this fixed

point is a partially synchronized (2,1) state. So

for K → 0−, in addition to the stable sync and

splay there are now three equivalent stable par-

tially synchronized (2,1) states for α > αDSN . The

basins of attraction for these three types of states

are illustrated in the first panel in Figure 5. For

K → 0+, the limit cycle is the only attractor for

αH < α < αDSN and for α > αDSN the only at-

tractors are the three equivalent stable (2,1) states

born at α = αDSN . The basins for the three

(2,1) attracting fixed points are shown in the sec-
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sp

sp

sp

(2
, 1

)

(2, 1)

(2
,1

)

splay

sync

syncsync

(2
,1

)

(2, 1)

(2
, 1

)

K ! 0� K ! 0+

FIG. 5. The basins of attraction of the stable fixed points for

large α. For K → 0− the attractors are sync, splay and three

equivalent (2,1) states; for K → 0+ the attractors are the other

three equivalent (2,1) states.

ond panel in Figure 5. Note that the set of (2,1)

states on each edge corresponds to an asymmetri-

cally weighted N = 2 system, which undergoes a

saddle node bifurcation as shown in Figure 2.

The attractors for K → 0, N = 3 and fixed

a are given in the center panel of Figure 3. For

K → 0− both sync and splay are stable for αH <

α < αDSN and sync, splay and (2,1) are stable for

αDSN < α. The size of the sync basin (white space

in first panel of Figure 5) vanishes in the large α

limit. For K → 0+ only a single type of attractor is

stable for any given α and for α� αDSN the stable

(2,1) attractors get arbitrary close to the unstable

sync state.

For N = 4 the K → 0 continuous dynam-

ics have state space T 3 or equivalently the unit

cube 0 ≤ x1, x2, x3 ≤ 1 with 0 and 1 identi-

fied (x4 = 0). The dynamics for K → 0− and

small α on the tetrahedral fundamental domain

0 ≤ x3 ≤ x2 ≤ x1 ≤ 1 are shown in Figure 6. The

tetrahedron’s boundary has four equivalent trian-

gular faces consisting of (2,1,1) states which are

invariant under the flow for ẋ = ±g(x) and cor-

respond to the asymmetric N = 3 system with

weights 1
4
, 1

4
, 1

2
. Each face has two edges con-

sisting of (3,1) states and one edge consisting of

(2,2) states, which are drawn in a lighter shade in

our figures. The full state space T 3 consists of the

six fundamental subdomains generated by permu-

tations of points (x1, x2, x3) in this tetrahedron.

For K → 0− the vertices of the tetrahedron in

Figure 6 correspond to the attracting synchronous

(3, 1)
(2, 2)

FP (nA, nR) IFP # in T 3 total
(3, 0) 1 1 1
(2, 1) �1 4 + 3 �7
(1, 2) 1 6 + 6 12
(0, 3) �1 6 �6

x2 x3

x1

FIG. 6. N = 4 flow on a fundamental tetrahedral subdomain

for small α and K → 0−. Partially synchronized invariant sub-

spaces include four (3,1) edges, two (2,2) edges and four (2,1,1)

triangular faces. Broken rings indicate face saddles that repel in

the face and attract transverse to it.

state and the fixed point in the interior is the re-

pelling splay state. The saddle point on each of

the six edges is repelling along the edge and has a

unique attracting direction into each face. The two

(2,2) edge saddles are splay (2,2) states; i.e. fixed

points of the square of the single-firing map. Each

of the four faces has a saddle point in its interior

which is repelling in the face and attracting in the

direction perpendicular to the face.

The full state space T 3 has four distinct (3,1)

edges and three distinct (2,2) edges which together

contain seven edge saddles (index −7); the twelve

distinct faces in T 3 together contain twelve face

saddles (index +12); and each of the six funda-

mental subdomains has a single splay fixed point

in its interior (index −6). Together with the single

sync fixed point (index +1), this gives a total index

of zero, as expected.

Since edges are invariant subspaces, a fixed point

on the interior of an edge has one eigendirection

along the edge. The four (3,1) edges are common to

all six subdomains and six faces meet at each (3,1)

edge. So the interior saddle points on (3,1) edges

have two equal eigenvalues associated with invari-

ant two-dimensional flow transverse to the edge.

There are three (2,2) edges in T 3, two of which are

on the boundary of any subdomain, and four faces

meet at each (2,2) edge. The interior saddle points

on (2,2) edges typically have three distinct eigen-

values with eigendirections along the edge and in

the two faces that meet transversely at the edge.
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⇒

⇒

22E PF

splay PF

FEF rPF

⇒
Hopf

SN

⇒

6×FS

⇒

⇒

FIG. 7. Bifurcation sequence for N = 4 and K → 0−, starting upper left and moving clockwise.

Upon increasing α, our numerical simulations

reveal a sequence of six distinct bifurcations por-

trayed in Figure 7. In the first bifurcation (labeled

22E PF) the two splay (2,2) edge saddles undergo

pitchfork bifurcations that turn these splay (2,2)

states into attractors and give birth to two new

(2,2) edge saddle points surrounding each of the

two splay (2,2) states. The new edge saddles are

again repelling along the edge only.

In the second bifurcation, which creates no new

attractors, two face saddles (from different sub-

domains) merge with each of the new (2,2) edge

saddles in a reverse pitchfork bifurcation. The dia-

gram labeled FEF-rPF in Figure 7 shows four pairs

of face saddles, with each pair on two parallel faces

meeting at the (2,2) edge, merging with the four

new (2,2) saddles in the fundamental subdomain.

After this bifurcation there are no face saddles and

the (2,2) saddles are now repelling along the edges

as well as the direction from which the two bifur-

cating saddles came. (The two (2,2) saddles sur-

rounding an attracting splay (2,2) state are now

inequivalent since their second repelling directions

are orthogonal.)

Next, a limit cycle is born in a Hopf bifurcation

of the interior splay fixed point, as we observed for

the N = 3 system. For K → 0− the three repelling

directions of the splay fixed point reduce to one and

the limit cycle is repelling. For K → 0+ the limit

cycle is attracting and the splay state now only

has one attracting direction along which a hetero-

clinic orbit connects the splay with the splay (2,2)

states, which are repelling for K → 0+. Note that

unlike the edges, which are comprised of partially

synchronized states, this heteroclinic orbit is a 1D

invariant space in the tetrahedron’s interior; and

for N = 4 all fixed points that are not partially

synchronized lie on this orbit.

The fourth bifurcation is a saddle-node on each

of the (3,1) edges. Upon increasing α each subdo-

main’s limit cycle hits the (3,1) edges tangentially,

and a pair of fixed points is born along each (3,1)

edge. ForK → 0− one of these is a repelling source,

and the other is a saddle which is attracting along

the edge and repelling transverse to it.

The next bifurcation turns each of the (3,1) edge

saddles born in the saddle-node bifurcation into an
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≣ Aʹ′ʹ′
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FIG. 8. Six Face Saddle Bifurcation, viewed transverse to the

(3,1) edge 0 = x4 = x3 = x2 < x1 < 1; center in diagram is the

edge fixed point, which is surrounded by six face saddles on the

six faces meeting the edge.

attractor, with each simultaneously giving birth to

six new face saddles on the six faces meeting a (3,1)

edge. The fixed points involved in this bifurcation

along the (3,1) edge 0 = x4 = x3 = x2 < x1 < 1 are

depicted in Figure 8. The x∗1 values of the seven

fixed points in this plot vary slightly but their dif-

ferences vanish at the bifurcation. The x∗2 and x∗3
values are either zero, small positive or very close

to one. The central fixed point is the (3,1) edge

attractor and the six outer fixed points are the

new face saddles. While each of them has one re-

pelling and one attracting direction within each in-

variant face, the sign of the eigenvalue associated

with the eigendirection with a component perpen-

dicular to each face alternates as indicated by the

arrows. The D, D′ and D′′ face saddles are re-

pelling away from their faces (index +1) while the

E, E ′ and E ′′ face saddles are attracting toward

the faces (index −1). The face saddles related by

reflection about the face x2 = x3 are equivalent:

D ≡ D′′ and E ≡ E ′′. For either sign of the K → 0

limit, this bifurcation leaves a sink-source pair on

each (3,1) edge.

The final bifurcation is a pitchfork bifurcation of

the interior splay saddle. For K → 0−, its unique

negative eigenvalue changes sign making the splay

state attracting, and two new interior saddles are

born along a heteroclinic orbit connecting splay

state with the splay (2,2) states. For K → 0+

splay is now repelling.

The sequence of bifurcations and resulting at-

tractors upon increasing α is summarized in Fig-
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limit
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FIG. 9. The N = 4 bifurcation sequence and resulting phase

diagram, showing attractors for K→0+ and K→0− for fixed a.

ure 9. For K → 0+ the sequence of splay, limit

cycle and (N − 1, 1) attractors is the same as for

N = 3. For K → 0− the factorization N = 4 = 2·2
supports new partially synchronized splay states

and an additional bifurcation is needed to stabilize

splay.

The more exotic bifurcations we described

above, namely the double saddle-node for N = 3

and the FEF-rPF, the saddle-node (with loss of

limit cycles) and the 6xFS for N = 4, are all in-

variant under subgroups of the full permutation

group; this property partially accounts for the non-

standard nature of these bifurcations. The prop-

erties of bifurcations under permutation symme-

tries is discussed in general by Ashwin and Swift

in Refs. 14 and 16.

For N > 4 we would expect to find even longer

sequences of bifurcations that would i) ultimately

turn the fully repelling splay state to a fully at-

tracting state for K → 0−, and ii) stabilize new

partially synchronized splay states consistent with

the prime factorization of N . For instance for

N = 6 we find a bifurcation sequence that first sta-

bilizes splay (3,3) states, then splay (2,2,2) states

and ultimately fully asynchronous splay states.
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edge saddle limit cycle

↵ = 1.01 ↵ = 1.5
k = �0.01 k = +0.01

FIG. 10. Orbits for N = 3, a = 1.01, |K| = 0.01 and two values

of α that are separated by a Hopf bifurcation and thus have

different attractors; left panel: α= 1.01<αH , K < 0 and right

panel: αH<α=1.5 < αDSN , K > 0.

V. NUMERICAL RESULTS

The bifurcation and phase diagrams discussed

in the previous section are constructed based on a

combination of numerical simulations, constraints

associated with the hierarchy of lower dimensional

invariant subspaces in the boundaries between do-

mains and constraints associated with index the-

ory for the flow on TN−1. In this section we will

present numerically generated examples of the dy-

namics for the discrete map F when N = 3 and

N = 4. We simulate the dynamics by numeri-

cally solving for the time to the next spike using

bisection methods and then updating (x, s, b) by

explicitly solving the equations of motion between

spikes. We use quad precision arithmetic and typ-

ically maintain accuracy to within 20 digits. For

consistency we fix the parameters a = 1.05 and

K = +0.01 or K = −0.01 and then vary α.

We first consider N = 3 and plot orbits (x1, x2)

generated by iterating the map F . Starting from

carefully chosen initial conditions, these orbits re-

veal the various saddle points and attractors shown

in Figure 3. For small but non-zero |K| the or-

bits consist of very closely spaced discrete points.

The first panel in Figure 10 is for α = 1.01 and

K = −0.01. We show six orbits that all start near

the splay state, with two flowing to each of the

triangle’s vertices (which are all the same point in

T 2). Pairs of orbits diverge near the three edge

saddle points indicated by the arrows. The second

panel is for α = 1.5 and K = 0.01. The black

curve is the discrete orbit approximating a limit

cycle which is attracting; we also plot three orbits

spiraling in toward the limit cycle, starting near

each of the triangle’s vertices as well as one orbit

spiraling out from the splay state.

↵ = 3.0
ES

0.99 1
0

1

0.87 0.92
0.86

0.90

0.70 0.75
0.0

0.2

0.995 1
0.99

1

0.00 0.15
0.0

0.1

0.995 1
0

0.15

0.99 1
0

1

0.87 0.92
0.86

0.90

0.70 0.75
0.0

0.2

0.995 1
0.99

1

0.00 0.15
0.0

0.1

0.995 1
0

0.15

0.99 1
0

1

0.87 0.92
0.86

0.90

0.70 0.75
0.0

0.2

0.995 1
0.99

1

0.00 0.15
0.0

0.1

0.995 1
0

0.15

0.99 1
0

1

0.87 0.92
0.86

0.90

0.70 0.75
0.0

0.2

0.995 1
0.99

1

0.00 0.15
0.0

0.1

0.995 1
0

0.15

0.99 1
0

1

0.87 0.92
0.86

0.90

0.70 0.75
0.0

0.2

0.995 1
0.99

1

0.00 0.15
0.0

0.1

0.995 1
0

0.15

0.99 1
0

1

0.87 0.92
0.86

0.90

0.70 0.75
0.0

0.2

0.995 1
0.99

1

0.00 0.15
0.0

0.1

0.995 1
0

0.15

0.99 1
0

1

0.87 0.92
0.86

0.90

0.70 0.75
0.0

0.2

0.995 1
0.99

1

0.00 0.15
0.0

0.1

0.995 1
0

0.15

ES

ES

FS

FS

FS

(2,1) source (2,1) sink

splay

(2,1) 
source

(2,1) sink

✻

✻

✻

(2,1) sink

(2,1) source

FIG. 11. Examples of orbits for N = 3, a = 1.01, K = −0.01 and αDSN < α = 3. The main panel shows pairs of orbits originating

from the three (2,1) edge sources that either diverge near the face saddles (FS) or near the (2,1) edge saddles (ES). The orbits near

each saddle are magnified in the insets.



12

Figure 11 depicts the dynamics for K = −0.01

and α = 3, after the double saddle-node bifurcation

illustrated in Figure 4. We locate the edge and face

saddles by plotting carefully chosen pairs of orbits

that start near the (3,1) edge sources and diverge

near the various saddles. Two of these pairs of or-

bits diverge close to each face saddle and one pair

diverges near each edge saddle. Note that two of

the face saddles lie very close to the edges and two

of the edge saddles lie very close to the vertices in

the main figure. The picture is clearest for the (2,1)

source on the horizontal edge. From it three closely

separated pairs of orbits head out to two face sad-

dles and one edge saddle. Near the saddles, pairs

of orbits diverge and approach different attractors,

namely the synchronized state at the vertices, the

splay state, or one of the (2,1) edge sinks. The di-

verging orbits near all six saddles are magnified in

the insets, where orbits originating from the same

source are plotted in the same color.

For N = 4 we present numerical results illus-

trating three of the six bifurcations. While the

comparison of general orbits in 3D is not that

easy to present in figures, the new bifurcations are

mostly confined to partially synchronized lower di-

mensional subspaces on the fundamental domain’s

boundaries.

In Figure 12 we plot data for K = −0.01,

a = 1.05 and α = 1.133 just before the FEF-rPF

bifurcation that was schematically represented in

Figure 7. In the main panel we show the veloc-

ity field in the top (x3 = 0) and side (x1 = x2)

211 faces of the tetrahedron in Figure 6. (Since

the faces are invariant, the velocity field lies in the

faces.) We indicate the fixed points at the tetrahe-

dron’s vertices corresponding to the sync attractor

as well as three fixed points on the (2,2) edge which

are magnified in the inset. The central fixed point

on the (2,2) edge is the splay (2,2) attractor which

is surrounded by two edges saddles labeled A and

B. In the inset, the components of the velocity

field perpendicular on the (2,2) edge as well as the

vertical (x3) component of the velocity field on the
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FIG. 12. Velocity field in the top (x3 = 0) and side (x1 =

x2) (2,1,1) faces of the tetrahedral subdomain for α = 1.133,

a = 1.05 and K = −0.01 just before the FEF-rPF bifurcation.

Main panel: sync attractors at vertices plus three (2,2) edge

fixed points. Inset: magnified (2,2) edge with central splay (2,2)

attractor, surrounded by two edge saddles labeled A and A′.

x1 = x2 face have been magnified for illustrative

purposes.

In the FEF-rPF bifurcation edge saddles from

parallel faces on different fundamental subdomains

merge with the (2,2) edge saddles. In Figure 13 we

show the velocity relative to the (2,2) edge labeled

A on the top face, with sufficient magnification to

also show the face saddle (which is repelling in the

face) that will bifurcate with the edge saddle A

for slightly larger α. Here the components of the

velocity field perpendicular to the (2,2) edge have

been magnified 30-fold.

In Figure 14 we plot quasiperiodic orbits for pos-

itive K = 0.01, a = 1.05 and four different values

of α. The two smaller orbits for α = 1.38 and 1.39

are comprised of 420 and 430 points respectively,

each approximating one revolution of the limit cy-
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FIG. 13. Velocity field in the top (x3 = 0) 211 face relative to

the (2,2) edge saddle labeled A in the previous figure. At this

magnification one can resolve the face saddle labeled B.
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FIG. 14. Quasiperiodic orbits approximating limit cycles for

positive K = 0.01, a = 1.05 for four values of α, with two slightly

larger than αH (α = 1.38 and 1.39) and two slightly smaller

than αSN (α = 2.1 and 2.44). The orbits increase in size as α

increases.

cle for K → 0. The third orbit has α = 2.1, is

much larger and is comprised of 1250 points for

one approximate cycle. This orbit approaches very

close to two (3,1) edges. The last orbit for α = 2.4

is comprised of 19,770 points most of which are

extremely close to all four (3,1) edges. This orbit

moves away from the edges near the (3,1) saddles.

The orbit evolves so slowly because this value of α

is very close to αSN .

At αSN a saddle-node bifurcation gives birth to

a pair of fixed points on each (3,1) edge. For K < 0

one is repelling and the other is a saddle which is

attracting along the edge and repelling transverse

to it. In the 6-fold face saddle bifurcation, this edge

saddle becomes attracting in all directions and six

face saddles are born on each of the six faces that

meet each (3,1) edge as was illustrated in Figure

8. Figure 15 shows velocity fields on the x3 = 0

face, relative to the edge fixed point that is now

attracting (labeled C) just after the 6-fold face sad-

dle bifurcation. The parameters are K = −0.01,

a = 1.05 and α = 2.445. The figure shows the edge

attractor C and one face saddle (labeled D) on the

x3 = 0 face of the x3 < x2 < x1 fundamental sub-

domain. To illustrate the flow, the component of

velocity field perpendicular to the horizontal edge

has been magnified 5000 times.

In Figures 13 and 15 we show velocity fields near

four fixed points on the x3 = 0 face. To verify

our index assignment to each of these we consider
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FIG. 15. Velocity field in the x3 = 0 face, relative to the (3,1)

attractor for K < 0 (labeled C) that lies on the x2 = 0 edge.

Here K = −0.01, a = 1.05 and α = 2.445 which yields dynamics

just after 6xFS bifurcation that stabilizes the (3,1) attractor at

the origin of the figure, and in which the face saddle (labeled D)

is born.

the maps relating consecutive points in numerically

evaluated 3D orbits near these fixed points. These

maps are very close to linear, and so it is straight-

forward to compute the 3 eigenvalues of the flow

near the fixed points, which are listed in Table 1,

as well as their eigenvectors. Note that our nu-

merical accuracy is such that all the digits in these

numbers are significant. For A and B, the eigendi-

rection for λ1 is transverse to the x3 = 0 plane,

while it is the eigendirection for λ3 that is trans-

verse to the x3 = 0 plane for C and D. The (3,1)

attractor C corresponds to the fixed point at the

origin of Figure 8 and its eigenvalues λ2 = λ3 cor-

respond to flow on an invariant plane transverse to

the edge. The positive λ3 for the face saddle D

implies that orbits near this fixed point but off the

face flow away from this face. The table’s last row

lists eigenvalues for the related face saddle E, on

the x2 = x3 face. For it λ3 is negative and orbits

FP λ1 λ2 λ3

A −2.0805450×10−2 2.881564×10−3 −6.743099×10−5

B −2.0805638×10−2 2.880864×10−3 6.778099×10−5

C −1.0922055×10−2 −2.429602×10−4 −2.429602×10−4

D −1.0921714×10−2 2.411858×10−4 2.018837×10−4

E −1.0922258×10−2 2.422949×10−4 −2.322444×10−4

TABLE I. Eigenvalues of the four fixed points labeled A, and B

in Figure 13, and C and D in Figures 15 (which all lie on the

x3 = 0 face). the eigenvalues denoted by E are for the fixed

point on the x2 = x3 face that is similar to D.
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near E but off the x2 = x3 face flow toward this

face. Rotating around the (3,1) edge there are six

such face saddles, for which these sign of λ3 alter-

nates consistent with the pattern of Figure 8.

VI. DISCUSSION

The dynamics of the pulse-coupled model with

N identical oscillators studied in this paper can

be completely described by a return map F on an

(N + 1)-dimensional state space. When the cou-

pling K = 0, this system has an attracting invari-

ant codimension 2 subspace, on which the dynam-

ics are purely neutral (F is the identity map on this

subspace). This attracting codimension 2 invariant

subspace persists for sufficiently small nonzero K,

and in the K → 0 limit the dynamics to first order

inK are given by a map of the form x→ x+Kg(x).

This discrete iteration is just Eulers method for the

continuous flow ẋ = g(x), so in the K → 0 limit

the model dynamics are captured by this N − 1

dimensional continuous system. Changing the sign

of K corresponds to reversing the direction of this

flow. The original model with N oscillators has an

(N + 2)-dimensional state space (the two extra di-

mensions describe the alpha coupling pulse) so this

achieves a reduction of three dimensions from the

original model. We emphasize that the key ingre-

dient for this reduction is the neutral dynamics for

K = 0. We exploit this reduction in several ways;

primarily, it makes it possible to depict the dynam-

ics for as many as N = 4 oscillators. We also can

use techniques from continuous dynamics, like in-

dex theory, to predict the existence of various types

of fixed states, especially saddles. The state space

for the reduced system is stratified by a hierarchy

of lower-dimensional invariant subspaces consisting

of partially synchronized oscillator configurations.

Except for the fully asynchronous splay states, all

of the stable fixed points we found in our analysis

lie on these subspaces.

In the study of oscillator networks with identi-

cal oscillators and all-to-all coupling, it is natu-

ral to focus on the stability of the fully synchro-

nized states, and their dynamical opposites, the

fully asynchronous splay states (where the oscilla-

tors all have identical periodic evolution but are

equally staggered in phase). These two types of

states typically have natural analogues in the con-

tinuum limit (N → ∞) of the model, and their

stability can often be explicitly analyzed in the con-

tinuum limit. In this paper we focus on some of the

other possible types of attractors for small N and

find that for the pulse-coupled model we studied,

that the overall picture is much richer than a com-

petition between sync and splay. We find many ex-

amples of stable partially synchronized attractors,

such as (N − 1, 1) fixed states, partially synchro-

nized splay states with (2, 2), (3, 3) and (2, 2, 2)

configurations, as well as stable limit cycles. This

raises the possibility of a hierarchy of partially syn-

chronized splay configurations that become stable

under a sequence of bifurcations for large but fi-

nite N , depending on the prime factorization of N .

These partially synchronized states do not have a

well-defined analogue in the continuum limit, since

they are dependent on the factorization of N . So

we expect that in general the dynamics of our finite

N model is highly dependent on N , and much more

intricate than that of its continuum limit analogue.

This certainly is the case for N = 2, 3, 4, where we

are able to describe completely the sequence of bi-

furcations and all attracting states.

We have shown that the all-to-all pulse coupled

oscillator model with N identical LIF oscillators

and alpha function pulses can exhibit fairly intri-

cate dynamics even for small values of N . It is

natural to ask to what extent the various attractors

and bifurcations we found depend on the specific

details of the model, or are to some degree model-

independent. This is an obvious direction for fu-

ture exploration, though we can shed some light

on this question based on some of our earlier work

on Kuramoto oscillator networks [12, 17]. As we

mentioned in the introduction, networks of identi-
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cal Kuramoto oscillators can only have attractors

that are fixed points or limit cycles, and these at-

tracting states must be either fully synchronized or

(N − 1, 1) states. Two standard (equivalent) types

of neuron models, namely quadratic integrate-and-

fire or theta-neuron models, can be transformed to

the class of Kuramoto oscillators, so this remark

applies to pulse-coupled networks of these types of

neural models. Since the attractors must all lie

in the (N − 1, 1) subspace, it is hard to imagine

a bifurcation sequence as complicated as that de-

scribed in Fig. 7 for the case of identical Kuramoto

networks. So we can conclude that to at least some

extent, the attractor and bifurcation structure we

described depends on the details of the individual

oscillator evolution.

The dynamics also depend on the details of the

pulse shape. For example, the LIF model with

excitatory delta function pulses is known to syn-

chronize for almost all initial conditions [3]. A

distinguishing feature of alpha function from delta

function pulses is the property that an alpha func-

tion peaks some time after the pulse is emitted.

This feature is also present in a delayed delta func-

tion pulse; however, as show by Geisel, Timme

and collaborators [18, 19], synchronization is more

subtle in delayed delta function pulses and so we

would not expect a similar attractor and bifurca-

tion structure for that model.

An important direction for future investigations

that is necessary to connect to biological neural

circuits is to suspend the assumption of identical

oscillators. For example, one could consider a cou-

pled LIF model with variation in the parameter a

governing the evolution of the individual oscilla-

tors. For sufficiently small coupling K, the first

stage of our dimensional reduction analysis goes

through, giving an attracting codimension two in-

variant subspace. However the second stage of our

reduction depends heavily on the assumption that

the return map F , which is just the Poincaré map

section reduces to the identity map when K = 0.

This obviously fails to hold for non-identical oscil-

lators, so we believe that the final reduction to a

codimension three continuous flow is not possible

in the more general setting of non-identical oscil-

lators. Nevertheless, with two dimensions of re-

duction this model should be numerically tractable

for small values of N , and we would expect it to

have similar dynamics to our identical LIF model

at least for sufficiently small variation in the os-

cillator periods. The fixed points and limit cycles

in TN−1 discussed in this paper persist for non-

identical oscillators, and correspond to limit cycles

and invariant tori respectively in TN just as they

do for identical oscillators. These invariant tori are

similar to the invariant two-dimensional surfaces

we introduced in the context of periodically driven

Hodgkin Huxley oscillators in Ref. [20].
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