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Abstract

Onsager reciprocity relations derive from the fundamental time-reversibility of the underlying

microscopic equations of motion. This gives rise to a large set of symmetric cross-coupling phe-

nomena. We here demonstrate that different reciprocity relations may arise from the notion of

mesoscopic time-reversibility, i.e. reversibility of intrinsically coarse-grained equations of motion.

We use Brownian dynamics as an example of such a dynamical description and show how it gives

rise to reciprocity in the hydrodynamic dispersion tensor as long as the background flow velocity is

reversed as well.
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I. INTRODUCTION

Onsager reciprocity, or symmetry relations [1, 2] describe a wide range of cross-coupling

phenomena. Even though they were most intensely studied in the 1940’s to 1960’s- see [3]

for an excellent review- their relevance is still strong in many fields, and they play the role

as a foundation of irreversible thermodynamics [4]. Well studied cross-coupling phenomena

include the thermomechanical effect (piezo-electrical elements), the thermo-electric effect,

electro-kinetic phenomena, multi-species molecular diffusion, transference in electrolytic so-

lutions and thermomagnetism [3]. More recently, the statistical mechanical arguments of

Onsager has also been applied in a hydrodynamic context [5, 6].

Historically, the diffusion of heat in anisotropic solids and the symmetry of the thermal

conductivity tensor, has played a key role. These symmetries were observed as early as 1893

by C. Soret [7, 8] and, at the time, partly explained by geometrical arguments pertaining to

the symmetries of crystal lattices. But only with the general theory of Onsager, who also

used heat diffusion as a starting point, were the wide range of cross-coupling phenomena

given a common and fundamental theoretical basis.

Classical Onsager theory as given by de Groot [4], and by Onsager himself is based on

the notion of the fundamental time-reversibility of the underlying micro-dynamics. The

time-reversal symmetry is attributed to the microscopic equations that describe individual

particles. In this paper we demonstrate that the time-reversal symmetry does not have to

be attributed to the micro-dynamics, but may just as well be attributed to a mesoscopic de-

scription in between the micro-level and that of the linear laws with its transport coefficients.

In this case too Onsager reciprocity relations for the macro-scale transport coefficients re-

sults. This enlarges the scope of irreversible thermodynamics by opening for the application

of the same analysis to new systems, and therefore the class of reciprocity relations that

results will also be enlarged.

This is exemplified here by a case of flow of two miscible fluids in a complex medium.

This flow is described by a hydrodynamic dispersion tensor which becomes symmetric under

hydrodynamic flow reversal by virtue of Onsager reciprocity. This is shown by a mesoscopic

approach where Brownian dynamics is taken as the mesoscopic and lowest level description.

The Brownian particles are simply ramdom walkers that move along on the hydrodynamic

background field u. This means that we are dealing with three separate length scales:
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• (i) the mean free path of the particles,

• (ii) the hydrodynamic scale on which the particle motion may be averaged into velocity

and density fields ρ and u, and

• (iii) the porous-continuum scale on which averaging over the geometric heterogeneities

and flow field of the porous medium makes sense.

These different scales are assumed to be sufficiently far apart.

The end result, which pertains to the porous continuum scale show that the tensor,

relating the concentration gradients in the spatial direction i to the diffusive flux in direction

j satisfies the symmetry relation

Dij(u) = Dji(−u). (1)

In doing so we make contact with the results of Auriault et al.[9] who showed this relations,

albeit on the basis of continuum mechanics and only in the small Peclet number limit.

The structure of the derivation proceeds from the equations of motion of the Brownian

particles and the equivalent Fokker-Planck equation. Then a small numerical simulation is

used to show that particle number fluctuations behave as in an equilibrium situation, even

though our system is not in equilibrium, but in a driven steady state. The standard Onsager

theory may then be applied as soon as the fluxes and forces governing the entropy production

are identified. The Gibbs expression for the entropy [10, 11] allows this identification in a

straightforward way. The end result of Eq. (1) which belongs on the largest scale, is thus

connected to the time-reversibility at the smallest scale (i).

II. RECIPROCITY DERIVED FROM THE MESOSCOPIC LEVEL

The link between the microscopic reversibility and the reciprocity of the transport coeffi-

cients is the regression hypothesis, which expresses the idea that spontaneous fluctuations on

the average decay according to the macroscopic laws with their transport coefficients. This

very plausible hypothesis may also be proved through the fluctuation-dissipation theorem

on the basis of Hamiltonian dynamics [12, 13].

However, given this hypothesis, any reversible micro-dynamics will suffice as a basis for

Onsager reciprocity. This includes equations of motions which are normally regarded as
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mesoscopic in nature, i.e. an averaged representations of collections of particles. The Brow-

nian dynamics consists of a number of mesoscopic particles, labeled n, that are propagated

by simple random shifts to their velocities. Each particle velocity is given by a prescribed,

random update along with a background velocity field u(x). So, adding the random com-

ponent δvn, the particle velocity becomes

ṙk = u(rk) + δvk. (2)

Here δvk is picked from a symmetric distribution p(δvk) = p(−δvk). Note that Eq. (2) may

also be written as

drk = u(rk)dt+ dW. (3)

where dW is a Wiener process, 〈dWidWj〉 = σ2δijdt, where the steps dWi are uncorrelated

and sampled from a Gaussian distribution.

The above equation may be derived as the over-damped, inertialess, limit of the Langevin

equation. This equation, which describes the balance of dissipative and fluctuating forces is

mesoscopic and probabilistic in nature. It is in itself not invariant under time-reversal. But

Eq. (2), which is also mesoscopic and probabilistic in nature, is.

1u −u1
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t      − t

Figure 1: The effect of time reversal with the implied u → −u inversion in a porous medium

(shaded). The forward time path in A is inverted in figure B.

Time reversal t → −t implies ∂/∂t → −∂/∂t and ṙk → −ṙk as well as δvk → −δvk.

So, if we combine time reversal with the reversal of the background field u(x) → −u(x),

4



Eq. (2), is left invariant. Note that we rely on the symmetric form of the p(δv) distribution.

If solid boundaries are present, as in a porous medium, their impermeable nature may be

represented by the time-reversible prescription drk → −drk at the walls. This means that

a time-sequence rk(t) with the background field u(x) will be statistically indistinguishable

from the reverse time-sequence rk(−t) with the background field −u(x), as is illustrated in

figure 1. Correspondingly, any function of a set of forward time sequences {rk(t)}u associated

with the background field u(x), will be statistically invariant if we make the replacement

{rk(t)}u → {rk(−t)}−u.

An immediate consequence of this is that any macroscopic variables Ni(t) that are func-

tions of the particle positions {rk} only, will have an auto-correlation function that satisfies

〈Nj(τ)Nk(0)〉u = 〈Nj(−τ)Nk(0)〉−u (4)

where the average 〈...〉u and 〈...〉−u denote ensemble averages with background fields ±u. In

order to define boundary conditions for the flow while maintaining a total system which is

closed, we introduce reservoirs surrounding the porous medium. In these reservoirs u = 0.

We shall take Ni to be the particle number in one of these surrounding reservoirs, labeled

by i and shown in Fig. 1.

Since Eq. (4) is the basic starting point in the proof of the Onsager reciprocity relations

[4], it may be shown that the linear laws relating the time evolution of the Ni’s with the

corresponding forces will be defined by coefficients that are reciprocal.

The flow reversal u → −u is feasible whenever the Reynolds number is small. The

resulting steady states may be directly studied by computer simulation techniques, which

are well established now, but were unknown at the time when Onsagers reciprocity relations

where established experimentally [3].

III. THE FOKKER PLANCK EQUATION AND THE CONTINUUM DESCRIP-

TION

Since there is no conservation of momentum as in Hamiltonian dynamics, our phase

space consists of the N particle positions only, i.e. Γ = {r1, r2, ....rN}. Following standard

procedures [14] the Fokker Planck equation, which describes the distribution Ψ(Γ, t) in this

phase space, may be derived by the requirement that the linear procedures of taking the
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time derivative and the average should commute. This should be the case for any function

f(Γ), so that 〈df/dt〉 = d〈f〉/dt, or

∫

dΓ
∂Ψ

∂t
dtf(Γ) =

∫

dΓΨ(Γ, t)df(Γ). (5)

Using Eq. (3), the right hand side becomes

∫

dΓΨ(Γ, t)df(Γ) =

∫

dΓΨ

(

∂f

∂rk
· ṙkdt

+
1

2

∂2f

∂rj∂rk
dWkdWj

)

=

∫

dΓΨ(Γ, t)

(

uk ·
∂f

∂rk
+

σ2

2
∇2

kf

)

dt

=

∫

dΓf(Γ)

(

−∇k · (Ψuk) +
σ2

2
∇2

kΨ

)

dt (6)

where summation over repeated indices is assumed here and throughout. In going from the

second to the third line above Itô’s lemma was applied, and in going to the fourth, partial

integration. Comparing with Eq. (5) we get the Fokker-Planck equation

∂Ψ

∂t
= −∇k · (Ψ(Γ, t)uk) +

σ2

2
∇2

kΨ(Γ, t). (7)

Since this equation is on the form ∂Ψ/∂t = −∇k · Jk, it may also be considered a Liouville

equation, that expresses the local conservation of system numbers in the ensemble. It is

easily observed that Eq. (7) allows the product solution

Ψ(Γ, t) =

N
∏

k=1

(∆V P (rk, t)) , (8)

where ∆V N is the elementary sub-volume that is used to discretize phase-space, and the

single particle probability distribution satisfies the advection-diffusion equation

∂P

∂t
= −∇ · (Pu) +D∇2P (9)

where D = σ2/2. As the particle density is simply ρ = NP , this may be written

∂ρ

∂t
= −∇ · (ρu) +D∇2ρ (10)

which is indeed the hydrodynamic description on scale (ii) required to govern the upscaled

flow and dispersion.
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IV. GIBBS ENTROPY AND THE ENTROPY PRODUCTION

We shall calculate the entropy by a standard Gibbs expression

S = −kB
∑

Γ

Ψ(Γ, t) lnΨ(Γ, t), (11)

where we also allow for a time-dependence. This expression was applied by Seifert and

Speck et al. [10, 11] who used it to introduce the entropy of single paths, and expanded

the description to include the energy exchange between the Brownian particle system and

the system of the embedding fluid (the solvent). In doing this, energy conservation and

exchange between the two systems is a natural and physical assumption. For our purposes,

however, we only need to consider the system of Brownian particles, and in focusing the

description on a sub-system only, we cannot assume energy conservation. For this reason,

thermal diffusion is not part of the picture either.

Replacing the above sum by an integral,

∑

Γ

=
∏

k

∫

d3rk
∆V

(12)

and using Eq. (8), the entropy becomes

S = −kB
∏

k

∫

d3rkP (rk, t) ln

(

∏

k′

(P (rk′, t)∆V )

)

= −kB
∏

k

∫

d3rkP (rk, t)
∑

k′

ln (P (rk′, t)∆V )

= −kB
∑

k′

∫

d3rk′P (rk′, t) ln (P (rk′, t)∆V )

= −kB

∫

d3xρ(x, t) ln

(

ρ(x, t)
∆V

Ntot

)

. (13)

In going from the first to second line we have taken the product out from inside the ln-

function, and in going from the second to the third line we have used that all k 6= k′

integrals only produces a factor of 1 due to the normalization of P (rk, t), and in passing to

the last, the fact that the summand is k-independent and the ρ = PNtot relation again. We

shall write the entropy as

S =

∫

d3x s(x, t) (14)

where the entropy density

s(x, t) = −kBρ ln

(

ρ

ρm

)

, (15)
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and the upper limit for the density ρm = Ntot/∆V would result from putting all particles in

one cell.

A. Numerical evidence for equilibrium distributions in the steady states

In order to apply Onsager theory it is standard to start out with the assumption that every

microstate is equally probable and use this to express the relevant probablity distributions

in terms of the entropy. Unfortunately, the standard assumption of local equilibrium [15]

may not prove this assumption in a rigorous way, as small local deviations from equilibrium

may in principle add up to create a finite effect on, say, the particle number in a reservoir.

The standard equilibrium result for the probability distribution in a closed system is that

P (Ni) ∝ exp(S(Ni)/kB). However, in our case, the system is not in equilibrium and the

particle numbers Ni depend on u through the steady state solution of our Fokker-Planck

equation, or, more directly on Eq. (10). The direct generalization of the equilibrium result

is then given by using the entropy of Eq. (13). The probability of a given reservoir particle

number Ni then takes the form

P (Ni,u) ∝ exp(S(Ni,u)/kB) (16)

where S(Ni,u) is the entropy given by Eq. (13). This relation is a necessary basis for the

application of Onsager theory, so we need to show that this equilibrium result holds for our

non-equilibrium, driven system as well.

Fortunately, it is straightforward to show this numerically. However, in order to do this we

need to work out the prediction that results from the combination of Eq. (13) and Eq. (16).

If the volume integral of Eq. (13) is discretized into a sum over phase space cells of volume

∆Vα, the total entropy of the central cell and the reservoir, may be written

S

kB
= −

∑

α

Nα ln

(

Nα

Ntot

)

= −
∑

α

(Nα lnNα −Nα lnNtot), (17)

where we have introduced the new label α to label the number of particles Nα = ρ(xα)∆Vα

located in ∆Vα. We may further split Nα in an average and a fluctuation, Nα = Nα + δNα,

where δNα ≪ Nα, and Nα = Nα(x,u). Components of S that are δNα-independent, that

8



1

L/2 x

y

L/2

L

L

u(x)

N

V∆

Central cell

Figure 2: Illustration of the Brownian dynamics simulation setup. The background velocity u(x)

vanishes outside the central region, and the particle number N1 outside in the reservoir region, is

recorded. The subcells have volume ∆V .

is, constant under variations of the Nα’s will disappear under the normalization of P (N,u).

We may therefore group any such terms into a constant term S ′′
0 . In particular, the last
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term above becomes
∑

αNα lnNtot = Ntot lnNtot. We may then write

S

kB
= −

∑

α

Nα lnNα +
S ′′
0

kB

= −
∑

α

Nα lnNα +Nα ln

(

1 +
δNα

Nα

)

+
S ′′
0

kB

≈ −
∑

α

(

(Nα + δNα) lnNα

+(Nα + δNα)

(

δNα

Nα

− 1

2

(

δNα

Nα

)2
))

+
S ′
0

kB

= −
∑

α

(

δNα lnNα

+ (Nα + δNα)

(

δNα

Nα

− 1

2

(

δNα

Nα

)2
))

+
S0

kB

≈ −
∑

α

(

δNα lnNα +
δN2

α

2Nα

)

+
S0

kB
(18)

where we have used the facts that
∑

α δNα = 0, the S ′′
0 , S ′

0 and S0 only differ by δNα-

independent terms, the second order expansion ln(1 + x) ≈ x − x2/2, and finally, that we

may discard a δN3
α term.

The resulting distribution

P ({Nα},u) ∝
∏

α

exp

(

− δN2
α

2Nα

− δNα lnNα

)

(19)

factorizes into a simple product of single elementary cell probabilities.

These elementary cells were introduced to discretize phase-space, and belong on the small-

est scale (i), while we are in fact interested in the particle populations on the hydrodynamic

scale (ii), which take the form

Ni =
∑

α ǫ m(i)

Nα (20)

where the notation α ǫ m(i) is to be understood in the sense that i labels a super-cell

composed of many elementary cells and m(i) is the set containing the corresponding α-

values. In the following we shall assume that in such a super-cell there are M elementary

cells of equal size with only negligible variations in u(x) between them. This assumption

resembles the standard assumption of local equilibrium both in the fact that it assumes

negligible variations in the hydrodynamic fields, and by the underlying requirement that the
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scales (i) and (ii) are separated. With these two assumptions we can take the lnNα-term to

be constant under the local α ǫ m(i)-sum, and Eq. (19) may be written in the following way

P ({Ni},u) ∝
∏

i

exp



−
∑

αǫm(i)

δN2
α

2Nα

+ lnNαδNα





=
∏

i

exp



lnNα δNi −





∑

αǫm(i)

δN2
α

2Nα







 . (21)

Here the δN2
α-term implies that the fluctuations δN2

α ∼ Nα, so that the sum
∑

αǫ m(i) δN
2
α/(2Nα) ∼ M . On the other hand, the δNi =

∑

αǫ m(i) δNα-term is a sum of

M independently fluctuating contributions each with a finite variance, and hence, according

to the central limit theorem, has a variance 〈δN2
i 〉 ∼ M . For this reason the last term in the

exponent, lnNαδNi ∼ lnNα

√
M . Taking M ≫ 1 we see that this term may be neglected

compared to the quadratic term. This gives

P ({Ni},u) ∝
∏

i

exp



− lnNαδNi −
∑

αǫm(i)

δN2
α

2Nα



 (22)

≈
∏

i

exp



−
∑

αǫm(i)

δN2
α

2Nα



 . (23)

This result has the standard equilibrium form, though it represents a non-equilibrium gener-

alization by virtue of the u(x) dependence in Nα. The result of Eq. (23) shows that the δNi’s

are distributed exactly as if they were the sum of M independent terms, i.e. δNi =
∑

α δNα,

which independently satisfy a Gaussian distribution of variance Nα The central limit the-

orem then tells us that the δNi’s too are given by a Gaussian distribution with a variance

MNα = N i, that is,

P ({Ni},u) ∝
∏

i

exp

(

−
∑

i

δN2
i

2N i

)

. (24)

The same argument applies unchanged to further upscaling, so the Ni’s in Eq. (24) may

also be taken to represent the entire populations of the reservoirs. This means that in the

simulations we may use only two volumes, the one where the driving takes place, u(x) 6= 0

and the reservoir where u(x) = 0. The resulting distribution of the particle number in any

given region is insensitive to the internal variations in ρ(x). Due to overall conservation of

particles, the two average particle numbers that enter Eq. (19) are N i and Ntot − N i (now
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i = 1), and the corresponding distribution is

P (N1) ∝ exp

(

−δN2
1

(

1

2N 1

+
1

2(Ntot −N1)

))

, (25)

which narrows to a delta-peak as N 1 → Ntot.

700 750 800 850 900 950
N

1

0
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0.02

0.03

0.04

0.05

P(
N

1)

Figure 3: The distributions P (N) for different flow conditions in the central cell illustrated in figure

2. The circles, squares and triangles show measurements and the straight lines the theoretical

expectation of Eq. (25). The red circles show the distrubution that results from u = 0, the green

squares ux = u0 sin(2πy/L)), and the blue triangles ux = u0, both with a velocity u0 = 1. The

Peclet number Pe= u0L/D = 50 in both cases. The total particle number is 1000 and the average

is taken over 400 000 time steps.

To verify this result numerically we simply simulate the dynamics of 1000 particles that

behave according to Eq. (3). Taking the geometry that is illustrated in figure 2 as the

proving ground we measure the distribution of the number N1 of particles that reside in
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the reservoir region. For simplicity there is only one reservoir in this case, and it encloses

the gray region, which is the only region with a non-zero background velocity field. Three

cases of different velocity fields were studied, and in all the simulations the initial particle

distribution was homogeneous. For any particle that arrived outside the reservoir region,

the replacement δrn → −δrn was made. The equilibrium case with u = 0 was verified first,

before a constant field, ux = u0 and a sinusoidal field, ux = u0 sin(2πy/L)) were studied. In

figure 3 the constant field is observed to reduce the particle number in the central cell more

efficiently than the sinusoidal field, as one would expect from the density depletion on the

upstream side in the reservoirs.

In the simulations the driving velocity causes the average particle number in the reservoir

to change significantly, as is apparent in figure 3. The agreement between simulation and

theory is good, as one would expect. In fact, the P (N,u)- distributions adhere quite exactly

to the equilibrium prediction. In the following we shall base the derivation of the reciprocity

relations on our numerical demonstration of Eq. (16).

It is instructive to compare our system with the equilibrium system of a dilute particle

suspension in a gravitational- or potential field. In steady state ∂P/∂t = 0, and Eq. (10)

expresses the local balance between advective and a diffusive currents,

∇ · (ρu−D∇ρ) = 0. (26)

Physically, this local balance is similar to that governing the suspension. However, the

situations are indeed different. In fact, for the suspension in a potential field one has a

Boltzmann distribution ρ ∝ exp(−φ/(kBT )), where φ is the potential energy of the Brownian

particle, and Eq. (26) becomes the basis for proving the Einstein relation [16]. In this case

the velocity is not given as a background field, but as u = −µB∇φ where µB is the particle

mobility. In this case the velocity field is vorticity-free. When the Boltzmann distribution

is used, Eq. (26) takes the form of the stronger condition ρu − D∇ρ = 0, and particle

exchange between two locations A and B will then be in mutual equilibrium– in other words,

detailed balance may be assumed. In this case, the standard tools of statistical mechanics

are available, and in particular, every microstate may be taken as equally probable in an

ensemble of closed systems and the population probabilities will be given by Eq. (16).
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B. Entropy production

The entropy production for any subsystem is obtained by taking the time derivative of

Eq. (13) to get

Ṡ = −k

∫

d3x
∂ρ

∂t

(

ln
ρ∆V

Ntot
+ 1

)

. (27)

Then, using Eq. (10) gives

Ṡ = −kB

∫

d3x∇ · (−ρu+D∇ρ)

(

ln
ρ∆V

Ntot
+ 1

)

= kB

∫

d3x∇ ·
(

(ρu−D∇ρ) ln
ρ∆V

Ntot
−D∇ρ

)

+ kB

∫

d3x

(

D
(∇ρ)2

ρ
+ ρ∇ · u

)

, (28)

which may also be written

Ṡ =

∫

d3x (σ −∇ · jS) (29)

with an entropy current

jS = s u+ kB

(

ln

(

ρ

ρm

)

+ 1

)

D∇ρ (30)

that vanishes on any materially closed surface, and an entropy production per unit volume

σ = kB

(

D
(∇ρ)2

ρ
+ ρ∇ · u

)

. (31)

The ∇·u term reflects the entropy changes due to the local variations in specific volume for

the Brownian particles [15]. Without it the entropy would remain constant under a uniform

expansion of the system with ∇ρ fixed. In fact, if we were to introduce an ideal gas pressure

for the particles, p = kBT/v, where v = 1/ρ is the volume per particle, it is straightforward

to show that kBTρ∇ · u = pdv/dt. This means that the compressibilty term is nothing

but the familiar work term [15]. In our case, where u is discontinuous across the reservoir

boundaries the ∇·u is non-zero only there [19]. Away from the boundaries we may take the

flow to be incompressible and only the bulk term, which we denote σ0, remains:

σ0 = kBD
(∇ρ)2

ρ
. (32)

This expression may be written in a more familiar form by introducing the chemical

potential µ. Without energy as a system variable, Clausius formula is simply

TdS = −µdN (33)
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and

µ = −T

(

∂S

∂N

)

V

. (34)

So, for the purpose of relating the two intensive thermodynamic quantities ρ and µ we

assume for the moment, a constant ρ-value, so that the integral in Eq. (13) becomes a factor

V . This gives

µ = kBT ln

(

ρ

ρm

)

. (35)

Note that since ρm ≫ ρ and µ must be large and negative. Hence, the addition of a particle

will always increase the entropy, as it should. Allowing spatial variations again and taking

the gradient then gives
∇ρ

ρ
=

∇µ

kBT
(36)

which by insertion in Eq. (32) gives

σ0 = −j · ∇
(µ

T

)

(37)

where the diffusive current j = −D∇ρ. This simple expression is the familiar form of the

entropy production as given in de Groot [15] when all work and heat terms that are linked

with the conservation of energy, are removed. Note that in the above formulae T is a constant

which is proportional to the step size variance, σ2.

V. FROM THE PORE LEVEL TO THE COARSE GRAINED POROUS CONTIN-

UUM LEVEL

In order to make contact with the hydrodynamic dispersion tensor, we need to pass from

the continuum description of the Brownian particles, as given in Eq. (10), to the coarse

grained version of this continuum description [17]. It is only in the coarse grained version

of this theory in a porous medium that the diffusivity becomes a tensor D with reciprocity

relations attached.

The hydrodynamic dispersion tensor D describes the coarse grained advection-diffusion

flow of solute in a porous media. The medium is divided into cubic cells, centered at x, with

an average concentration ρ0(x) and the porous continuum particle current is given as

J = ρ0U−D · ∇ρ0 (38)
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Figure 4: The porous medium connected to 4 reservoirs of given constant temperatures and con-

centration deviations ∆Ci. The reservoirs are assumed to be in equilibrium and the central cell in

steady state, and the concentration deviations symmetric in the sense that ∆Ci+2 = −∆Ci.

where U is the cell averaged flow velocity and ∇ρ0 is defined by the boundary values so that

its components are

(∇ρ0)i =
∆Ci

L
, (39)

as shown in figure 4. The average value ρ0(x) is centered in the sense that it will always

be the average of the face-values. The dispersion tensor depends on flow velocity so that

Dij = Dij(U).
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A. Entropy production at the porous continuum scale

Having derived the entropy production at the hydrodynamic scale (ii), we may now inte-

grate it to the porous continuum scale. To do so, we first describe the assumptions implicit

in Figure 4. We assume that the central cell is supporting steady state transport in which

the entropy irreversibly produced in the transport process is fluxing into the surrounding

cells so that in the central cell Ṡ = 0.

This steady state is really a slowly evolving transient where the thermodynamic quantities

in the reservoirs change quasistatically. In other words, the flow through the central cell

must be slow enough for the reservoirs to remain close to equilibrium. This steady state

is thus different from the from the steady state, which becomes the equilibrium state when

u = 0, and where the average values of the thermodynamic quantities no longer change. In

the next section we will consider fluctuations around this ’equilibrium’ steady state which

are linked to the present slow transients by the regression hypothesis.

Since Ṡ = 0 in the central cell, we may integrate Eq. (29) over this cell only and apply

Gauss’ theorem to get
∫

d3x σ =

∫

d3x ∇ · jS =

∫

dS · jS, (40)

where the surface element dS points away from the central cell. In addition, we assume the

reservoir cells are in quasi-static equilibrium which means they move through equilibrium

states with u = 0 throughout, and the entropy change is given by the Clausius formula

Eq. (33). This means that the entropy production may be calculated either by Eq. (40) for

the central cell, or by Clausius formula for the reservoirs.

Under these assumptions, we shall calculate the total entropy production of the central

cell from the surface integral of Eq. (40). The condition that u = 0 at the interface with the

reservoir cells means that jS of Eq. (30) simplifies and

∫

dS · jS = kBD

∫

dS · ∇ρ

(

ln

(

ρ

ρm

)

+ 1

)

= kBD

∫

dS · ∇ρ ln ρ

= −kB

∫

dS · j ln ρ (41)

where we have also used the fact that by particle conservation in the steady state,
∫

dS ·
D∇ρ = 0.
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Now, the number of particles passing across each face of the central cell into the respective

reservoir per unit time Ṅi, may be written

Ṅi+2 =

∫

xi=+L/2

dS · j

Ṅi =

∫

xi=−L/2

dS · j (42)

where the partial surface integrals are taken only over the single cell faces specified by the

xi = ±L/2 conditions. Note that for each of the two cartesian directions in figure 4 (i = 1, 2)

the dS elements point in opposite directions. Since the diffusive current j represent the full

current on the reservoir boundaries, the entropy production of Eq. (41) is then

∫

d3xσ = −kB

4
∑

i=1

Ṅi

[

ln ρ0 + ln

(

1 +
∆Ci

2ρ0

)]

(43)

where we have used the reservoir boundary conditions for ρ given in figure 4.

We can connect these definitions of the Ṅi to the porous-continuum transport current of

Eq. (38) as

∆Ṅi ≡
Ṅi+2 − Ṅi

2
= AJi (44)

where A is the area of a face of the central cell. Expanding ln(1 + x) ≈ x and noting

that particle conservation in the steady state requires
∑4

i=1 Ṅi = 0, we obtain the entropy

production as
∫

d3xσ = kB

2
∑

i=1

∆Ṅi
∆Ci

ρ0
(45)

where we have also used that ∆Ci+2 = −∆Ci. This is the exact same expression as can be

obtained from the Clausius relation given earlier

∫

d3xσ =
4
∑

i=1

dSi

dt
=

4
∑

i=1

−µi

T
Ṅi (46)

where the Si and µi are entropies and chemical potentials in the reservoir cells i. Using

Eq. (35) for µi/T and the same expansion ln(1 + x) ≈ x, Eq. (46) becomes Eq. (45) which

is a consistency test of the formalism.

Finally, the entropy production can be written in terms of fluxes ẋi and forces Fi. The

entropy production of the total system, including both the central cell and the reservoirs, is

Ṡtot =

∫

d3xσ =
2
∑

i=1

∂Stot

∂xi

ẋi =
2
∑

i=1

ẋiFi (47)
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where comparison with Eq. (45) shows that

xi = ∆Ni (48)

Fi = kB
∆Ci

ρ0
. (49)

These are the results needed to apply the Onsager theory.

B. The linear laws and the reciprocity relations

In order to obtain the desired reciprocity relations the final step is to obtain the linear

laws expressing the decay of the ẋi’s in terms of the Fi’s. It follows from Eq. (16) that the

average

〈xiFj〉u = −kBδij (50)

where kB is Boltzmanns constant. This result comes from a partial integration using the

distribution in Eq. (16), see [18]. Following standard procedures [4] we argue as follows: In

steady state where averages no longer change, there are still stationary, non-zero values for

〈∆Ni〉u. In the following we make the replacement

∆Ni → ∆Ni − 〈∆Ni〉u, (51)

where for simplicity, we keep the notation ∆Ni, so that now

〈∆Ni〉u = 〈∆Ni〉−u = 0. (52)

Since the new variables ∆Ni are just as much functions of {rk(t)}u as the Ni’s, the basic

time-reversal symmetry holds for the new variables too and we may write

〈∆Nj(τ)∆Nk(0)〉u = 〈∆Nj(−τ)∆Nk(0)〉−u. (53)

Now, time translational invariance of an equilibrium average implies that Eq. (53) may

be written

〈∆Nj(τ)∆Nk(0)〉u = 〈∆Nj(0)∆Nk(τ)〉−u. (54)

Subtracting the τ = 0 version of the above equation from Eq. (53), dividing by τ , and taking

the τ → 0 limit gives

〈∆Ṅ j∆Nk〉u = 〈∆Ṅk∆Nj〉−u. (55)
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We now only need to insert the linear laws governing the Ṅi’s in terms of the Fi’s to

obtain the corresponding reciprocity relations. Note that the force Fi can be written in

terms of the macroscopic gradient in particle density as (∇ρ0)i = ρ0Fi/(kBL), so that the

linear laws may be obtained directly from Eq. (38) as

∆Ṅ i = A

(

ρoU−Dij
ρ0
kBL

Fj

)

. (56)

Inserting this in Eq. (55) gives

〈(

ρ0U j −
ρ0
kBL

Dji(u)Fi

)

xk

〉

u

=

〈(

−ρ0Uk −
ρ0
kBL

Dki(−u)Fi

)

xj

〉

−u

. (57)

Then, using Eq. (50) and Eq. (52) we are left with

Djk(u) = Dkj(−u). (58)

This is the symmetry suggested by Auriault [9] to hold in the small Peclet number limit. It

is proven here to hold on the basis of a modified Onsager theory for any values of the Peclet

number.

VI. CONCLUSIONS

In summary, we have shown that a mesoscopic description suffices as a basis for On-

sager reciprocity, in particular for the case of hydrodynamic dispersion. But the theory is

directly applicable to other stochastic descriptions with time-reversal invariance as well: If

the particles were taken to represent a temperature-, rather than a concentration field, heat

conduction in the solid matrix could be represented by letting the particles pass through the

solid boundaries of the porous medium, and a different p(δv)-distribution could be applied

inside the solid. If it were still symmetric, similar reciprocity relations would hold. It would

also be straightforward to include reversible chemical reactions between different species of

particles.

Since it is also possible to obtain the symmetry relation of Eq. (58) for arbitrary Pe-

numbers on the basis of the pore-level advection-diiffusion equation [17], the present statis-

tical mechanical treatment is not the only route to the result. In this respect our treatment
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resembles that of anisotropic heat conduction, where the symmetries were also largely known

beforehand. Rather, the main interest of the result lies in the new conceptual basis for the

Onsager theory, which, in particular opens a route to study processes where a hydrodynamic

velocity field may be assumed as a steady state background.
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