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Networks of particles connected by springs model many condensed-matter systems, from colloids
interacting with a short-range potential and complex fluids near jamming, to self-assembled lattices
and various metamaterials. Under small thermal fluctuations the vibrational entropy of a ground
state is given by the harmonic approximation if it has no zero-frequency vibrational modes, yet such
singular modes are at the epicenter of many interesting behaviors in the systems above. We consider
a system of N spherical particles, and directly account for the singularities that arise in the sticky
limit where the pairwise interaction is strong and short ranged. Although the contribution to the
partition function from singular clusters diverges in the limit, its asymptotic value can be calculated
and depends on only two parameters, characterizing the depth and range of the potential. The
result holds for systems that are second-order rigid, a geometric characterization that describes all
known ground-state (rigid) sticky clusters.

To illustrate the applications of our theory we address the question of emergence: how does
crystalline order arise in large systems when it is strongly disfavored in small ones? We calculate
the partition functions of all known rigid clusters up to N ≤ 21, and show the cluster landscape is
dominated by hyperstatic clusters (those with more than 3N − 6 contacts); singular and isostatic
clusters are far less frequent, despite their extra vibrational and configurational entropies. Since
the most hyperstatic clusters are close to fragments of a close-packed lattice, this underlies the
emergence of order in sticky-sphere systems, even those as small as N = 10.

Particles that live on the mesoscale commonly in-
teract over ranges much shorter than their diameters.
Naturally-occurring systems include C60 molecules [1, 2]
and colloids interacting via depletion [3, 4]. A widely
studied synthetic system is colloidal particles coated with
strands of DNA or other functional tethers, which create
highly specific interactions with range roughly the length
of a tether [5–9]. Rather than model the details of the
interparticle interaction, which are often not important
for macroscale observations, it is convenient to model the
interaction in the sticky limit, which considers a central-
force potential with a single well that is narrow and deep
[10, 11].

As the range of the interaction goes to zero, the space
of energy-preserving motions available to a finite system
of particles is identical to that of a bar framework, with
nodes located at the particle centers and bars connecting
pairs of particles that are touching, as in Figure 1. The
energy of the system is proportional to the number of
contacts, or bars in the framework. When thermal fluc-
tuations allow the structure to slightly deviate from this
space, the resulting entropy can be derived from the har-
monic response of the network, provided all vibrational
modes have nonzero frequency. The result contains a
dimensionless geometric factor and a single physical pa-
rameter, characterizing the temperature and stiffness of
the interaction potential [11].

This limit is appealing because it clearly separates the
effects of geometry of the particles from those of the inter-
action potential [12, 13], allowing one to more easily vary
the latter to study self-assembly processes, for example.
It was originally considered by Baxter to study phase

transitions in fluids of particles with short-range interac-
tions [10], though singularities related to the ones we will
solve for have prevented it from being more widely used
[14]. The sticky limit can also be used as a controlled ap-
proximation for the entropy of a system of hard particles
without attraction near close packing [15].

A natural starting point for investigating the conse-
quences of the sticky limit is to consider a collection of
finitely many spheres. In the sticky limit the lowest-
energy states have the maximum number of contacts, and
they are typically mechanically rigid. A recent body of
work has focused on computing the set of rigid clusters
of N spheres and understanding their thermodynamic
properties [16–20]. This program aims partly at identi-
fying a set of geometrical possibilities for processes like
self-assembly [21, 22] and self-replication [23], and partly
at understanding the question of emergence: how does
a finite system of particles transition from a small size,
where the preferred order might be incompatible with
crystalline order, to a large one where it assembles into
a highly structured close-packed lattice [24–29]?

A major roadblock for such a program is the treat-
ment of singular clusters, those with vibrational modes
with zero frequency that do not extend to finite motions
(singular modes), so-called because they correspond to
singularities of a system of algebraic equations. Current
methods for treating the sticky limit do not work di-
rectly for these systems because the entropy associated
with the singular modes diverges. The smallest singu-
lar cluster occurs at a mere N = 9 [17], preventing the
sticky limit from being applied to systems that size or
larger with current methods. Yet singular clusters are
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FIG. 1. Left: the smallest singular cluster of sticky spheres,
consisting of 9 spheres. Right: a framework representation of
the cluster with the singular mode indicated by red arrows.
The singular mode is a vibrational mode with zero frequency,
which cannot be extended to any finite deformation without
incurring an energy cost, or equivalently without breaking a
contact.

not a rarity that can be glibly ignored: they account for
about 2.5% of the known rigid clusters of N spheres [20].
A related problem is hyperstatic rigid clusters, those with
more than the 3N−6 contacts required for a cluster to be
rigid generically. The free energy of hyperstatic clusters
also diverges in the traditional sticky limit, a fact which
has hindered the limit from being more widely applied to
study bulk systems [14]. The smallest hyperstatic cluster
has N = 10 spheres [17]. Observations of colloids with a
short-range depletion interaction found the N = 9 singu-
lar cluster occurred with disproportionate frequency, and
for N ≥ 10 the majority of observed clusters were either
singular or hyperstatic [16]. This suggests there could be
a competition between the higher entropy of a singular
mode, and the lower energy of an additional contact. We
wish to evaluate this competition and determine if sin-
gular clusters could be thermodynamically stable as the
number of spheres increases into the bulk regime.

In this paper we extend the sticky limit to systems with
singular modes and non-isostatic numbers of contacts.
We show that, provided the system is second-order rigid,
its partition function depends on only two parameters,
characterizing the depth and range of the pair potential.
This is only one more parameter than is required in the
nonsingular case. The property of being second-order
rigid is explained in the text and characterizes all known
rigid clusters. Our approach is to calculate the partition
function from an expansion of the potential energy func-
tion up to fourth-order in the particle displacements. The
result diverges as the range of the potential approaches
zero, but by using the leading asymptotic term, we ob-
tain a finite result if the range is taken as a small, nonzero
parameter.

This computation makes specific predictions for the
probabilities of observing singular clusters in equilibrium,
which we confirm by comparing to simulations of parti-
cles interacting with a short but finite-range potential.
We then calculate the free energies of all known rigid
clusters of spheres up to N ≤ 14 and of hyperstatic clus-

ters for 15 ≤ N ≤ 21, and show that the added entropy
of singular clusters never beats the lower energy of the
maximally hyperstatic clusters at realistic values of stick-
iness, except when the singular clusters are maximally
hyperstatic. Since the most hyperstatic clusters are frag-
ments of a close-packed lattice (or close to such), this ob-
servation explicitly and quantitatively demonstrates the
emergence of order even at small system size. Finally,
our results suggest a universal scaling, not yet explained,
of the configurational and vibrational entropies of sticky
sphere clusters as a function of the number of contacts.

The problem of calculating the effects of singular
modes extends far beyond the system specifically un-
der study in this paper. Any system whose motions are
limited by soft constraints, in the limit that the con-
straints become very stiff, could exhibit infinitesimally
free motions that do not extend to finite degrees of free-
dom. In particular, singular modes exist and seem to
play an important role in the mechanical and thermo-
dynamic stability of many metamaterials, a class of sys-
tems of growing interest in material science, composed of
mesoscopic or macroscopic building blocks and designed
to have properties that are hard or impossible to engi-
neer in traditional materials. For example, metamateri-
als based on ball-and-spring networks may be designed to
have singular modes on purpose so they fail under stress
at desired locations [30]. Origami mechanisms designed
to have a single extended degree of freedom may, as has
been observed, end up with extensively many infinitesi-
mal degrees of freedom, with important implications to
the mechanics of actuating the mechanism [31]. As low-
frequency modes seem to play an important role in the
rheology of athermal fluids made of isotropic particles
[32, 33], zero-frequency modes, which occur in extensive
number at the jamming point of anisotropic particles [34],
could also have a significant effect.

While the mechanical effects above are athermal, zero-
temperature effects, in this paper we focus on the thermal
effects of singular modes. Such effects are already rele-
vant for some metamaterials, and will become relevant
for others as the trend toward miniaturization is followed
and such systems are fabricated at smaller and smaller
scales. An abundance of low-frequency vibrational modes
increases the entropy of a system, and can often be a cru-
cial factor stabilizing one structure over another when
they are energetically equivalent: for example, such an
effect favors a face-centered-cubic close packing struc-
ture over a hexagonally-close-packed structure in many
systems [15], stabilizes marginally coordinated lattices in
patchy colloids [35], and favors an ordered structure over
a zigzag structure in a rhombus lattice [36]. If given
two energetically-equivalent structures, one has singular
modes, this effect becomes even stronger: the entropic
factor favoring the singular structure grows larger and
larger as the constraints become stiffer, as we show in
this paper. It is conceivable that in such cases the singu-
lar structure could be thermodynamically favored in an
appropriate limit even when it is energetically disfavored.
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FIG. 2. The sticky sphere limit of a Morse pair potential,
V (r) = Ee−ρ(r−1)(e−ρ(r−1)− 2), where the depth E → ∞ and
the range ε = 1/ρ→ 0.

We derive the conditions for such a scenario to occur, but
we find that they are not present in the case of a system
of N sticky spheres for any N ≤ 21.

I. THE STICKY LIMIT

A. Rigid clusters

We start by explaining how to calculate the free energy
in the sticky limit for a cluster of N identical spheres with
diameter d, forming a cluster r = r1⊕r2⊕. . .⊕rN ∈ R3N ,
where ri ∈ R3 is a vector specifying the position of the
center of the ith sphere, and r is the corresponding point
in a 3N -dimensional configuration space. We suppose the
cluster has B bonds between pairs of interacting spheres
E = {(i1, j1), . . . , (iB , jB)}. When the range of inter-
action is infinitesimally short, each bonded pair will be
exactly touching, so the cluster lies in the solution set to
the system of equations

|ri − rj |2 = d2, (i, j) ∈ E. (1)

We focus for illustration on clusters that are rigid, though
the calculations extend naturally to floppy ones. A clus-
ter is defined to be rigid if it lies on a connected compo-
nent of the solution set to (1) that contains only rotations
and translations [37, 38]. Physically, being rigid means
one cannot continuously deform the cluster internally by
any finite amount while maintaining all contacts. This
is a nonlinear notion that is not equivalent to counting
the number of infinitesimal degrees of freedom, as in the
Maxwell-Calladine theorem [39].

An example of a cluster that is rigid but has an in-
finitesimal degree of freedom is shown in Figure 1. This

is a cluster of N = 9 spheres, consisting of two bipyra-
mids that share a sphere at a common vertex and are
connected by three parallel bonds. When one bipyramid
is rotated along the axis going through the shared ver-
tex and parallel to the bonds, the three bond lengths do
not change to linear order in the displacement, so this
rotation is an infinitesimal degree of freedom. The bond
lengths do change at quadratic order in the displacement.
In fact, any finite motion that is not a rigid body motion
changes at least one bond length, and the cluster is rigid.

We suppose the potential energy of the system is
U(r) =

∑
1≤i<j≤N V (|ri − rj |), a sum of pair poten-

tials V (r) that depend on the distance r between each
pair. The pair potential is assumed to have a min-
imum at d and approach zero rapidly as r − d ex-
ceeds a certain characteristic interaction length ε. For
r − d � −ε, we assume the potential is positive and
much larger in magnitude than its minimum value. As
a particular example, we consider the Morse potential
V (r) = Ee−ρ(r−1)(e−ρ(r−1) − 2), where the position of
the minimum of the pair potential determines the diam-
eter, d = 1, and the parameter ρ determines the range of
the interaction, ε = 1/ρ.

The sticky limit occurs when the well of the pair po-
tential is both narrow and deep. This limit can be con-
structed from any interaction potential with reasonable
decay, by simultaneously rescaling the lengthscale r − d
and the depth of V (r) (see Figure 2). The sticky limit has
traditionally been considered under scalings such that
the contribution of the well to the partition function for
a single pair of spheres approaches a constant [10, 14].
Using Laplace’s method (see appendix A 1) this constant
is shown to be proportional to

κ = lim
ε→0

√
2π

d

eβE

(βa)1/2
(2)

where E = −V (d), a = V ′′(d) ∼ E/ε2, and β = (kBT )−1

is the inverse of temperature T times the Boltzmann con-
stant. Since it represents the equilibrium tendency of of
spheres to stick to each other, it is called the sticky pa-
rameter [11].

The sticky parameter characterizes the thermody-
namic trade off between the free energy of a particle in a
bulk fluid of fixed packing fraction φ, exp(−βFfluid/N) ∼
d3/φ, and a particle in an isostatic network of bonded
particles, exp(−βFiso/N) ∼ (βad2)−3/2e3βE . Therefore,
the limit ε → 0 as 0 < κ < ∞ is relevant for study-
ing the instability of a fluid toward forming an iso-
static bonded network [40]. However, a close-packed
network has six bonds per particle in the bulk limit
and so the relevant limit for studying its formation is
0 < limε→0(βad2)−1/2e2βE < ∞, which requires κ → 0.
As the number of spheres N in a finite system rises,
the relevant clusters might vary from isostatic to close-
packed, so one might wish to consider different limits.
Our calculation allows the limits ε → 0 and E → ∞ to
be taken in any way desired, as we show that it does
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not change the form of the leading term in the partition
function.

To evaluate the free energy of the different rigid clus-
ters that N spheres can form, we need to incorporate the
contribution from vibrations about the minimum energy
configurations as well as from rigid body motions that
do not change the energy. Such a calculation is familiar
from the classical thermodynamic treatment of an ideal
gas of polyatomic molecules [41]. For completeness, we
go through the entire calculation in broad strokes in the
main text and fully in appendix A. However, our calcula-
tion has several differences from classical treatments: (i)
we go beyond the harmonic approximation, which fails
precisely for the clusters we are most interested in; (ii)
we consider the partition function in the sticky limit of
a fairly general pair potential, which leads to an expres-
sion depending on only two parameters; (iii) we show the
connection between the vibrational modes of a cluster
and its mechanical properties as a framework; and (iv)
we take care to keep track of error terms and explicitly
bound the scaling of subleading terms. Since we are in-
terested in mesoscale particles, we do not take into con-
sideration quantum effects. Moreoever, our calculation
is different from simply including all anharmonic correc-
tions to the free energy, as has been done numerically
in molecular dynamics studies of Lennard-Jones clusters
[42]. Calculating these is usually a Sisyphean task, re-
quiring heavy lifting and providing only minor correc-
tions. However, when the vibrational spectrum contains
zero modes, these corrections become crucial. Thank-
fully, as we show, the anharmonic corrections need only
be calculated for the zero modes, though care must be
taken to account for the coupling between the zero and
nonzero modes, which has previously been neglected [16].

The contribution to the canonical partition function
from each rigid cluster is given by

Zr =

∫
Nr

exp[−βU(r′)]d3Nr′, (3)

where Nr is an integration domain constructed by taking
all configurations corresponding to the cluster of inter-
est, including translations, rotations, permutations, and
reflections, and fattening it by a length that is small com-
pared to the particle diameter d and large compared to
the interaction range ε (see appendix A 3.) We take the
total partition function to be the sum of the contribu-
tions from all the rigid clusters, ignoring floppy clusters
in this paper. The free energy is Fr = −β−1 logZr.

We may remove rigid-body degrees of freedom by a
change of variables. If we let W ⊂ R3N be the linear sub-
space of infinitesimal rigid-body motions, then we may
restrict the integral to its orthogonal complement W⊥,
and include a factor I equal to the square root of the
determinant of the moment of inertia tensor (appendix
A 3). Summing over permutations contributes a factor
of N !/σ, where σ is the size of the Euclidean symmetry
group of the cluster [43]. If the spheres lie in a container
of volume Ω, then the free volume for each cluster is

nearly Ω as long as V � d3.

To evaluate the remaining parts of the integral in (3)
we expand each term V (rij+δrij) in powers of δrij , where
we write (·)ij for (·)i − (·)j . The expansion up to second
order in the displacements yields (see (A4) for detailed
expansions and error bounds)

U(r + δr) = −BE + 1
2 〈δr,Mδr〉, (4)

where M is a symmetric linear map, whose matrix rep-
resentation is usually referred to as the dynamical ma-
trix. When (4) is plugged into the integral in (3), the
integral converges if and only if M , considered as a map
W⊥ →W⊥, is positive definite, that is, all its eigenvalues
are positive. The result gives the harmonic approxima-
tion for the vibrational partition function.

To see what the positive definiteness of the dynamical
matrix implies about the rigidity of the cluster, let us
consider how one might deform a cluster along a path
p(t) with p(0) = r without changing any of the bond
lengths. Taking one derivative of (1) shows that

rij · p′ij(0) = 0 for all (i, j) ∈ E. (5)

Defining the linear map R : R3N → RB that maps p′(0)
to the B-dimensional vector with entries given by the
left hand sides of (5), we see that p(t) maintains the
constraints (1) only if p′(0) is in the null space of R.
The matrix representation of R is known as the rigidity
matrix in the mathematical study of framework rigidity.
An element of the null space of R is called a flex, and
it is trivial if it is a rigid-body motion (that is, in W ).
If the only flexes are trivial, then the cluster is said to
be infinitesimally rigid or first-order rigid. This is suf-
ficient for the cluster to be rigid in the nonlinear sense
[38]. The dynamical map (matrix) and the rigidity map
(matrix) are related as R∗R = Md2/a, where R∗ is the
adjoint (transpose), so the harmonic approximation con-
verges exactly when the cluster is first-order rigid.

The harmonic approximation fails when the null space
of the dynamical matrix extends beyond W , or equiva-
lently when nontrivial flexes of the rigidity matrix exist.
These are infinitesimal degrees of freedom that may or
may not be extendable to finite degrees of freedom. If
they are not, we call them singular directions (or modes
or flexes). The cluster in Figure 1 has a singular direction
corresponding the twisting motion described above.

To integrate along these singular directions we con-
tinue the expansion of the potential energy function. Let
X be the space of singular direction: X = ns(M) ∩W⊥,
where ns(·) denotes the null space. Let Y = (ns(M))⊥ be
its orthogonal complement in W⊥. For every δr ∈ W⊥
we may write δr = x + y where x ∈ X, y ∈ Y . We
plug this decomposition into the potential energy func-
tion, use the fact that xij ·rij = 0 for all (i, j) ∈ E by (5),
and keep terms up to O((|x|2 + |y|)2) (see (A5) for these
calculations and error bounds). We obtain, neglecting
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the error terms,

U(x,y) = −BE
+ ad2Ũ0(x) + ad〈ũ1(x),y〉+ 1

2a〈y, M̃y). (6)

Here M̃ = M/a, Ũ0(x) is a real scalar, and ũ1(x) ∈ Y is
a 3N -dimensional vector, constructed as

Ũ0(x) =
∑

(i,j)∈E

1

8d4
(xij · xij)2 (7)

[ũ1(x)]i =
∑

j s.t. (i,j)∈E

1

2d3
(xij · xij)rij (8)

If U(x,y)−U(0, 0) is positive for all nonzero (x,y) we can
calculate the leading-order term of the partition function
(see (A18)):

Zr =

IΩeβBE

(det M̃ |Y )1/2σ

(
2π

aβ

) dY
2
(
d2

aβ

) dX
4
(∫

X

e−Q(x̃)dx̃

)
,

(9)

where dX , dY are the dimensions of X and Y , and

Q(x̃) =
1

ad2
min
y∈Y

U(dx̃,y)

= Ũ0(dx̃)− 1
2 〈ũ1(dx̃), M̃−1ũ1(dx̃)〉 (10)

is a dimensionally reduced quartic form that gives the
minimum of the potential at a fixed displacement along
the singular directions. Letting γ = eβE , α = (aβd2)1/4,
and BISO = 3N − 6, we can write (9) as

Zr = Ωd3N−3(2π)−
BISO

2 γBα−2BISO+dXzr, (11)

where

zr =
I

σd3
(det M̃ |Y )−

1
2 (2π)−

dX
2

∫
X

e−Q(x̃)dx̃. (12)

Equations (11–12) are our main result. They express
the partition function for a sticky rigid cluster as a prod-
uct of a number of dimensional quantities which depend
on the pair potential, temperature, and particle dimen-
sions, times a dimensionless quantity zr. We call zr the
geometrical partition function because it depends only on
the positions of the particles, which are given by solving
the geometry problem defined by equation (1), and not
on any externally controllable parameters. The interac-
tion potential and temperature enter only in combination
through the two parameters γ and α, which measure, re-
spectively, the contribution of each extra bond and each
singular direction. Remarkably, only the second deriva-
tive of the interaction potential affects the free energy.
All higher-order derivatives contribute to subleading or-
der.

When does the remaining integral in (12) converge?
We will show it converges for all clusters that are second-
order rigid. To explain what this means, consider again
the hypothetical deformation of the cluster p(t), and now
take the second time-derivative of (1):

rij · p′′ij(0) + ‖p′ij(0)‖2 = 0 (13)

for all (i, j) ∈ E. A given flex p′(0) can be extended to
a second-order motion only if there is a solution p′′(0)
to the linear equation (13). If such a solution exists,
the pair (p′(0),p′′(0)) is called a second-order flex. If
there is no nontrivial second-order flex, then the cluster
is second-order rigid. Second-order rigidity is a sufficient
condition for rigidity [38]. However, analogous higher-
order versions do not necessarily imply rigidity [44].

Since U(x,y)−U(0, 0) =
∑

(i,j)∈E
a

2d2 [(rij ·yij)+ 1
2 (xij ·

xij)]
2, then U(x,y) = U(0, 0) for some x ∈ X and y ∈ Y

if and only if rij · yij + 1
2 (xij · xij) = 0 for all (i, j) ∈ E,

namely, (x, 2y) is a second-oder flex. If the cluster is
second-order rigid then no such flex exists, so U(x,y) >
U(0, 0) for all nonzero (x,y), and (12) converges.

B. Square well potential

We have assumed a potential with nonzero second
derivative at the minimum, but Baxter’s original sticky-
sphere limit considered a square well potential of depth E
and width ε, where the derivatives V (n)(d) vanish for all
n [10]. However, we can show (appendix A 4) that while
this difference changes the prefactors in the calculation,
it does not change how the partition function scales with
the parameters γ and α, which are defined for a square
well potential to be γ = eβE , α = (d/ε)1/2. Therefore,
our calculations are a natural extension of Baxter’s limit.

C. Floppy clusters

We have derived (11) for rigid clusters, but a similar
calculation can be performed for floppy clusters, those
with internal degrees of freedom along which the cluster
can deform by some finite amount. In this case, some
of the zero vibrational modes extend to finite degrees
of freedom, and some do not so they are singular di-
rections. We suppose the internal degrees of freedom
form a manifoldM with dimension m, and and that the
number of singular modes dX is constant over the man-
ifold. Now X, Y are the linear subspaces along which
the cluster is rigid with X representing the singular di-
rections and Y the non-zero vibrational modes. The zero
vibrational modes are the union of X and the tangent
space to M. If M has dimension m, then we must have
dim(X) + dim(Y ) +m = 3n− 6.

The additional calculations to deal with the floppy de-
grees of freedom closely resemble those performed in [11]
and result in an integral over the internal degrees of free-
dom of a cluster. The resulting partition function still has
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the form (11), where the geometric partition function is
now ztot

r given by

ztot
r =

∫
M
zr(x)dσM(x), (14)

with zr(x) given by (12), and in both (11), (12) we must
set BISO = 3N −6−m. Here dσM is the natural surface
measure on the manifold, described in detail in [11].

II. FREE ENERGY LANDSCAPE OF SMALL
CLUSTERS

Equation (11) shows that extra bonds and singular di-
rections contribute to the stability of a rigid cluster by
factors, γ and α, that both diverge in the sticky limit.
This observation raises some natural questions: for finite
values of these parameters, which kinds of cluster tend to
dominate the partition function? How does this answer
depend on N? And, with a sight toward emergence, how
do close-packing fragments come to dominate the land-
scape as N →∞?

We address these questions by calculating the geomet-
rical partition functions for all known rigid clusters (see
appendix B 1 for methods). We use the enumeration of
rigid clusters produced by Holmes-Cerfon [20], which in-
cludes rigid clusters up to N = 14, and rigid clusters
containing a given number of contacts or more up to
N = 21[45]. These are thought to be nearly complete
lists of rigid clusters for each N and for each specified
number of contacts. All clusters in the lists are second-
order rigid to numerical tolerance, so (11) converges. We
use the results to characterize the competition between
singular and hyperstatic clusters at each value of N .

A. N ≤ 8

All clusters of these sizes are regular (isostatic and non-
singular). For N ≤ 5, there is only a single rigid cluster
for each value of N : a single sphere, a dimer, a triangle,
a tetrahedron, and a triangular bipyramid. For N = 6, 7,
and 8, multiple rigid clusters exist, all nonsingular, and
all with the same number of bonds. The most important
factor in the partition function is the symmetry number,
with low-symmetry clusters dominating high-symmetry
clusters [16, 46, 47].

B. N = 9

The smallest singular rigid cluster, illustrated in Fig-
ure 1, occurs at N = 9. Including this cluster, there are
52 rigid clusters, not counting enantiomers, all with the
same number of bonds [17]. So, the partition function

is given, up to constant factors, by Z = αz1 +
∑52
i=2 zi,

where zi is the geometric term in (11) for the ith cluster,
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FIG. 3. Simulation results for N = 9 sticky spheres with
κ ≈ 220 and ρ = 30, 40, 50, 60, 70, 80, 100, 120, and 140 inter-
preted using different bond cutoffs. The dashed line shows
the theoretically predicted frequency of the singular cluster,
(15). Error bars are standard deviation estimates.

the singular cluster being first. The equilibrium proba-
bility of the singular cluster is then

P1 =
α

K + α
(15)

with K = 1
z1

∑52
i=2 zi ≈ 235. In the sticky sphere limit,

α → ∞, and this probability approaches one. However,
we expect this estimate to hold even for finite α.

To test this prediction, we sampled from the canonical
ensemble of 9 spheres interacting via a Morse-harmonic
potential with various ranges and depths using a Monte
Carlo simulation (see appendix B 2 for methods). The di-
ameter is taken to be 1, and the range of the interaction
is characterized by a parameter ρ. For a given value of
the range parameter ρ the pair potential is active over a
distance of about 5/ρ, after which it has decayed to about
1.3% of its minimum depth. For each sampled structure
we construct an adjacency matrix by specifying a cut-
off distance for bonds and identify the rigid cluster, if
any, whose adjacency matrix is isomorphic to the con-
structed one. For small values of the range parameter ρ
(corresponding to a large interaction range), this method
was extremely sensitive to the cutoff being used, but for
ρ & 70 (corresponding to α & 18), the calculated clus-
ter frequencies converged and agreed with the theoretical
prediction, as illustrated in Figure 3.

The discrepancy for small ρ likely arises because of
interaction between non-nearest neighbors. The rigid
cluster geometries are minima of U(r) only in the limit
ρ−1 → 0, and are deformed for ρ−1 > 0 due to interac-
tions between spheres that are not in contact in the ideal
structure. The minimum gap in the rigid clusters of 9
spheres is hmin ≈ 0.05d, which occurs in seven of the 52
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clusters, and 30 clusters have gaps of 0.09d or less. When
ρ−1/hmin 6� 1, the deformations of the local minima are
substantial. Small gaps also lead to problems in the iden-
tification of cluster geometries in our numerical sample,
since they could be identified as bonds.

Even though (15) applied only in the limit that α →
∞, and so P1 → 1, we observe remarkable agreement
even when P1 is only around 8%.

Experiments that observed colloids interacting via a
depletion interaction found the singular cluster occurred
with frequency 11% ( 95% confidence interval 4%-27%)
[16]. A calculation neglecting the coupling between the
zero and nonzero modes predicted only a 3% probability
for the singular cluster [16], and the excess stability was
surmised to correspond to the free energy of about half
of an extra bond. The range of attraction was estimated
to be about 1.05 times the particle diameter, which cor-
responds to a range parameter of ρ ≈ 30 [46, 48]. The
depth of interaction was estimated to be about 4kBT , but
this gives a sticky parameter of κ = 1.6 for which clus-
ters should melt; a depth of ≈ 8kBT is probably closer
to the truth so that κ ≈ 60, and is consistent with re-
cent simulations [49]. These values give α ≈ 11 so the
theoretically predicted probability is P1 ≈ 0.045, within
the experimental confidence interval. These parameters
are in the regime where non-nearest neighbor interactions
are relevant, so we cannot hope the calculation will agree
exactly with the experimentally observed value, but it is
still notable that the two are consistent.

C. 10 ≤ N ≤ 21

To analyze the landscape for higherN , we partition the
rigid clusters based on the number of extra bonds ∆B =
B − (3N − 6) above or below the isostatic number, and
the number of singular zero modes dX . The canonical
partition function is then

Z = κ3N−6
∑

∆B,dX

αdXγ∆Bz∆B,dX , (16)

where z∆B,dX is the sum of the geometric contributions
of all the clusters in a given partition (see appendix C
for values), and we have used the fact that the sticky
parameter (2) is

κ =

√
2πγ

α2
. (17)

We analyze the landscapes for N ≥ 10 by determining
which term in (16) is the largest for different values of α
and γ.

The phase diagram for N = 10, shown in Figure 4,
indicates where on the parameter space each term dom-
inates. There are four terms in the partition function,
corresponding to clusters that are regular (∆B = 0,
dX = 0), singular isostatic (∆B = 0, dX = 1), hyper-
static (∆B = 1, dX = 0), and hypostatic (∆B = −1,
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dX = 2). When γ is large enough and α is fixed or
grows more slowly than γ, the hyperstatic cluster domi-
nates. We also see that for fixed γ and large enough α,
the hypostatic cluster appears to dominate. However, in
that region of parameter space, the sticky parameter κ
tends to zero and we do not expect the spheres to leave
the fluid phase and stick to each other. Figure 4 shows
lines of constant κ for κ = 10 and 1000; these are values
between which we could reasonably expect to see clus-
ters that equilibrate over experimental timescales, rather
than a gas or a glass. Figure 4 also shows the relative
frequencies as a function of α for κ = 40, a reasonable
value to observe in experiments [12], where we see the
transition from the region dominated by regular clusters,
favored by the higher number of distinct clusters, to that
dominated by the hyperstatic cluster, favored by lower
energy. The singular clusters peak in frequency near this
transition, but never rise above 3.6%. The hypostatic
cluster is extremely rare and never reaches above 0.03%
despite its high vibrational entropy.

For N = 11 to 14, we use the enumeration of rigid
clusters to construct similar phase diagrams, shown in
Figure 5. Again, in the region of κ where we can ex-
pect to observe the formation of equilibrated clusters, we
primarily see a transition between regular clusters and
the most hyperstatic ones. The exception is N = 13,
for which two of the eight most hyperstatic clusters are
singular and dominate in the sticky limit.

For N = 15 to 21, the maximum value of ∆B is
5, 6, 7, 8, 9, 10, and 11 respectively, and only clusters with
fewer than 4 missing bonds compared to the maximum
were enumerated [20]. The phase diagrams computed are
therefore not a complete description of rigid clusters, but
their common appearance and patterns is a telling signal
of emergence. In particular, as in most previous cases,
at fixed κ & 1 and increasing α, we observe a transition
from dominance of the least hyperstatic nonsingular clus-
ters among those enumerated to dominance of the most
hyperstatic. For N = 11 to 14, the former are regular
clusters, but regular clusters are too numerous to have
been enumerated for N ≥ 15. This transition occurs in
a narrow range of γ, with possibly a few intermediate
regions.

III. DISCUSSION

A. Toward larger N

Our observations about the free-energy landscape of
clusters of up to 21 sticky spheres suggest two conjectures
about the landscape as N increases:

1. For most values of N , singular clusters are rare at
experimentally relevant values of κ;

2. The phase diagrams of rigid clusters have a univer-
sal shape, which is approached even at small N .

The first conjecture, if true, goes much of the way to-
ward explaining the phenomenon of emergence. It im-
plies that despite the apparent competition between the
higher vibrational entropy of singular clusters and the
lower energy of hyperstatic clusters, the latter always
wins. Since the most hyperstatic clusters are close to
fragments of a close-packed lattice with defects only on
the surface, close-packing order should arise for sticky
spheres even for small clusters.

Based on (11), we have already noted that each extra
bond contributes to the stability of a rigid cluster by a
factor γ, and each singular mode contributes by a fac-
tor α. This surmise neglects the geometric factor, which
might be correlated with the number of bonds or sin-
gular modes, and we return to such correlations shortly.
Since γ ∝ κα2, and assuming that κ & 1, it follows that
as α → ∞, each extra bond contributes at least twice
as much as each singular mode. In this sense, the ob-
servation of Meng et al. that a zero mode contributes
to stability about half as much as an extra bond turns
out to be rather prescient, even as it was surmised from
experiments far from the Baxter limit [16].

Therefore, the only way a rigid cluster with fewer than
the maximum number of bonds can become dominant at
large α is if it had two singular modes for each missing
bond. This scenario does not seem to occur for any value
of N . In fact, the only exceptions to the rarity of singular
clusters are when singular clusters exist among the most
hyperstatic ones, as they do for N = 9 and 13. We do not
know if such clusters might exist for larger values of N .
Such “magic numbers,” associated with special clusters
and deviating from the trend toward bulk behavior, are
familiar in other systems, such as atomic clusters [50–53].

Motivated by the first conjecture, we limit our atten-
tion to nonsingular clusters and consider the second con-
jecture. The transition from a region dominated by regu-
lar clusters to one dominated by hyperstatic ones occurs
not perfectly abruptly but nevertheless over a small range
of γ. Such behavior implies that the total geometric par-
tition function z∆B (we drop the second subscript for the
remainder of the section, implicitly taking dX = 0) de-
creases exponentially as a function of ∆B with a roughly
consistent rate z∆B ∼ exp(−λ∆B), as can in fact be seen
in Figure 7. The rate, and therefore also the center of the
transition, at γ = exp(λ), seems to trend upwards as a
function of N . We do not know if this rate approaches a
constant as N increases, though we hypothesize it might,
as such a limiting rate appears necessary for the total
number of clusters to grow exponentially with N , an is-
sue we will discuss in a future publication.

Which factor in the partition function contributes most
strongly to this exponential scaling? Part of it is due to
the number of distinct clusters with a given number of
bonds, n∆B , whose logarithm can be thought of as a con-
figurational entropy. Figure 7 shows n∆B decreases expo-
nentially with ∆B, and the gain in configuration entropy
for each lost bond appears to grow with N . The average
geometric partition function of a typical single cluster
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with a certain number of bonds also appears to decrease
exponentially as a function of ∆B, with most of this de-
creases accounted for by the decrease in the average vi-
brational factor (det M̃)−1/2 per cluster. The deviations
from the exponential fits for these individual components
are more pronounced than in the case of the total geo-
metric partition function, but the consistent exponential
scaling is notable. The rotational contributions, from the
moment of inertia and symmetry factors, do not depend
strongly on the number of bonds (appendix B 3.)

To further investigate how these observations bear on
the question of emergence of long range order, we con-
sider a metric for the bond-orientational order. We use
the order metric Q6, which is widely used in the study
of the structure of liquids (see appendix B 4 for a defi-
nition) [54]. Figure 8 shows that bond-orientational or-
der is strongly correlated with the existence and number
of extra bonds. Isostatic clusters have particularly low
bond-orientation order. Deviation from isostaticity in
either direction seems to require the introduction of par-
tial order, since only when going away from the generic
situation can the algebraic singularities associated with
hypostaticity and hyperstaticity arise. The presence of
even a single extra bond seems to require the structure
to contain two octahedra sharing an edge, and as more
bonds are added, this substructure can grow to incorpo-
rate larger and larger close-packing fragments. The most
hyperstatic clusters observed for each N are fragments of
close-packing lattices with defects only on the surface.

B. Relation to bulk behavior

In addition to being physically important for their own
sake, finite clusters also carry importance as a formal
tool in low-density expansions of the fluid behavior of
bulk systems. Baxter used the expansion up to the sec-
ond term to predict a gas-liquid transition in a fluid of
sticky spheres [10]. It has been previously observed that
Baxter’s calculation is theoretically problematic because
later terms in the expansion diverge in Baxter’s limit [14].
Specifically, Stell and Williams showed that for N = 12
spheres the partition function diverges, due to the exis-
tence of rigid clusters which remain rigid even when turn-
ing off the interaction between some bonded pair [14].
This divergence in fact occurs for any hyperstatic clus-
ter, leading to divergence even for N = 10. Here, we
have shown that singular clusters also lead to a diver-
gence in Baxter’s limit and so the theoretical problems
for the expansion begin even earlier, at N = 9.

Our numerical results show a sharp transition to the
prevalence of isostatic structures over highly hyperstatic,
close-packed ones when the depth of the potential well is
less than a critical value, and we expect it to extend into
the bulk regime.

IV. CONCLUSIONS AND FUTURE WORK

We have shown that the free energies of systems of
spheres interacting with a very short-ranged pair poten-
tial can be described by only two parameters, charac-
terizing the depth and width of the potential. This is
true even when the system is in a singular energy mini-
mum, where the harmonic approximation diverges, pro-
vided the associated framework is second-order rigid. We
used our results to study the free energy landscapes of
clusters of a finite number N ≤ 21 of spheres. Previous
work has shown that for N ≤ 8, the most likely clus-
ters to be observed in equilibrium are the least symmet-
ric ones. We showed that for larger N , the free energy
landscape is dominated by the most hyperstatic clusters.
These clusters are usually close to fragments of a close-
packed lattice with defects only on the surface, so we see
the emergence of crystalline order even for N as small as
10. Only for the magic numbers, N = 9 and N = 13,
is the maximum number of contacts achieved by both
nonsingular and singular clusters, and the latter would
form with near unit probability in the limit of zero range
interactions. It would be interesting to know if there are
other, larger values of N with singular clusters having
the maximum number of contacts.

We found empirically that the partition function of
rigid clusters of size N with B contacts scales expo-
nentially with B. If this scaling continues, it leads to
a sharp transition between a region of parameter space
where clusters with the largest possible number of con-
tacts dominate and a region where the expected number
of contacts is extensively less than the maximum. This
sharp transition may be a finite-size incarnation of the
thermodynamic observation that particles with a short-
range interaction have little or no liquid phase, a fact
that has made it hard to create liquids of biomolecules
or other nanoscale objects [55]. We analyzed the factors
contributing to this scaling, but do not have a explana-
tion from first principles that would suggest the scaling
continues for larger sizes, or that the rates approach a
constant as N increases. We leave this as an open prob-
lem that could be addressed using ideas from geometry
and statistical mechanics.

We have focused our calculations on rigid clusters, but
one could use (14) to compute the partition functions
of floppy clusters or other networks with floppy modes
of deformation [e.g. 56]. This is more challenging be-
cause it involves computing integrals over manifolds, but
is still tractable using specialized parameterizations as
in [11, 57] or thermodynamic integration techniques [58].
Moreover, current numerical and analytic methods for
classifying the rigidity of bar frameworks focus on testing
rigidity, not floppiness, and new methods are required for
determining what subspace of the space of infinitesimal
flexes (zero modes) extends to finite degrees of freedom
in a floppy cluster.

One possible issue with using our result is the eval-
uation of the integral

∫
Rn exp[−Q(x)]dx, where Q is a
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FIG. 6. Phase diagrams for rigid clusters of 15–21 spheres. Labeling is the same as in Figure 4.

positive quartic form. Unlike its Gaussian relative, this
integral has no general analytic solution for even moder-
ate values of N [59]. A future avenue of research is to
simplify the integral under stronger rigidity assumptions,
such as prestress stability.

We showed via simulations that the sticky limit de-
scribes real, finite-range potentials, provided the range
of the potential is much shorter than minimum gap be-
tween non-contacting spheres. However, this minimum
gap appears to become arbitrarily small as N increases
[20]. Nevertheless, we expect our calculations to give
qualitative insights into real systems and it would be in-
teresting to test them with experiments on clusters larger
than N = 9. For example it could still be the case that
the type of clusters that dominate in equilibrium depends
on only a small number of parameters as the interaction
potential is varied, or that the ones that are close to sin-

gular become more probable as the range of the potential
is decreased.

Although the gap size poses a problem for quantitative
agreements in real systems, it may be possible to build
on the present results by including perturbations that
account for non-nearest neighbor interactions. As non-
nearest neighbor interactions increase, the energy min-
ima coming from distinct rigid clusters are expected to
merge, leading to critical points that can be analyzed
using catastrophe theory [60] or related ideas. Singu-
lar clusters themselves can be thought of as multiple,
colocated minima that might separate as they are per-
turbed by non-nearest neighbor interactions. By start-
ing with the sticky limit and slowly increasing the range
of the interaction potential, one might create a bifurca-
tion diagram of energy landscapes which shows a finite
or low-dimensional number of possible landscapes; in-
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deed in related systems it has been shown that the space
of energy-minimizing configurations is sometimes much
lower-dimensional than the space of interaction poten-
tials [61].

Many systems beyond clusters, particularly metama-
terials and systems near jamming or close packing, are
often modeled as subject to soft constraints in the limit
that the stiffness of the constraint is taken to infinity. As
we have shown here, this limit is qualitatively different
than modeling the constraints as hard constraints, partic-
ularly when the excitation spectrum includes zero modes.
In this paper, we have focused on the thermodynamic ef-
fect of zero modes, calculating their contribution to the
free energy. Such thermal effects are already observed
in many metamaterials and self-assembly systems, and
are likely to become important for more of them as they
are fabricated on smaller scales. The zero-temperature

effects of zero modes are also potentially important in
metamaterials and athermal fluids and more work will
need to be done to determine their effect on mechanical
stability and yielding behavior. We hope that the present
work will become the first step in a broader program
to provide analytic tools for going beyond the harmonic
approximation and calculating the thermodynamic and
mechanical effects of zero-frequency vibration modes.
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Appendix A: Details on the partition function
calculations

1. Sticky limit

Starting from an arbitrary potential V0(r) with we can
define a one-parameter family of rescaled potentials, pa-
rameterized by the variable ε, representing the interac-
tion range. Let V (r) = C(ε)V0((r−d)d/ε+d). We need to
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extend V0 for negative arguments in some way such that
V0(r) → ∞ as r → −∞. Assuming such scaling is used
to approach the sticky limit, then all derivatives of V (r)
at r = d satisfy the scaling dnV (r)/drn|r=d = O(E/εn),
where E = −V (d). We assume this scaling of the deriva-
tives for deriving all the big-O error bounds in our calcu-
lation. We also assume that V0(r)→ 0 as r →∞ in such
a way that V (r)→ 0 as ε→ 0 pointwise for all r > d.

The traditional sticky sphere limit of Baxter [10] is
defined so that the difference between the partition func-
tion for two spheres interacting via V (r) and the parti-
tion function for two hard spheres approaches a constant.

Namely,

0 < lim
ε→0

1

d3

∫
r∈R3

(e−βV (|r|) − 1)d3r +
4π

3
<∞, (A1)

where β = (kBT )−1 is the inverse of temperature T times
the Boltzmann constant. The limit can be evaluated us-
ing Laplace’s method as

25/2π3/2 lim
ε→0

(aβd2)−1/2 exp(βE), (A2)

where E = −V (d) = −C(ε)V0(d) and a = V ′′(d) =
C(ε)V ′′0 (d)d2/ε2.

In our calculation we do not assume this limit, let-
ting ε and C approach 0 and ∞ simultaneously in any
way desirable. We define the sticky parameter to be
κ = (2π)1/2(aβd2)−1/2 exp(βE) = (2π)1/2α−2γ even
when the limit is not taken.

2. Expansion of the pairwise potential

We consider the Taylor expansion of V (|rij + δrij |) in powers of δrij , where |rij | = d. Applying the chain rule and
using the Taylor expansion of the square root, we get

V (|rij + δrij |) = V (
√
d2 + |δrij |2 + 2rij · δrij)

=

∞∑
l=0

1

l!
V (l)(d)

[ ∞∑
k=0

(
1/2

k

)
d1−2k(|δrij |2 + 2rij · δrij)k

]l
,

(A3)

where
(

1/2
k

)
= 1

k!

∏k−1
n=0( 1

2 − n) is the generalized binomial coefficient.
When we expand the sum and keep terms up to fourth degree in δrij , recalling that V ′(d) = 0, we get

V (‖rij + δrij‖) =− E +
a

2d2
(rij · δrij)2 +

b

6d3
(rij · δrij)3+

a

2d2
(rij · δrij)(δrij · δrij) +

c

24d4
(rij · δrij)4+

b

4d3
(rij · δrij)2(δrij · δrij) +

a

8d2
(δrij · δrij)2+

O(E‖δrij‖5/ε5),

(A4)

where E = −V (d), a = V ′′(d), b = V ′′′(d)− 3V ′′(d)/d, c = V (4)(d)− 6V ′′′(d)/d+ 15V ′′(d)/d2.
Later on in the calculation, we decompose the displacement into orthogonal components δr = x + y with the

property that rij ·xij = 0 for all (i, j) ∈ E. When we plug this decomposition into Equation A4 and keep terms below

O( Eε3d3 (‖x‖2 + d‖y‖)3), we get

V (|rij + xij + yij |) =− E +
a

8d2
(xij · xij)2+

a

2d2
(xij · xij)(rij · yij) +

a

2d2
(xij · xij)(xij · yij)+

a

2d2
(rij · yij)2 +

a

d2
(xij · yij)(rij · yij)+

a

4d2
(xij · xij)(yij · yij) +

a

2d2
(xij · yij)2+

O( Eε3d3 (‖x‖2 + d‖y‖)3).

(A5)
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3. Free energy of a rigid cluster

Consider the coordinates of the centers of N spheres, ri ∈ R3, i = 1, . . . , N , which we consider as a single point
r = r1 ⊕ . . .⊕ rN ∈ R3N of the configuration space. Let E = {(i1, j1), . . . , (iB , jB)} be the complete list of pairs such
that

|ri − rj |2 = d2, (i, j) ∈ E. (A6)

We say that the point r describes a rigid cluster if any other point in the connected component of the solution space
to A6 that contains r is related to r by translation and rotation.

a. Partition function We ignore momenta in our phase space because they contribute a constant term to the
partition function. Therefore, the partition function is defined as

Z =
1

N !

∫
r′∈Ωn

exp[−βU(r′)]dr′, (A7)

where Ω is the region of space to which the particles are confined. We use Ω to denote also the volume of this region.
b. Domain of integration The free energy of a particular rigid cluster r is defined to be −β logZr, where Zr is

the contribution to the total partition function due to the configurations that are associated with the rigid cluster r.
The space of such configurations, denoted Nr is defined to be the union over all permutations ρ ∈ SN of domains of
the form

{r′ ∈ ΩN : r′i = U(rρ(i)) + t + δri for some U ∈ O(3), t ∈ R3, δr ∈ R3N such that |δri| ≤ l}, (A8)

where l is chosen such that ε� l� d.
c. Change of variables We can remove the rigid-body degrees of freedom and the permutations from the calcu-

lation by performing a change of variables. Fix r to be some configuration corresponding to the cluster of interest.
Let W = {δr ∈ R3N : δri = t + s × ri for some t, s} ⊆ R3N , and let W⊥ be its orthogonal complement as a linear
subspace of R3N . The transformation φ : W⊥ ×R3 × SO(3)→ R3N that maps φ : (δri, t, U) 7→ U(ri + δri) + t− ri
is nonsingular and its Jacobian determinant is

Jφ(δr) = I +O(d2‖δr‖), (A9)

where I is the square root of the determinant of the moment of inertia tensor about the center of mass. Summing
over permutations contributes a factor of N !/σ, where σ is the order of the symmetry group of the cluster, that is, the
number of Euclidean motions (combinations of reflections, rotations and translations) that map r to a permutation of
itself. In the new variables, the integrand is independent of U and t, and we can integrate those variables. The only
complication is that the range over which t varies, the free volume available to the cluster, can be slightly different
for different clusters due to boundary effects. However, these differences are of order Ω2/3d, compared to the total
volume Ω, so they are negligible if Ω� d3.

Following the change of variables and the integration over the rigid body degrees of freedom, Zr reduces to

Zr =
Ω

σ

∫
δr∈W⊥,|δri|≤l

exp [−βU(r + δr)] Jφ(δr)d(δr), (A10)

where we have removed a factor of N ! and the dimensionless factor obtained from integrating over SO(3). The
inclusion of N ! depends on whether we wish to treat the spheres as distinguishable or not, but in either case it will
not change the results as it is common to all clusters. The free energy is given by Fr = −β−1 logZr. Finally, we
can replace U(r + δr) by UE(r + δr) =

∑
(i,j)∈E V (rij + δrij) and extend the domain of integration to the entire

linear space W⊥. This contributes an error of order Unb =
∑

(i,j)6∈E V (rij) in the energy, whose exact order compared

to other error terms depends on how the pair potential V0(r) used to construct the sticky limit approaches zero as
r →∞.

Zr =
Ω

σ

∫
δr∈W⊥

exp [−βUE(r + δr) +O(βUnb)] Jφ(δr)d(δr). (A11)

d. Harmonic approximation To evaluate the integral in (A11), we use the expansion A4. Keeping terms up to
second order in the displacements yields

UE(r + δr) = −BE + 1
2 〈δr,Mδr〉+O(E‖δr‖3/ε3), (A12)
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where M is a symmetric linear map, whose matrix representation is usually referred to as the dynamical matrix. When
(A12) is plugged into the integral in (A11) without the error term, the integral converges if and only if M , considered
as a map W⊥ → W⊥ is positive definite, that is, all its eigenvalues are positive. The result gives the harmonic
approximation for the vibrational partition function and the error term contributes a multiplicative correction of the
form 1 +O(β−1/2E−1/2 + βUnb).

e. Fourth-order approximation The harmonic approximation fails when the null space of the dynamical matrix
extends beyond W , or equivalently when nontrivial flexes of the rigidity matrix exist. These are infinitesimal degrees
of freedom that, if the cluster is rigid, are not extendable to finite degrees of freedom. We call them singular directions.
Let X = ns(M) ∩W⊥ and Y = (ns(M))⊥ so that W⊥ = X ⊕ Y is an orthogonal decomposition of W⊥, and X is
the null space of M restricted to W⊥. For every δr ∈ W⊥ we may write δr = x + y where x ∈ X, y ∈ Y . Using the
expansion A5, we get

UE(r + x + y) = −BE + U0(x) + 〈u1(x),y〉+ 1
2 〈y, U2(x)y〉+O(E‖y‖3/ε3), (A13)

Here U0(x) is a real scalar, u1(x) ∈ Y is a 3N -dimensional vector, and U2(x) : Y → Y is a real symmetric map.
These have the explicit forms

U0(x) =
∑

(ij)∈E

a

8d2
(xij · xij)2 +O(E‖x‖6/d3ε3) (A14)

[u1(x)]i =
∑

j s.t. (i,j)∈E

a

2d2
(xij · xij)rij +O(E‖x‖3/d2ε2 + E‖x‖4/d2ε3) (A15)

U2(x) = M +O(E‖x‖2/dε3) (A16)

We write U0(x) = ad2Ũ0(x) + O(E‖x‖6/d3ε3), u1(x) = adũ1(x) + O(E‖x‖3/d2ε2 + E‖x‖4/d2ε3), and U2(x) = aM̃ +

O(E‖x‖2/dε3), where Ũ0(x) is a homogeneous quartic function of x, ũ1(x) is a homogeneous quadratic function of x,

and M̃ = M/a is the geometric part of the dynamical matrix. Let

Ũ(x,y) = Ũ0(x) +
1

d
〈ũ1(x),y〉+

1

2d2
〈y, M̃y). (A17)

As discussed in the text, Ũ(x,y) is positive for all nonzero (x,y) if and only if the cluster second-order rigid.
In this case, we can calculate the leading-order term of the partition function. We first integrate over Y by

completing the square and computing the simple Gaussian integral. The remaining integral over X is nontrivial [59],
and we leave it unevaluated, but dimensionally reduce it:

Z =
IΩeβBE

σ

∫
X

dx

∫
Y

dy exp
[
−aβd2Ũ(x,y) +O(ε1)

]
=

IΩeβBE

(det M̃ |Y )1/2σ

(
2π

aβ

) dY
2
∫
X

dx exp
[
−aβd2Ũmin(x) +O(ε2)

]
=

IΩeβBE

(det M̃ |Y )1/2σ

(
2π

aβ

) dY
2
(
d2

aβ

) dX
4
(∫

X

e−Q(x̃)dx̃

)
(1 +O(ε3)),

(A18)

where Ũmin(x) = Ũ0(x)− 1
2 〈ũ1(x), M̃−1ũ1(x)〉 is the minimum of Ũ(x,y) at fixed x, Q(x̃) = Ũmin(dx̃) is its geometric

part, dX and dY are the dimensions of X and Y , and the error terms are ε1 = βE
ε3d3 (‖x‖2 + d‖y‖)3 + βE

d2ε2 ‖x‖3‖y‖ +
1
d (‖x‖+ ‖y‖) + βUnb, and ε2 is given by ε1 by substituting (aβ)−1/2 for ‖y‖, and ε3 by substituting (aβ/d2)−1/4 for

‖x‖. The final error term is ε3 = β−1/4E−1/4d−1/2ε1/2 + β−1/2E−1/2 + βUnb.
Neglecting the error, this can be written as

Z = Ωd3N−3γBα−2(3N−6)+dxz,

z = (I/d3)σ−1(det M̃ |Y )−1/2(2π)(3N−6−dX)/2

∫
X

e−Q(x̃)dx̃,
(A19)

where α = (aβd2)1/4 and γ = eβE .



16

4. Relation to a square-well potential

The calculation presented in the text assumes that the pair potential V (r) has a nonzero second derivative at the
minimum. However, many models of sticky spheres, including Baxter’s original calculation, use a square-well pair
potential given by

Vsquare(r) =

 +∞ r < d− ε
−E d− ε ≤ r < d+ ε
0 r ≥ d+ ε

. (A20)

Here we show that if the partition function of a rigid cluster for an analytic potential is given by Zanalytic ∼
exp(−βUmin)α−M , where α = (aβd2)1/4, a = V ′′(r), and M is a real exponent, then the partition function for
the same cluster under a square-well pair potential is given by Zsquare ∼ exp(−βUmin)α−M , where α = (d/ε)1/2,
and M is the same exponent as for Zanalytic. Explicitly, the notation f ∼ g above is used to mean ag < f < bg
asymptotically for some constants a and b.

Let us show a more general result first. Let f1, . . . , fB : RN → R be real continuous functions such that fi(0) = 0.
Define the following integrals:

Z1 =

∫
RN

B∏
i=1

exp(− 1
2βafi(r)2)dr,

Z2 =

∫
RN

B∏
i=1

1(−ε ≤ fi(r) ≤ ε)dr,

D1(t) =

∫
RN

δ(t−
B∑
i=1

fi(r)2)dr,

D2(t) =

∫
RN

δ(t− max
i=1,...,B

fi(r)2)dr.

(A21)

We have

Z1 =

∫ ∞
t=0

D1(t) exp(− 1
2βat)dt

Z2 =

∫ ε2

t=0

D2(t)dt.

(A22)

We also have that ∫ t/B

t′=0

D2(t′)dt′ ≤
∫ t

t′=0

D1(t′)dt′ ≤
∫ t

t′=0

D2(t′)dt′, (A23)

since max f2
i ≤

∑
f2
i ≤ Bmax f2

i . Therefore, we have the following sequence of implications:

Z1 ∼ (βa)−M ⇔ D1(t) ∼ tM−1 ⇔ D2(t) ∼ tM−1 ⇔ Z2 ∼ ε2M . (A24)

As a special case, we have that if

Zanalytic = Ωd3N−3(2π)−BISO/2 exp(BβE)(aβd2)−Mz,

then

Zsquare = Ωd3N−3(2π)−BISO/2 exp(BβE)(ε/d)2Mz′.

However, the geometric parts z and z′ can be different from each other for the two potentials.

Appendix B: Calculating the partition functions

1. Numerical method to calculate the geometric
partition functions

Evaluating most of the quantities in equation (12) is
straightforward. The two quantities that are worth dis-

cussing are the integral over the singular subspace, and
the symmetry number.
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FIG. 9. Simulation results for N = 9 sticky spheres with κ ≈ 220 and ρ = 30, 40, 50, 60, 70, 80, 100, 120, and 140 interpreted
using different bond cutoffs. We show the observed frequencies of four of the 51 nonsingular clusters. The dashed line shows
the theoretically predicted frequency. Compare to Figure 3, which plots the same data for the singular cluster.

a. Integrating the exponential of a quartic

Here is how we numerically calculate∫
X

e−Q(x̃)dx̃. (B1)

If dX = 1, then we use the fact that
∫∞
−∞ e−x

4

dx =

2Γ(5/4) to write (B1) as 2Γ(5/4)(Q(v))−1/4, where v ∈
X is a unit vector.

If dX ≥ 2 we integrate (B1) numerically. While one
can derive analytic expressions for the integral, even for
a two-dimensional integral these are unwieldy [59, see
e.g. Table 2, formula for n = 2, r = 3]. Our numerical

method is as follows: form an orthogonal basis {vi}dXi=1
of X. For each direction vi, determine a value si such
that Q(sivi) ∈ [10−19, 10−16]. Then for 2 ≤ dX ≤ 4
we integrate over a box [−s1, s1] × . . . × [−sdX , sdX ] us-
ing the trapezoidal rule with equally-spaced points. For

dX = 5 we use a Monte-Carlo method where we choose
points either uniformly, or do importance sampling from
a Gaussian with standard deviation si/3 in each direc-
tion.

We use 25 points per dimension for the deterministic
integrals, which gives us an error between 10−6 and 10−7.
We test this using Matlab’s built-in function integral,
which has a default accuracy of about that amount. For
the single integral with dX = 5 we use 106 points, so
the error is expected to be about 10−3. Using the trape-
zoidal rule we obtain excellent accuracy with very few
points. For smooth periodic functions the trapezoidal
rule achieves exponential convergence once enough dis-
cretization nodes are used so as to sample at the Nyquist
rate. For non-periodic functions, the error is dominated
by the derivatives of the integrand at its endpoints, and
achieves at least second-order convergence [62].
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FIG. 10. Predicted vs. observed frequencies for the 52 dif-
ferent rigid cluster geometries for N = 9 sticky spheres with
κ ≈ 220 and ρ = 120, using a cutoff of 1 + 1/ρ.

b. Symmetry numbers

The symmetry number accounts for the total number
of distinct copies of each cluster obtained by permuting
the labeling of the spheres. In our case we count two
clusters as “distinct” if there is no rotation that maps
the labeled spheres of one cluster to the spheres with the
same labels in the other cluster.

The total number of copies of a rigid cluster of N
spheres (including enantiomers) is

2N !

ak
, (B2)

where ak is the total number of permutations that map an
adjacency matrix to itself and also preserve all the pair-
wise distances. The symmetry number for this method of
counting is σ = ak. We calculate ak by first computing
the automorphism group of the adjacency matrix using
the function allgroup3 in the program nauty [63]. For
each element in the automorphism group, we apply the
corresponding permutation to the particles and check if
the pairwise distance matrix is preserved. If so, we in-
crease ak by 1. We have to check the pairwise distances,
because a permutation that preserves the adjacency ma-
trix can yield a cluster that is distinct from the original.
For example, consider a large octahedral shell, made of
triangles glued together. Pick one triangle, and attach
two spheres to it, one above and one below the trian-
gle, to form a bipyramid. There is an automorphism of
the adjacency matrix, namely switching the two spheres,
that does not correspond to a rotation or a reflection.

2. Simulation method

We performed Metropolis Monte Carlo simulations for
N = 9 spheres interacting via a Morse-Harmonic poten-
tial with range parameter ρ of the form

V (r) =

{
ρ2(r − 1)2 − 1 r ≤ 1
exp(−ρ(r − 1))[exp(−ρ(r − 1))− 2] r > 1

(B3)
We replaced the Morse potential with a spring potential
for r < 1 for numerical stability reasons. The entire
matched potential is continuous with continuous first and
second derivatives. We use a periodic simulation cell of
size 6× 6× 6.

Let r(t) be the coordinates sampled from the Monte
Carlo trajectory at time t. We construct an adjacency
matrix such that aij(t) = 1 if rij < rcutoff and aij = 0
otherwise. We set bk(t) = 1 for the cluster 1 ≤ k ≤ 52
(if any) whose adjacency matrix Ak is isomorphic to A(t)
and bk(t) = 0 for all others. The frequency of cluster k is

Pk = 〈bk〉/
∑52
k′=1〈bk′〉. We also measure the correlation

function Ck(τ) = 〈bk(t)bk(t + τ)〉/〈bk〉2. The estimated
error for Pk is ∆Pk/Pk = (〈bk〉T/τk)−1/2, where T is the
length of the simulation and τk is the correlation time,
which we estimate as τk =

∑∞
τ=0 Ck(τ).

In the main text, we focus on the observed and pre-
dicted frequencies of the singular cluster. For complete-
ness, we show in Figure 9 and Figure 10 some of the
results for the nonsingular clusters. Figure 9 shows that
the difficulty of identifying a cluster for larger values of
the range parameter, occurs just as much for regular clus-
ters as for singular ones.

3. Scaling Laws

Figure 11 shows the same scaling laws as Figure 7, but
for smaller N .

Figure 12 shows the mean inverse symmetry number
s̄∆B = 1

n∆B

∑
σ−1 for regular clusters with a given ∆B,

and the mean moment of inertia factor Ī∆B = 1
n∆B

∑
I.

The mean inverse symmetry number does not follow an
exponential scaling law. The mean moment of inertia
does, but the slope is tiny. This demonstrates that nei-
ther the symmetry number, nor the moment of inertia,
are important factors in determining why z̄∆B follows an
exponential scaling.

4. Bond-orientational order parameter

Given a cluster r, with bonds E =
{(i1, j1), . . . , (iB , jB)}, we define the bond-orientational
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FIG. 11. Scaling laws for N = 10− 14. Same labeling as Figure 7.

order parameter Ql as follows:

ql,m =
1

B

∑
(i,j)∈E

Yl,m(rij/d)

Ql =

(
1

2l + 1

l∑
m=−l

q2
l,m

)1/2

,

(B4)

where Yl,m(u), m = −l, . . . , l, is a basis for the
spherical harmonics of degree l normalized such that∫
S2 Yl,m(u)2du = 4π.
The value of the bond-orientational order parameter

Q6 for a large fragment of the face-centered cubic lattice
approaches the value 0.575 (the limit is 0.485 for the
hexagonal close-packed lattice). On the other hand, if
the bond directions are drawn randomly from a uniform
measure on the sphere, the order parameter will tend to
zero.
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FIG. 12. Mean symmetry number 1/σ and mean moment of inertia factor |I|1/2 for regular clusters as a function of ∆B, for
each N = 10− 21. The dashed line is the best-fit line with best-fit slope shown beside it. Vertical axis is a logarithmic scale.
This shows that neither factor contributes strongly to the exponential scaling of z∆B .



21

Appendix C: Values of the geometric partition functions

The following tables give the values of z∆B,dX for each value of N . Each value is shown to 3 significant digits (if
fewer are shown, it is because the trailing significant digits are zero.)

a. N = 6
dX \ ∆B 0

0 0.0501

b. N = 7
dX \ ∆B 0

0 0.222

c. N = 8
dX \ ∆B 0

0 1.22

d. N = 9

dX \ ∆B 0

0 7.88
1 0.0335

e. N = 10

dX \ ∆B -1 0 1

0 . 57.1 0.0362
1 . 0.427 .
2 0.27 . .

f. N = 11

dX \ ∆B -2 -1 0 1 2

0 . . 456 0.701 0.00328
1 . . 4.05 0.0111 .
2 . 5.37 . . .
3 0.771 . . . .

g. N = 12

dX \ ∆B -2 -1 0 1 2 3

0 . . 4.06e+03 9.24 0.0898 0.000501
1 . . 35.8 0.225 . .
2 . 59.5 0.158 . . .
3 9.5 . . . . .

h. N = 13

dX \ ∆B -2 -1 0 1 2 3

0 . . 4.06e+04 101 1.65 0.0176
1 . . 345 2.7 0.00517 0.000482
2 . 604 2.07 . . .
3 90.9 0.5 . . . .
4 0.221 . . . . .

i. N = 14

dX \ ∆B -3 -2 -1 0 1 2 3 4

0 . . . 4.56e+05 1.04e+03 22 0.417 0.0037
1 . . . 3.71e+03 29.8 0.0791 0.00488 .
2 . . 6.41e+03 21.7 . . . .
3 . 918 11.7 . . . . .
4 . 8.25 . . . . . .
5 0.968 . . . . . . .

j. N = 15

dX \ ∆B 2 3 4 5

0 250 6.64 0.112 0.00163
1 1.17 0.0471 . .
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k. N = 16

dX \ ∆B 3 4 5 6

0 87.8 2.14 0.0458 0.000727
1 0.611 . . .

l. N = 17

dX \ ∆B 4 5 6 7

0 33 0.898 0.0223 0.000257
1 0.0304 . . .

m. N = 18

dX \ ∆B 5 6 7 8

0 14.7 0.462 0.00989 8.38e-05
1 0.012 . . .

n. N = 19

dX \ ∆B 6 7 8 9

0 7.8 0.24 0.00408 3.39e-05
1 0.0107 . . .

o. N = 20

dX \ ∆B 7 8 9 10

0 4.44 0.121 0.00203 1.23e-05
1 0.0077 . . .

p. N = 21

dX \ ∆B 8 9 10 11

0 2.5 0.696 0.00106 5.08e-06
1 0.00421 . . .


