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Abstract

Gradient-driven diffusion in crowded, multicomponent mixtures is a topic of high interest because

of its role in biological processes such as transport in cell membranes. In partially phase-separated

solutions, gradient-driven diffusion affects microstructure, which in turn affects diffusivity; a key

question is how this complex coupling controls both transport and pattern formation. To examine

these mechanisms, we study a two-dimensional multi-component lattice gas model, where “tracer”

molecules diffuse between a source and a sink separated by a solution of sticky “crowder” molecules

that cluster to form dynamically evolving obstacles. In the high temperature limit, crowders and

tracers are miscible and transport may be predicted analytically. At intermediate temperatures,

crowders phase separate into clusters that drift toward the tracer sink. As a result, steady-state

tracer diffusivity depends non-monotonically on both temperature and crowder density and we

observe a variety of complex microstructures. In the low temperature limit, crowders rapidly

aggregate to form obstacles that are kinetically arrested; if crowder density is near the percolation

threshold, resulting tracer diffusivity shows scaling behavior with the same scaling exponent as the

random resistor network model. Though highly idealized, this simple model reveals fundamental

mechanisms governing coupled gradient-driven diffusion, phase separation, and microstructural

evolution in crowded solutions.
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INTRODUCTION

Diffusion, aggregation, and coarsening in multi-component mixtures leads to a rich va-

riety of morphologies in complex fluids [1]. In crowded environments, diffusive transport

under a driving force often gives rise to complex pattern formation including striped struc-

tures [2]. Molecular diffusion in a crowded mixture containing multiple components affects

both chemical reaction kinetics and pattern formation [3, 4]. Diffusion in crowded envi-

ronments often plays a key role in transport within cell membranes [5, 6], and in solutions

and cells [7]. Brownian motion is often observed in cellular environments such as bacterial

cytoplasm [8], and other crowded biological environments [9]. For large macromolecules, the

dominant transport behavior in such environments is diffusive in nature [8, 10, 11].

In a multi-component mixture, diffusivity of each molecular species depends on the den-

sity of all components present, interaction energy, and microstructure, that is, pattern for-

mation during phase separation. Thus, diffusive transport and microstructure co-evolve and

are coupled in general. Many multi-component simulation studies consider randomly dis-

tributed immobile crowders (obstacles) while tracers are allowed to diffuse [12, 13]. Recent

modelling efforts investigated the effect of obstacle size [14], and the effects of attractive or

repulsive interactions between tracers and immobile crowders [15]. In this paper, we con-

sider a system where both tracers and crowders are allowed to diffuse, and where crowders

have attractive interactions and may undergo phase separation to form dynamically evolving

mobile obstacles.

Diffusive transport in crowded environments has been extensively investigated using a

diverse range of simulation techniques, analytic models, as well as experiments [16–36].

In the recent years, several distinct simulation models have given particular emphasis on

modeling anomalous diffusion processes in crowded medium. Of these, on-lattice simulation

models [12, 37–44] summarize the different regimes for anomalous diffusion and how the

system evolves to the stationary state. Off-lattice simulation models also have been proposed

to describe anomalous diffusion in crowded media via Brownian Dynamics [45] as well as by

taking into account hydrodynamic interactions [46, 47]. The effect of mobile obstacles on

Brownian diffusion was recently investigated by Berry and Chaté [48], demonstrating that

the nature of obstacle diffusion determines whether tracer motion is diffusive or sub-diffusive.

Recent simulation studies have investigated the effect of bimolecular chemical reactions in
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confined environments in the presence of crowding species in solution [49]. The resulting

reaction rate shows sensitive dependence on density of the crowding species. The effect of

macromolecular crowding on the collapse of biopolymers has very recently been investigated

and scaling laws have been proposed [50].

In this paper, we examine the coupling of multi-species diffusive transport, phase separa-

tion, and pattern formation using the multi-component lattice gas model in two dimensions.

The driving force for diffusion is provided by an applied density gradient, with boundary

conditions on the density of a “tracer” species at the two edges of the cell, rather than by

a constant external driving force as in related models [2]. Tracers diffuse through a solvent

with a prescribed density of “crowder” species. Our model demonstrates that the resulting

tracer flux and crowder microstructure both depend sensitively on crowder density, interac-

tion strength, and temperature. This model could describe, for example, recent experiments

by Gericke and coworkers [51], where a composition gradient in a lipid membrane is main-

tained using microfluidic methods, and the resulting lipid composition profile changes when

crowder proteins are introduced. While this highly idealized model presented in this paper

does not take into account hydrodynamic effects or detailed molecular scale interactions, it

reveals several key fundamental mechanisms by which microstructural evolution and diffu-

sive transport may mutually interact.

MODEL

We perform Monte Carlo (MC) simulations of a two-dimensional lattice gas model

with two diffusing species, “tracers”, and “crowders”. The system Hamiltonian is H =∑
i, j

U
(
si, sj

)
, where the sum is over nearest neighbor pairs and si = 1, 2, 3 refer to vacancy,

tracer, and crowder particle types, respectively. At most one particle may occupy each

lattice site, and vacancies are reminiscent of background solvent. Crowders have attractive

nearest neighbor interaction energy U(3, 3) = −Jint, and can thus undergo phase separation

as a function of temperature and density. All other interactions are excluded volume only,

with U(1, 1) = U(1, 2) = U(1, 3) = U(2, 1) = U(2, 2) = U(2, 3) = U(3, 1) = U(3, 2) = 0.

Thus, tracers have no energetic preference to aggregate with each other or bond to crowders.

The dimensionless parameter kBTs/Jint sets the energy scale in our model, where Jint and

kBTs are independent parameters. The simulation cell is a square lattice of dimension L
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with periodic boundary conditions in the y-direction only. In the initial state, crowders are

randomly distributed throughout the simulation cell with a density ρC. We impose a density

gradient of the tracer species along the x-direction by introducing a tracer-emitting source

along the left side of the cell and a tracer-absorbing sink along the right side; that is, we

impose the boundary condition that tracer density ρT = 1 at x = 0 and ρT = 0 at x = L.

Both tracer and crowder species diffuse via nearest neighbor hops implemented via the

Metropolis algorithm [52]. The particle hopping rule implemented in this model is analogous

to a model of diffusive percolation for “blind ants” where particles hop by choosing a site

from all neighboring sites [54]. Particles may only move into a neighboring site if it is

vacant. Thus, if there are no vacancies present, the system arrests and no further diffusion

can occur. As tracers emerge from the source and are absorbed in the sink, the number of

tracers changes with time while the number of crowders remain constant. Simulations were

run for system size L = 100 for at least 2× 109 Monte Carlo steps, where each Monte Carlo

step represents one attempted move per lattice site. Each simulation time step is defined

as one attempted Monte Carlo move per lattice site. Such long simulations are necessary

to allow the system to reach steady state, even for such relatively small system sizes. We

perform ten discrete simulation runs for each point in the phase space defined by (ρC, Ts).

Simulated ensemble for each point in the phase space is constructed by averaging over the

last 10% data of each simulation to capture the steady state behavior.

We examine the interaction of diffusive transport and microstructural evolution in this

model system. We assume Fick’s law diffusion, where tracer flux (J) is calculated by counting

the number of tracer particles annihilating at the sink per unit length and per unit time;

Net tracer flux is computed by counting the rate of tracers annihilating at the sink per unit

length per unit time. We define the net diffusivity of tracers as Dnet, and define D0 as the

net diffusivity of tracers in the absence of crowders. The quantity Dnet/D0 is thus calculated

as tracer flux (with crowders) normalized by the tracer flux in the absence of crowders.

Crowder particles represent a lattice gas and at low temperature they phase separate into

clusters which gradually coarsen. The presence of tracer diffusion alters this microstructural

evolution: crowders drift toward the sink and form clusters which may be compact, elongated

in the direction of tracer flow, or flattened against the sink. Likewise, diffusive transport of

tracers is strongly affected by clustering of crowders which represent sticky mobile obstacles.

In the high temperature limit, where crowder attractive interactions can be neglected,
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tracer diffusivity as a function of crowder density can be calculated analytically as described

below. The introduction of attractive interactions for the crowder species completely changes

the system behavior. Even in this highly idealized model, the resulting tracer diffusivity can-

not be described by a simple function of temperature and crowder density but shows several

characteristic regimes. Several previous studies have focused on models of diffusion in which

diffusivity is typically reported as a function of crowder density. In our system, we apply

a gradient in tracer diffusivity, which in turn induces a gradient in crowder density. The

resulting pattern formation process governs the transport of the two species. This simpli-

fied model thus demonstrates a complex mechanism governing gradient-driven transport in

multicomponent mixtures.

RESULTS

Temporal evolution

Temporal evolution of the system is shown in Fig. 1 for scaled temperature kBTs/Jint =

0.25 at crowder density (ρC) values of 0.1, 0.2, and 0.5. Here, Ts is the simulation tem-

perature. Movies showing the time evolution of all three systems may be viewed in the

supplementary information [53].

Crowders, shown in red, initially aggregate to form clusters which coarsen, drift gradually

toward the sink, and aggregate there, as shown in Fig. 1. During the initial transient regime,

tracer flux changes in response to the evolving microstructure of mobile obstacles. Both

microstructure and tracer flux eventually reach steady state after 2× 109 Monte Carlo steps

per lattice site.

Crowder aggregates show a variety of shapes as discussed above; at higher crowder density

they tend to elongate in the direction parallel to the tracer gradient. Once the crowder

clusters reach the sink they flatten against the surface. At long times, the sink may become

fully covered with crowders. Thermal fluctuations may allow intermittent tracer diffusion

through the surface layer of crowders. However, if the system becomes filled with tracers

entirely, with no remaining vacancies, tracer diffusion drops to zero and the system remains

permanently arrested.

Fig. 2 shows an overview of the configurations of the system for a range of crowder
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FIG. 1. Simulated temporal evolution showing diffusion and pattern formation for kBTs/Jint = 0.25

at three distinct crowder densities: top row: ρC = 0.50; middle row: ρC = 0.20; bottom row:

ρC = 0.10, after 108 steps (left column), 109 steps (middle column), and 2 × 109 steps (right

column). Crowders are shown in red and tracers in black, with a tracer source on the left side and

tracer sink on the right side of the system. The two higher density systems have both arrested with

the sink entirely blocked by crowders. The lower density system (bottom row) has not arrested but

may do so at longer time scales. Movies showing time evolution of all three systems are included

in Supplementary Information [53].

densities and temperatures, after 2×109 Monte Carlo steps per lattice site. Pattern formation

depends sensitively on both crowder density and temperature. We focus on the interesting

regimes of the phase space defined by crowder density, ρC, and temperature, Ts, to gain

insight into the resulting microstructure and pattern formation.

At low temperature and low crowder density, crowders form small aggregates that do not

move much or coarsen on the time scale of the simulation. The resulting microstructure

represents a long-lived metastable state, which is reminiscent of diffusion through fixed

obstables [55]. At low temperature and high crowder density, crowders quickly aggregate

to form a maze-like metastable microstructure via spinodal decomposition [56, 57], through

which tracer particles diffuse. At high enough crowder density, the crowder aggregates

percolate and block tracer transport entirely. Diffusivity near the threshold density for
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FIG. 2. Final configurations for varying values of crowder density and temperature. The x-axis

represents crowder density (ρC) and the y-axis represents scaled temperature (kBTs/Jint). Tracers

are shown in black and crowders are shown in red.

crowder percolation shows scaling behavior as discussed below.

At low-intermediate temperatures, kBTs/Jint = 0.25, we observe an intriguing transient

behavior. Crowder aggregates form, coarsen, drift toward the sink, and flatten there. Ob-

served morphologies also include formation of elongated structures parallel to the direction

of tracer flow. At high-intermediate temperatures, kBTs/Jint = 0.5, all crowders drift imme-

diately to the sink and aggregate there, and tracer diffusion is blocked entirely.

At high temperatures, kBTs/Jint ≥ 1.0, for low crowder density, crowders aggregate to

form a layer covering the sink but remain sufficiently disordered to allow non-zero tracer

diffusion. At high crowder density, tracer diffusion is fully-blocked.
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FIG. 3. Normalized diffusivity as a function of (A) crowder density (ρC) at fixed simulation

temperatures (Ts), and as a function of (B) simulation temperature (Ts) at fixed crowder densities

(ρC). Legends show the fixed values of temperatures and crowder densities, respectively. Net tracer

flux is computed by counting the rate of tracers annihilating at the sink per unit length per unit

time. We define the net diffusivity of tracers as Dnet, and define D0 as the net diffusivity of tracers

in the absence of crowders. The quantity Dnet/D0 is thus calculated as tracer flux (with crowders)

normalized by the tracer flux in the absence of crowders.

Dependence of diffusivity on crowder density and temperature

Tracer diffusivity as a function of crowder density and temperature is shown in Fig. 3. For

crowder density below 0.3, we observe re-entrant behavior, as tracer diffusivity first drops to

zero and then rises with increasing temperature. Diffusivity as a function of crowder density

also shows complex, non-monotonic behavior.

To gain insight into these results, we consider various limits where analytic predictions

are possible.

High temperature limit: analytic solution

In the limit of very high temperature (kBTs/Jint →∞), equivalent to Jint → 0, crowders

have only excluded volume interactions. In this case, tracers and crowders are chemically
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equivalent except for their distinct boundary conditions, and the system is equivalent to a

random walk model with two types of particles, where the tracer species has a source and a

sink, and the number of crowders is fixed. In this high temperature limit, we note that our

model is equivalent to the work of Simpson et al [58], who studied a lattice-based random

walk model with two or more mobile species with the same diffusivity and only excluded

volume interactions. The setup of their model consists of partitioning the population of

a single species into subpopulations with identical diffusivity. In this limit, where tracers

and crowders are chemically equivalent, there is no phase separation and we can solve the

diffusion equation analytically. The diffusion equation for this scenario can be written as

∂(T (x) + C(x))

∂t
= D

(∂2(T (x) + C(x))

∂x2

)
(1)

where, T (x) and C(x) represent the tracer and crowder density profiles, position x goes from

0 (source) to L (sink), and D represents the self-diffusion coefficient of both species. To find

the steady-state solution of the diffusion equation, as an ansatz we consider a solution of

the form

T (x) = a0 + a1x+ a2x
2 (2)

C(x) = b0 + b1x+ b2x
2 (3)

and apply the boundary conditions T (x = 0) = 1, T (x = L) = 0, and 1
L

∫ L
0
C(x)dx = ρC

to find the coefficients {ai, bi}.

The resulting steady-state solution in the high temperature limit is

T (x) = 1− (1− 3 ρC)
x

L
− (3 ρC)

x2

L2
(4)

C(x) = (3 ρC)
x2

L2
(5)

Fig. 4 compares this analytical result with Monte Carlo simulation data in the case

Jint = 0, showing time-averaged density profiles for tracer and crowder species; analytical

and simulation results are in good agreement. Density profiles T (x) and C(x) for tracer

and crowder species, respectively, were calculated by averaging over the y direction; time

averaged over the last 10% of each simulation to capture the steady state behavior; and

averaged over 10 independent simulations, each lasting at least 2× 109 Monte Carlo steps.
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This result shows that even without attractive interactions, crowder density is depleted near

the tracer source and concentrated near the tracer sink.

Resulting steady state flux of particles of both types is calculated as J = −D d(T (x)+C(x))
dx

=

D(1 − 3 ρC). Here, D is the self-diffusion coefficient of both tracers and crowders. Since

crowders cannot exit the simulation box, this flux represents the net flow of tracers. Thus in

the high temperature limit, tracer flux, and thus net diffusivity, is proportional to (1−3 ρC).

Hence, tracer flux vanishes entirely for crowder density ρC ≥ 1/3. At such high crowder

density, after an initial transient, the sink is blocked entirely by crowders and tracer flux

drops to zero. This result is verified via Monte Carlo simulation as shown in Fig. 4(B).

Here, net diffusivity of tracers is calculated by counting the flux of tracers exiting at the

sink, per unit length and time, averaged over ten independent simulations, excluding the

initial transient before the systems have reached steady state. This quantity is normalized

by the flux in the absence of crowders. We note that in a related model of diffusion in

crowded environments, Ellery et al [15] also found threshold behavior with obstacle density

around 0.3; but as their system has immobile obstacles, this threshold behavior is driven by

a fundamentally different mechanism.

The good agreement of analytic solution and simulation data in the limit of Jint → 0

case is somewhat intriguing in the light of simple exclusion processes in non-equilibrium

statistical mechanics [59–61]. Macroscopic transport principles concerning Eq. 1 provides

an approximate description of two species competing for space [62–64]. Nevertheless, it

is reasonable to describe the system evolution in terms of macroscopic transport equation

when two species are chemically equivalent in the limit of high temperature.

Low temperature limit: scaling behavior near the percolation threshold

At low temperature, crowders quickly aggregate into clusters that are essentially immo-

bile and do not drift toward the sink on the time scale observed in our simulations. At

low crowder density, these clusters act as fixed obstacles and allow continuous tracer diffu-

sion. At higher density, crowders aggregate into an extended network that entirely blocks

tracer diffusion. Near the threshold density, we observe scaling behavior. Fig. 5 shows the

dependence of tracer flux as a function of (ρC − ρ?C) on a log-log plot, for kBTs/Jint = 0.1.

Scaling behavior is observed for ρ?C = 0.43. The diffusive flux scales as (ρC − ρ?C)α with
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FIG. 4. (A) Density profiles of tracers (red triangles), crowders (black circles) and their sum (black

squares) for the high temperature limit at a value of crowder density ρC = 0.2. Solid line represent

analytic solutions given by Eqs. 4 - 5 and their sum. (B) Normalized diffusivity as a function of

crowder density for the scenario where the exchange coefficient of interaction, Jint = 0. Squares

represent simulated data points and the solid line represent analytic solution for diffusivity.

α ≈ 4/3. Interestingly, this value of the exponent is in good agreement with the scaling

exponent for conductivity through a random resistor network model near its percolation

threshold [65–67]. Fick’s law in steady state for diffusion is equivalent to Kirchoff’s law of

conductivity through an electrical network. Hence, steady state diffusion of tracers around

randomly distributed obstacles is related to the electrical conductivity of a random resistor

network. This relationship has been previously noted and explained in the literature [68].

If the crowders were immobile and randomly distributed with no spatial correlations,

tracer flux would show scaling behavior near the critical density where open sites form

a percolating connected pathway between the source and the sink. As the percolation

threshold, pc, for the square site lattice is ≈ 0.59, we would expect scaling behavior near

ρ?C = 1−pc ≈ 0.41. Instead, we found scaling behavior near ρ?C ≈ 0.43. The slight change in

the percolation threshold is due to spatial correlations due to crowder interactions [69]. In

the low temperature limit, near the percolation threshold, random walks on a fractal should

produce anomalous diffusion [70]. By analogy with the random resistor network, we can
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FIG. 5. Time-averaged tracer flux as a function of (ρC − ρ?C) at a temperature corresponding to

kBTs/Jint = 0.1. Squares represent simulation data and the solid line is a linear fit to the simulated

data with scaling exponent α ≈ 4/3.

expect diffusive flux to scale as (ρC − ρ?C)αLd−2 [71], where L is the system size. Thus, in

two dimensions, near the percolation threshold, we do not expect the diffusivity to scale in

an interesting way with the system size.

DISCUSSION

Although the model described here is remarkably simple, the interaction of phase sepa-

ration with gradient-driven diffusion is nevertheless complex. The dependence of diffusive

tracer flux can be summarized by a single function of crowder density and temperature

only in the high temperature limit kBTs/Jint →∞, where no phase separation occurs. The

resulting diffusivity in the high temperature limit is

Dnet = D0(1− 3ρC) ; ρC < 1/3

= 0 ; ρC ≥ 1/3

 , (6)

where, D0 is the diffusivity in the absence of any crowders in the system.

In the limit of low temperature near the percolation transition, the system shows scaling

behavior where we find the following dependence of diffusivity on crowder density:

Dnet = D0 (ρC − ρ?C)4/3 ; ρC < ρ?C

= 0 ; ρC ≥ ρ?C

 , (7)

where, ρ?C = 1 − pc = 0.43, is the critical crowder density above which tracer diffusivity

drops to zero.
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When a multi-component mixture phase separates in the presence of gradient-driven

diffusion, the resulting tracer flux depends on the evolving microstructure and in turn in-

fluences microstructural evolution. Although the multi-species lattice gas model presented

in this work is highly idealized, it demonstrates this key mechanism. Intracellular transport

in complex biological media involves more complex interactions than a lattice gas model

can represent. In a recent study involving diffusive motion of particles in an environment

of spherical crowders, a non-monotonic dependence of the diffusion rate on the strength of

crowder-diffuser attraction was observed [72]. Relevant experimental studies also include

diffusion in a lipid mixture monolayer at the air-water interface [51], such as in a Langmuir

trough [73], where lipid raft formation, may for instance, inhibit gradient-driven diffusion of

other molecular species. In the simplified and highly idealized model presented in this paper,

we assume that isolated “tracers” and “crowders” have the same radius and self-diffusion

coefficient. In experimental systems, two chemical species may of course have completely

different properties. Likewise, we have neglected the possibility of attractive or repulsive

interactions between tracers and crowders, and the potential role of hydrodynamic inter-

actions, that is, the scenario in an off-lattice model. We plan to address these interesting

avenues in future work.
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