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We describe a general method to model multicomponent ordered crystals using the phase-field
crystal (PFC) formalism. As a test case, a generic B2 compound is investigated. We are able to
produce a line of either first-order or second-order order-disorder phase transitions, features that
have not been incorporated in existing PFC approaches. Further, it is found that the only elastic
constant for B2 that depends on ordering is C11. This B2 model was then used to study antiphase
boundaries (APBs). The APBs were shown to reproduce classical mean field results. Dynamical
simulations of ordering across small-angle grain boundaries predict that dislocation cores pin the
evolution of APBs.
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I. INTRODUCTION

A fundamental problem in science is understanding
multiscale phenomena. As a result of decades of research,
molecular dynamics (MD) is now powerful enough to ac-
curately predict the structure of quickly folding proteins
[1] and faceting at asymmetrical grain boundaries [2] with
atomic resolution. However, MD is fundamentally con-
strained by the fastest vibrational frequency of the sys-
tem, so time scales beyond a microsecond are normally
inaccessible. Unfortunately, most interesting phenomena
in materials science occur over much longer time scales.

On the other extreme, phase field (PF) methods are
able to capture mesoscale phenomena. PF theory is
based on a free energy of the system that is a functional
of the various order parameters, statistically averaging of
short time and length scales, and as a result permits sim-
ulation of much longer times and distances [3]. However,
this spatial averaging results in the loss of atomic features
such as grain boundary and dislocation structure.

The phase field crystal (PFC) method operates in be-
tween these two regimes. Like traditional PF models,
PFC theory involves a free energy functional, and it av-
erages over rapid fluctuations in time to give a time scale
of evolution on the order of diffusion rather than atomic
vibration. However, unlike traditional PF, the free en-
ergy does not average over atomic distances, resulting in
pattern formation at equilibrium. The simplest such free
energy was inspired by the Swift-Hohenberg equation [4],

F =

∫

V

{

φ

2

[

− ε+ (1 + ∇2)2
]

φ+
φ4

4

}

dr , (1)

where φ is interpreted as the nondimensional atomic den-
sity. Although originally phenomenologically motivated,

∗ p-voorhees@northwestern.edu

PFC can be derived as a crude approximation of classical
density functional theory [5]. The simple PFC model in
Eq. 1 gives accurate descriptions of elasticity: it repro-
duces both Read and Shockley grain boundary energies
and Matthews and Blakeslee misfit dislocation behavior
during epitaxy [4]. Further, this model with minor mod-
ifications has been quantitatively fit to BCC iron [6, 7].

Unfortunately, Eq. 1 can only produce stripes, rods,
and BCC for small ε [8]. Consequently, there has been
significant effort to adapt the free energy to reproduce
other types of crystal symmetries including FCC, HCP,
simple cubic, diamond cubic, and honeycomb [9–13] and
to model binary and ternary alloys [5, 14–17]. Models
have also been created to include vapor phases [18, 19],
and electromagnetic effects [20, 21].

Current models, however, are unable to describe any
structures with sublattice ordering, even structures as
simple as the B2 CsCl structure, despite these structures
making up a significant fraction of actual compounds of
experimental interest. Interesting B2 compounds include
the highly ductile rare earth intermetalics (YAg, YCu,
DyCu) [22] and metal aluminides with high temperature
structural stability (FeAl, CoAl, NiAl) [23]. The vast
majority of so-called two-dimensional materials beyond
graphene such as BN and MoS2 also all fall under the gen-
eral category of ordered crystals [24]. In order to study
chemical vapor deposition growth, grain structure, grain
boundary mobility, and elastoplasticity for these com-
pounds under the PFC methodology, existing models do
not suffice.

Further, because nearly all existing PFC models focus
on solid-liquid coexistence, the only example of a second-
order transition line in PFC theory is Seymour et al.’s
paramagnetic to ferromagnetic transition [21]. However,
order-disordered transitions can be both first-order, for
example Cu3Au (L12) and DyCu (B2) [25], or second-
order, for example CuZn (B2) and Fe3Al (D03) [26].
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Second-order transitions are interesting as not only do
they exhibit their namesake discontinuity in the second
derivative of the free energy, they also do not form wet-
ted domain boundaries, but instead exhibit correlation
lengths between antiphase boundaries (APBs) that di-
verge as the phase boundary is approached [27].

This paper develops an equimolar binary PFC model
that allows for sublattice ordering and that can be used
to model a wide class of compounds. Section II derives
the model directly from classical density functional the-
ory, describes the general procedure for modeling any
compound of interest, and implements a more appropri-
ate temperature dependence of the Debye-Waller factor
than used in the original structural PFC (XPFC) mod-
els [9, 10]. Section III examines the analytical behavior,
elasticity, and numerical phase diagram for the specific
case of a B2 compound. Section IV applies this B2 model
to the study of antiphase boundaries and their dynamical
interactions with grain boundaries.

II. ORDERED BINARY PFC MODEL

A. Derivation from CDFT

Classical density-functional theory postulates that the
free energy of a system is a functional of its density. Fol-
lowing the method of derivation by Huang [28], if we ex-
pand the Helmholtz free energy around a constant state
(i.e., liquid) to second order then

F [ρA(r)] ≃ F [ρA0] +

∫

V

δF [ρA]

δρA(r)

∣

∣

∣

∣

ρA=ρA0

∆ρA(r)dr+

1

2!

∫

V

∫

V1

δ2F [ρA]

δρA(r)δρA(r1)

∣

∣

∣

∣

ρA=ρA0

∆ρA(r)∆ρA(r1)dr1dr,

(2)

where ρA is the density, ρA0 is the reference density, and
∆ρA = ρA − ρA0. In all analysis that follows, constants
in energy will be ignored because they do not affect be-
havior. The first variation in Eq. 2 does not depend on
interactions and is consequently just the entropic ideal
free energy. The second term has been identified with the
isotropic two-particle direct correlation function by the
classical density-functional theory of freezing [29]. With
these changes, the modified one component free energy
is

F [ρA] =

∫

V

(

ρA ln
ρA
ρA0

− ∆ρA − 1

2
∆ρAC

(2)
AA ∗ ∆ρA

)

dr

(3)

where C
(2)
AA ∗ ∆ρA =

∫

V1
C

(2)
AA(|r1 − r|)∆ρA(r1)dr1 and

C
(2)
AA is the two-particle correlation function. For the case

of a two component system,

F = FA + FB − kT

∫

∆ρAC
(2)
AB ∗ ∆ρBdr (4)

since C
(2)
AB = C

(2)
BA, where C

(2)
AB is a partial correlation

function between A and B [5].
Performing the substitutions ρ = ρA + ρB, c = ρA/ρ,

and ρ0 = ρA0 + ρB0 results in

F = kT

∫
{

ρ ln
ρ

ρ0
− (ρ− ρ0)−

1

2
ρ
[

cC
(2)
AAc+ (1 − c)C

(2)
BB(1 − c) + 2cC

(2)
AB(1 − c)

]

ρ+

ρ
[

(1 − c) ln(1 − c) + c ln c
]

+ ρc

[

(C
(2)
AA − C

(2)
AB)ρA0 + (C

(2)
AB − C

(2)
BB)ρB0 + ln

ρB0

ρA0

]

}

dr

(5)

as in [30], where
∫

φ1C
(2) ∗φ2dr =

∫

φ2C
(2) ∗φ1dr is writ-

ten as
∫

φ1C
(2)φ2dr for brevity. For an AB compound,

using the following substitutions, [28]

1. ψ = 2c− 1 = ρA−ρB
ρA+ρB

2. n = ρ−ρ0

ρ0

3. ∆C = ρ0

4 (C
(2)
AA + C

(2)
BB − 2C

(2)
AB)

4. δC = ρ0

4 (C
(2)
AA − C

(2)
BB)

5. C = ρ0

4 (C
(2)
AA + C

(2)
BB + 2C

(2)
AB)

expanding n and ψ to fourth order, and ignoring linear
terms as is customary [5] results in

F = kTρ0

∫

V

{

n

2

[

1 − (C + 2δCψ + ψ∆Cψ)
]

n− 1

6
n3+

1

12
n4 +

1

2
ψ

[

ln
ρB0

ρA0
+

2∆C

ρ0
(ρA0 − ρB0)

]

(n+ 1)+

1

2
ψ(1 − ∆C)ψ +

1

12
ψ4 − nδCψ − nψ∆Cψ +

1

2
nψ2

}

dr.

(6)

As is typical in PFC models, n is interpreted as the nor-
malized atomic density and ψ as the normalized differ-
ence in composition. Because the ψ expansion is per-
formed around ψ = 0, this model is only appropriate
for systems where c ≃ 1/2. Of course, a more general
model could be derived by expanding around a generic
concentration, at the cost of increased complexity. In
the random binary alloy case, ψ is assumed to vary on
a length scale much larger than the atomic unit cell. In
this limit, Eq. 6 reduces to the free energy of the binary
alloy [30]. However, drawing inspiration from the theory
of concentration waves, our model regards ψ as a field
that specifies the chemical identity of atoms inside a unit
cell [31].

Two additional simplifying assumptions are now made
in order to make Eq. 6 more tractable. First, the fourth-
order convolution term, nψ∆Cnψ, is neglected for nu-

merical ease. Second, it is assumed that C
(2)
AA = C

(2)
BB
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and ρA0 = ρB0. This assumption treats pure A and B as
equivalent and yields a phase diagram that is symmetric
about a 50-50 stoichiometry. Using these two assump-
tions, Eq. 6 simplifies to

F = kTρ0

∫

V

[

1

2
n2 − 1

6
n3 +

1

12
n4 − 1

2
nCn+

1

2
ψ2+

1

12
ψ4 − 1

2
ψ∆Cψ +

1

2
nψ2 − nψ∆Cψ

]

dr.

(7)

In a situation where the effect of the ordering on the free
energy is considered minor in comparison to the overall
crystal structure, we phenomenologically add a factor of
ǫ to all terms that involve ordering,

F̃ =

∫

V

[

1

2
n2 − 1

6
n3 +

1

12
n4 − 1

2
nCn+

ǫ
(1

2
ψ2 +

1

12
ψ4 − 1

2
ψ∆Cψ +

1

2
nψ2 − nψ∆Cψ

)

]

dr

(8)

where F̃ = F/(kTρ0). This ǫ factor will be further ex-
plained in sec. III.

As noted by others [28, 30], although PFC equations
are derived from CDFT, the approximation is poor. Al-
though originally the isotropic correlation functions such

as C
(2)
AA were identified with the correlation functions for

liquids at their melting point (which are experimentally
measurable), it was soon realized that it was nearly im-
possible for these correlation functions to stabilize crystal
structures other than BCC. This is because upon nondi-
mensionalization, all liquid correlation functions practi-
cally collapse to a single curve [32]. Consequently, ansatz
correlation functions were quickly adopted [9], and the
current method of interpreting equations derived like Eq.
8 is that they are inspired by CDFT but are ultimately
phenomenological in origin.

B. Correlation Function Determination

In order to construct ∆C and C, we adapt a methodol-
ogy similar to Greenwood et al. by considering their form
in Fourier space [10]. In this section, we demonstrate a
method to determine where the peaks of the correlation
function in Fourier space should be for a given target
structure.

In the case of a bulk crystal, we can exactly express the
density as a Fourier series over all the reciprocal lattice
vectors, namely

ρA = ρ̄A +
∑

k

AA(k)eik·r . (9)

In the limit where ρA consists of delta functions weighted
by fA at each atomic position, then orthogonality gives
easily calculable values for the amplitudes in terms of

structure factors, namely

AA(k) =
fA
V

∑

j∈cell

e−ik·rj =
1

V
SA(k) (10)

where V is the volume of the unit cell, j indexes through
all atoms in the unit cell, and SA ≡ fA

∑

e−ik·rj is the
structure factor of A, consistent with the definition by
Cullity and Kittel [33, 34] (this definition is not universal
[35, 36]). Fourier expanding n and ψ using the same
reciprocal lattice vectors as A and B results in

An =
1

ρ0
(AA +AB) (11)

and

Aψ ≃ 1

ρ0
(AA −AB), (12)

where the approximation ρA(r) + ρB(r) ≃ ρ0 (equivalent
to assuming n(r) is small) is used for deriving the latter
expression.

Because the exact values calculated from Eq. 11 and
Eq. 12 depend on the delta function assumption, these
values will never occur in the numerical model. What
is more important than the exact value calculated is
whether the amplitude for a given k value is zero or
nonzero, since the free energy is only affected by the value
of the correlation function at k values when the ampli-
tude for that same k is nonzero. This is because after
Fourier expanding n,

∫

V

nCndr = V
∑

k

|An(k)|2Ĉ(|k|), (13)

where the hat denotes the Fourier transform. Since the
amplitude for each individual component is proportional
to its structure factor, we define Sn ≡ SA + SB and
Sψ ≡ SA−SB, and we expect the underlying symmetries
of these “structure factors” to preserve the symmetries
in the amplitudes as is the case for experimental struc-
ture factors [33]. In order to calculate Sn and Sψ, the
simplifying assumption that fA = fB = f is employed,
consistent with assuming ρA0 = ρB0.

As an example, let us calculate the peak locations for
the B2 system explicitly (Fig. 1). Practically, the re-
lation ∆φ(k) = k · x0 is helpful, where ∆φ(k) is the
change in phase in the structure factor as a result of
moving the origin of the coordinate system by x0. De-
noting k = hb1 +kb2 + lb3, where bi is the ith reciprocal
lattice vector, then

SA = f for all h, k, l (14)

SB =

{

f if h+ k + l = 2m

−f if h+ k + l = 2m+ 1
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and

Sn = 2f if h+ k + l = 2m and

Sψ = 2f if h+ k + l = 2m+ 1
(15)

where m is an integer. Thus, the only k that are non-zero
are

n : 2π
a {110}, 2π

a {200}, 2π
a {211}, ... (16)

ψ : 2π
a {100}, 2π

a {111}, 2π
a {210}, ... (17)

where {} denotes a family of reciprocal lattice vectors
created by the permutation of the internal elements (for
example, {110} includes 12 vectors: x̂ + ŷ, x̂ − ŷ, x̂+ ẑ,
...). The structure factor (Eq. 15) for n is consistent
with the missing reflections for a BCC lattice. Because
the first nonzero k for n has magnitude 2π

√
2/a, and the

first nonzero k for ψ has magnitude 2π/a, the ratio of the
first peak in C in reciprocal space to the first in ∆C must
be

√
2. This same procedure can be easily performed to

construct correlation functions for other 50-50 stoichiom-
etry compounds, with the results for the locations of the
first three peaks for n and ψ for various compounds listed
in Table I. All compounds listed in Table I can pro-
duce (at least) metastable structures using at most three
peaks. However, many, such as B2, can exist with fewer,
with the exact stability regimes depending on parameter
choices. The model can be extended to other compounds
without 50-50 stoichiometry through this same method,
but as explained in sec. II A, rigorously the free energy
should also be derived with that additional complication
— an extension left for future work. Although the val-
ues of the correlation function at specific |k| values are
the only quantities that determine equilibrium structure,
the exact functional form of the correlation function is
important for properties such as elastic constants, defect
structures, and dynamics.

C. XPFC Model

In this study, the XPFC formalism was employed [9,
10]. In the case of a single peak for n and ψ,

Ĉ = Bxe
−T/Tne

−
(k−kn)2

2α2
n and ∆Ĉ = Dxe

−T/Tψe
−

(k−kψ)2

2α2
ψ ,
(18)

where k ≡ |k|, Bx and Dx are phenomenological con-
stants, T is a temperature-like parameter, Tn controls
the solid-liquid transition temperature, and Tψ controls
the ordering temperature. The one-peak XPFC model
has the advantage compared to polynomial PFC models
in that the former does not exhibit significant changes in
the equilibrium lattice constant with changes in average
density or temperature, simplifying phase diagram con-
struction. In polynomial PFC models, such as Eq. 1, the
equilibrium lattice constant is determined by a competi-
tion between the energies of the primary frequency and

FIG. 1. Structure for a B2 crystal. The origin used for cal-
culating the structure factor is at the center of a dark blue
(black) atom.

the higher order harmonics; the primary frequency en-
ergy is minimized by a lattice constant that corresponds
to the extremum of the correlation function while the
higher frequencies decrease in energy by increasing the
lattice constant [37]. However, the correlation function
in XPFC quickly goes to zero for large k. Consequently,
changing the lattice constant only negligibly affects the
energetic contributions of higher frequency modes, and so
the lattice constant is chosen purely so that the primary
frequency of the structure coincides with the correlation
function’s maximum. Because the peak location in the
correlation function is independent of temperature and
composition, the lattice constant is not affected by these
parameters.

This particular computational advantage of XPFC
comes at the price of a less accurate one mode approxima-
tion however. Because polynomial correlation functions
diverge for large k, their correlation functions strongly
penalize higher order harmonics, resulting in free ener-
gies dominated by only the primary frequency [5, 12, 38].
In contrast, the XPFC correlation function is 0 for large
k, rather than negative, so higher order harmonics play
a larger role.

Unlike that shown in Eq. 18, previous XPFC mod-
els have assumed that the temperature is proportional
to σ, using a temperature factor exp(σ2/σ2

M ), equiv-

alent to treating
√
T as the temperature in Eq. 18

[9, 10, 15, 16, 39]. However, this relation is inconsistent
with the usual temperature dependence of the Debye-
Waller factor observed in diffraction experiments. When
temperatures are much higher than the Debye tempera-
ture of the crystal, which is the case for PFC models [33],
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TABLE I. Table of peak locations, |k|i ≡ ki, for the n and ψ correlation functions in reciprocal space for various crystal
structures. The ki values for each structure were calculated using a square/cubic unit cell with side lengths of 2π, except
p3m1 whose calculation was performed using a rectangular unit cell with dimensions 2π × 2

√
3π. Because the calculations are

performed on nonprimitive unit cells for convenience, the total atoms per cell are listed in order to uniquely identify the unit
cell geometry.

Space Group Example Atoms/Cell kn kψ

p4gm {100} plane of NaCl 4 2,
√

8, 4
√

2,
√

10,
√

18

p3m1 2d h-BN 4 2/
√

3, 2, 4/
√

3 2/
√

3, 4/
√

3,
√

28/3

Pm3̄m (B2) CuZn 2
√

2, 2,
√

6 1,
√

3,
√

5

Fd3̄m (B32) NaTl 16
√

8, 4,
√

24
√

3,
√

11,
√

19

P4/mmm (L10) CuAu 4
√

3, 2,
√

8 1,
√

2,
√

5

the atomic structure factor can be approximated as [34]

f = f0e
−T/T0 . (19)

Assuming Ĉ(k) ∝ fν , meaning the correlation function
peak height scales with the atomic structure factor to
some power, then in the case T << T0, Ĉ(k) decreases
linearly with T . Note that this is exactly the temperature
dependence of the correlation function in PFC models
with polynomial correlation functions and is consistent
with the linear temperature dependence of the quadratic
term in Landau models. For example, in Eq. 1, ε is
considered the variable proportional to the temperature,
and it decreases the effective correlation function linearly.
Because the original XPFC model goes as exp(σ2/σ2

M ),
in the limit σ << σM the correlation function decreases
quadratically with σ. Although understanding that in
the original XPFC terminology σ2 is the temperature
parameter rather than σ does not matter when fitting
data at a particular temperature, nor does it matter when
calculating the shape of phase diagrams qualitatively, it
does affect the values of critical exponents (see sec. IV).

III. B2 ORDERING

In the remainder of this paper, three B2 models based
on Eq. 8 will be examined. The first model considers the
limit ǫ → 0 in Eq. 8. Namely, the density field is consid-
ered completely independent of the composition field, but
the composition field is dependent on the density field.
This assumption is analytically equivalent to separating
the free energy into two separate equations,

Fn =

∫

V

[

1

2
n2 − 1

6
n3 +

1

12
n4 − 1

2
nCn

]

dr (20)

and Fψ =

∫

V

[

1

2
ψ2 +

1

12
ψ4 − 1

2
ψ∆Cψ+

1

2
nψ2 − nψ∆Cψ

]

dr

with F̃ = Fn + ǫFψ. For dynamical behavior, evolution
follows the typical simplified conserved Cahn-Hilliard

equations [5]

∂n

∂t
= Mn∇2 δFn

δn
(21)

∂ψ

∂t
= Mψ∇2 δFψ

δψ
. (22)

This approach, which we will call the “uncoupled” case, is
both computationally cheaper compared to the “coupled”
case (i.e. nonzero ǫ) and is also significantly simpler with
respect to phase diagram construction because the n field
in isolation has already been described by the original
XPFC papers [9, 10].

Similar to the uncoupled model is the “weakly coupled”
model, which uses a finite ǫ << 1. For simplicity, the evo-
lution equations for the coupled case simply replaces Fn
and Fψ with F̃ rather than the rigorously derived evolu-
tion equations described by Jugdutt [40] although both
methods result in the same equilibrium states. Assum-
ing ǫ << 1 is physically reasonable because the energy
associated with order-disorder transitions is significantly
less than that for atomic rearrangements. For example,
in the FeAl system at 0 K, the free energies of ordered B2
and disordered A2 structures are within 0.001 eV/atom
of each other [41, 42]. In contrast, Bh, the FeAl ordered
structure with the next lowest energy, is 0.125 eV/atom
higher in energy [41]. Both the weakly coupled and un-
coupled models result in phase diagrams with a line of
second-order transitions.

The last model, the “strongly coupled” case, considers
when ǫ = 1, or equivalently Eq. 7. In this case, there
are very different n fields in the B2 versus A2 (disor-
dered) phases, giving rise to first-order transitions. Fur-
ther, because this model strongly couples the n and ψ
fields, a disordered hexagonal rod phase is in competition
with the B2 and A2 phases. For all parameter regimes
tested with a single peak, B2-hexagonal rod coexistence
occurred rather than B2-A2 coexistence. Consequently,
an additional k = 0 peak was added to ∆C in order to
preferentially stabilize the A2 phase over the hexagonal
rod phase. Namely,

∆Ĉ = D0e
− k2

2α2
ψ +Dxe

−T/Tψe
−

(k−kψ)2

2α2
ψ , (23)

where D0 was phenomenologically chosen.
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A. Analytic Phase Diagram

Because the structure factors for n and ψ for the B2
system (Eq. 15) are real and only dependent on |k|, a
one mode approximation for n and ψ is

n = n̄+An
∑

j∈{110}

eikj·r and ψ = ψ̄ +Aψ
∑

j∈{100}

eikj ·r,

(24)

where, ~kj = 2π
a (h, k, l), An and Aψ are constant real

numbers, and Aψ is the system’s order parameter. Sub-
stituting equations 18 and 24 into Eq. 20 and integrating
with the equilibrium lattice parameter results in

Fn = 6n̄2A2
n + 16n̄A3

n − 6n̄A2
n +

n̄4

12
− n̄3

6
+
n̄2

2

+ 6A2
n(1 −Bxe

− T
Tn ) + 45A4

n − 8A3
n, (25)

Fψ = −6n̄A2
ψDxe

− T
Tψ + 3n̄A2

ψ + 3ψ̄2A2
ψ+

1

2
n̄ψ̄2(1 − 2D0) +

ψ̄4

12
+
ψ̄2

2
+A2

ψ

[

12An(1 − 2Dxe
− T
Tψ )

−3Dxe
− T
Tψ + 3

]

+
15A4

ψ

2
− D0

2
ψ̄2. (26)

The phase diagram was constructed using four meth-
ods using the parameters shown in Table II, which was
also used for the numerical phase diagram (Fig. 5 and
6). The first and simplest method used the uncoupled
free energy. These calculations were performed at n̄ = 0
by both a common tangent construction and by solving
∂2Forder

ψ /∂A2
ψ = 0 (Fig. 2). Both techniques yielded

the same result, implying a second-order transition. The
second method was similar, except that it investigated
the weakly coupled model with ǫ = 0.05. Unsurpris-
ingly, it gave a similar result. Although constructing the
phase diagram at n̄ = 0 is a common approximation for
a constant pressure phase diagram [14], it is known to
not be thermodynamically consistent [40, 43]. For the
third method, the phase boundary was calculated for the
weakly coupled model using the true two-phase equilib-
rium conditions

µeq =
(

1
n̄+1

∂F̄
∂ψ̄

)

∣

∣

∣

∣

B2

=
(

1
n̄+1

∂F̄
∂ψ̄

)

∣

∣

∣

∣

A2

(27)

(

∂F̄
∂n̄ − ψ̄µeq

)

∣

∣

∣

∣

B2

=
(

∂F̄
∂n̄ − ψ̄µeq

)

∣

∣

∣

∣

A2

(28)

p =
(

(n̄+ 1)∂F̄∂n̄ − F̄
)

∣

∣

∣

∣

B2

=
(

(n̄+ 1)∂F̄∂n̄ − F̄
)

∣

∣

∣

∣

A2

(29)

where n̄ and ψ̄ can differ between the two phases and
F̄ ≡ F̃ /V [43]. Notice that using these equilibrium condi-
tions, the densities of the two phases can differ. However,
for the weakly coupled model, the solution within numer-
ical resolution is coexistence at the same densities and
compositions, implying a second-order transition. For a

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

ψ

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

T

uncoupled
ǫ=0.05

p=−0.063
ǫ=0.05

B2

A2

FIG. 2. Phase diagram for analytical model. The uncoupled
and coupled models using a common tangent equilibrium con-
dition are compared to a constant pressure phase diagram. As
all phase diagrams are very similar, including constant pres-
sure and weak coupling complications appear to have little
effect.

judicious choice of pressure (p = −0.063), n̄ ≃ 0 at all
temperatures, and the phase boundary is very similar to
those calculated by the previous techniques.

The last phase diagram construction was done for the
strong coupling case with p = −0.063, ǫ = 1, and
D0 = 0.5 (Fig. 3). Unlike weak coupling, this results in
first-order transitions with two-phase coexistence. Calcu-
lating the order parameter of the B2 phase for increasing
temperatures at ψ̄ = 0, where n̄ is the B2 coexistence
value, results in a discontinuity in the order parameter
at the point where the two phase boundaries meet (Fig
4). Consequently, this point is a congruent point. In con-
trast, the order parameter would go continuously to zero
if it was a critical point with a second-order transition.

In order to use Eq. 25 and 26 to describe a real com-
pound such as FeCo [44], one can simply match proper-
ties such as the temperature and second derivative of the
phase boundary at the critical point measured from an
experimental phase diagram to the corresponding values
at the critical point in the analytic (or numeric) model.

B. Elasticity

In order to use the traditional elastic constant calcula-
tion procedure and not consider the effects of hydrostatic
pressures [45], only the case where n̄ = ψ̄ = 0 is consid-
ered. Since ρA and ρB ought to undergo identical strains,
the ψ field is strained identically to the n field. Substitut-
ing in Eq. 24 into Eq. 8 and applying isotropic, biaxial,
and simple shear strains as described by Pisutha-Arnond
[45] results in the elastic constants
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ψ

0.000
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0.006

0.008
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0.012

0.014
T B2

A2

FIG. 3. Phase diagram for analytical model in strongly cou-
pled case, ǫ = 1, at pressure = -0.063.

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018

T

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
ψ

FIG. 4. Plot of the order parameter as a function of T for ψ̄ =
0. Because of the discontinuity of the order parameter from
nonzero to zero, the transition is first-order with a congruent
point at T ≃ 0.0134.

C11 =
A2
nBxe

− T
Tn

α2
n

+
ǫ (8An + 1)A2

ψDxe
− T
Tψ

2α2
1

(30)

C12 = C44 =
A2
nBxe

− T
Tn

2α2
n

. (31)

Note that the strains only couple to the correlation
terms in the free energy and are not affected by the ideal
entropy of mixing terms. Spatschek and Karma ([46],
Eq. 59) make two related predictions for a free energy
consisting of a single peak in the correlation function.
First, they predict that

C11

2
= C12 = C44 = −1

2
C′′(q0)q2

0A
2
110 , (32)

which, using Eq. 16, agrees with Eq. 30 and 31 in the
limit ǫ = 0. Second, they predict that C12 and C44 de-
pend on neither {100} nor {200} amplitudes. This ex-
plains why only C11 depends on the ordering amplitude,
since the ordering wave is a {100} mode.

Another way to help rationalize the lack of ordering
dependence of the C44 elastic constant is that C44 physi-
cally represents shear on {100} planes. These planes are
of a single atom type, however, and thus not really de-
pendent on ordering (to lowest order). The shear mode
on the {110} planes is proportional to C11 −C12, and as
expected does depend on Aψ.

Equations 30 and 31 also agree with the Monte Carlo
simulations of a B2 compound by Castán and Planes who
found that the shear modulus, (C11 − C12)/2, is linearly
proportional to the long-range order parameter squared
[47]. However, eqs. 30 and 31 are inconsistent with ex-
perimental data for CuZn as McManus found no anoma-
lous behavior near the critical temperature for C11, but
an abrupt change in dC44

dT shortly before the critical tem-
perature [48].

C. Numerical Phase Diagram

To confirm the behavior of the one-mode model phase
diagram in the case where all frequencies were included,
the phase diagram was calculated numerically at n̄ = 0
for the uncoupled (Fig. 5), weakly coupled (ǫ = 0.05,
Fig. 5), and strongly coupled (ǫ = 1, D0 = 0.5) cases
(Fig. 6). Because the constant pressure condition was
unimportant when constructing the analytic phase dia-
grams, only the n̄ = 0 method was employed for ease
when constructing the numerical phase diagrams. Nu-
merical construction of the phase diagrams validated the
qualitative behavior of a curve of second-order and first-
order transitions seen previously. Quantitative disagree-
ment with analytical results are explained by the fact
that the XPFC model permits high frequency modes, so
the one mode approximation provides poor quantitative
estimates of free energies (see sec. II C).

The free energies for the phase diagram were calcu-
lated by minimizing the free energy in a 2 × 2 × 2 set of
unit cells using the parameters found in Table II. Each
system was initialized by either a prior equilibrated struc-
ture for different parameters or by a single mode approx-
imation. Each system was then evolved using Eq. 21
and Eq. 22 using the standard semi-implicit integral
spectral method [30]. Conditions near the phase tran-
sition were tested carefully to ensure that the order of
the transition was determined correctly. The amplitude
of the {100} peak from the numerical Fourier transform
of ψ was treated as the order parameter in the numerical
model (Fig. 7). In the case of first-order transitions, the
coexistence region was determined by fitting a fourth-
order polynomial through a set of free energies for B2
and A2, and then finding the convex hull. The phase
transition in the simulations can be understood as fol-
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TABLE II. Table of parameter values for phase diagrams.

Quantity Value

Mn 1

Mψ 1

Tn 1

Tψ .2

kn 1

kψ 1/
√

2

Dx 0.8

D0 0.5 (strongly coupled)

0 (otherwise)

Bx 1

αn 0.08

αψ 0.08

a0 2π
√

2

Mesh 16 / unit cell dimension

∆t 0.015

lows: At ψ̄ = 0, the ordered state for ψ consists of only
the ordering modes ({100}, {111}, ...). For ψ̄ 6= 0, the
disordering modes ({110}, {200}, ...) appear and grad-
ually increase in magnitude while the ordered reflections
diminish (see sec. II B). At the phase transitions, only
the disordered modes remain.

The first-order transition was also confirmed by equi-
librating a 2 × 2 × 128 simulation box of B2-A2 using
ψ̄ = 0.265 and T = 0.0144. As predicted, B2 and A2 were
found to coexist at equilibrium. Although the two phases
had different average densities as suspected, n̄B2 ≃ 0.052
and n̄A2 ≃ −0.027, both densities were still close to zero.
In order to speed up this large calculation, simple con-
served global dynamics were used for both the n and ψ
fields in this calculation [40, 49], namely

∂n

∂t
= −δF̃

δn
+

1

V

∫

V

δF̃

δn
dr (33)

∂ψ

∂t
= −δF̃

δψ
+

1

V

∫

V

δF̃

δψ
dr. (34)

IV. APPLICATIONS

A. Antiphase Boundaries

As a test case for a system with a second-order transi-
tion, antiphase boundaries (APB) were investigated us-
ing the uncoupled model. Experimental evidence and
Landau-Ginsburg theory predicts that the signed local
order parameter, η, across the APB boundary is [26]

η(z;T ) = Aψ(T ) tanh

(

z − z0

2ξ(T )

)

(35)

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

ψ

0.010

0.012

0.014

0.016

0.018

T

uncoupled
weakly
uncoupled

B2

A2

FIG. 5. Numerical phase diagram for the B2 system, with
the uncoupled case (solid violet line) and weakly coupled
case (dashed pink line). Consistent with the analytic re-
sults, the weakly coupled and uncoupled cases nearly overlap
with second-order transitions. The curves are parabolic fits
through the numerically determined points.

−0.4 −0.2 0.0 0.2 0.4

ψ

0.010

0.012

0.014

0.016

0.018

T B2

A2

FIG. 6. Numerical phase diagram for the B2 system in the
strongly coupled case. Consistent with the analytic results,
the transition is always first-order, and the region between
the phase boundaries is coexisting B2 and A2. The curves
are parabolic fits through the numerically determined points.

where Aψ is the unsigned bulk order parameter, ξ is the
correlation length, z is the coordinate perpendicular to
the APB, and z0 is the position of the interface. Aψ,
the APB energy γ, and ξ all exhibit critical exponents.
Meaning, near the critical point they are of the form

∼
(

Tc−T
Tc

)νi
, for some corresponding critical exponent νi.

This result was verified in the uncoupled B2 PFC model
by initializing with a single mode approximation for two
domains with opposite order parameters in a single grain,
and the free energy was minimized using Eq. 21. The
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0.06

0.07
A
ψ

FIG. 7. Plot of the order parameter for the uncoupled case as
a function of ψ̄ for T = 0.01 using parameters found in Table

II. The fit is to the function Aψ = A
√

ψ̄c − ψ̄, the function
for a second-order mean-field transition as elaborated upon
in section IV.

parameters in Table II were used except αψ = 0.25 in
order to reduce the width of the APB so that the sim-
ulation could be performed in a smaller domain. This
change in αψ gave a new Tc ≃ 0.01750. A box size of
2 × 2 × 24 unit cells was used with periodic boundary
conditions (i.e. two identical APBs). A comparison of a
typical numerical result and a hyperbolic tangent profile
fit is shown in Fig. 8. Because the local order parameter,
η, is a function of position in this case, the amplitude of
ψ along a unit cell edge was used as a proxy for the order
parameter. The measured critical exponent for Aψ was
0.51 with R2 ≃ 1.0 × 10−6. The critical exponent for the
APB energy calculated using the typical form

γ =
l⊥
2

(F̄ψ, APB − F̄ψ, eq), (36)

was 1.53 with R2 ≃ 2.7 × 10−5 (Fig. 9), where l⊥ is the
length of the simulation box in the z direction, F̄ψ, APB is
the free energy per volume measured with the APB, and
F̄ψ, eq is the bulk free energy per volume. In order to en-
sure that the domain was sufficiently large compared to
the APB correlation length, the critical exponents were
also calculated by relaxation in a larger 2 × 2 × 96 simu-
lation domain, with critical exponents for Aψ and γ only
differing by 3.3 × 10−3 and 1.4 × 10−5 respectively com-
pared to the smaller domain. Both of these exponents
are consistent with the 1/2 and 3/2 exponents for Aψ
and γ respectively for an APB resulting from the simple
Landau model

F =

∫

V

(

r

2
η2 +

u

4
η4 +

K

2
|∇η|2

)

dr, (37)

where r ∝ (Tc−T ) and u and K are independent of tem-
perature. This is not surprising, as the PFC method is

0.0 0.2 0.4 0.6 0.8 1.0

z

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

A
m

p
lit

u
d
e

ψ

Tanh Fit

FIG. 8. Demonstration of a tanh profile across an APB. The
oscillating amplitude of ψ along the edge of the unit cell (vi-
olet) and a tanh fit to Eq. 35 (pink) are plotted.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91.0

(Tc−T)/Tc
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1.0

A
ψ

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
0.10

γ

FIG. 9. Scaling behavior of bulk order parameter, Aψ, and
APB boundary energy, γ, for temperatures near Tc.

a mean field model and has thus have been shown to re-
duce to simple Landau models in appropriate limits [50].
Although comparison to this same Landau model would
imply a critical exponent of -0.5 for ξ, unfortunately this
exponent is difficult to determine. Because the critical
exponent is highly sensitive to the method of fitting the
ψ profile, very small changes to the fitting methodology
that only result in a few percent differences in the inter-
face width give very different critical exponents. Because
of a lack of a clear criteria for determining ξ, this critical
exponent is left unreported.

As noted in section II, all these results are dependent
on the new definition of temperature. Using the origi-
nal XPFC temperature parameter, both the critical ex-
ponents change, deviating more from mean field theory,
and R2 increases.
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B. Grain Boundaries

As a further demonstration of the applicability of the
this new method, ordering dynamics were investigated
for symmetric tilt boundaries using the uncoupled model.
The simulations were set up using the standard method
for periodic grain boundaries [49]. The equilibrium den-
sity was determined by minimizing the energy with re-
spect to n, and then initialized with Guassian noise for ψ
at T = 0.01 using the parameters in Table II except with
αψ = 0.25. The misorientation angle between the grains
was 3.8◦. The system first undergoes spinodal ordering.
Then, domains grow and shrink in order to reduce the
total APB energy. Interestingly, the model predicts that
dislocation cores act as natural pinning points for APBs
(Fig. 10). The dislocations pin the domain walls as ex-
cess disordered regions are created when a domain wall
breaks free of the dislocation core.

V. SUMMARY

A two-component sublattice ordering model was de-
rived that was shown to be capable of modeling a diverse
set of ordered crystals. This model was then investigated
in greater depth for the simple B2 system, with first-
and second-order transitions found analytically and nu-
merically. This model correctly predicts that not all the
material’s elastic constants are dependent on ordering.
Finally, antiphase boundaries were explored in isolation
and shown to reproduce standard mean-field results once
the temperature parameter in XPFC was reinterpreted.
In the context of large small-angle grain boundary sim-
ulations, these APBs were predicted to have their evolu-
tion pinned by dislocation cores. The model in the future
can be used to study the dynamics of ordering in a wide
range of crystals.
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FIG. 10. Images for dynamic ordering of a B2 crystal, showing an xy slice through the middle z coordinate. (a) shows the
static n field for the simulations with 3.8◦ misorientation between the two grains. After initializing the ψ field with Gaussian
noise, (b)-(e) show snapshots of ψ at progressively later stages in the evolution. (b) shows spinodal ordering while (c)-(e)
show coarsening. The green (white) disordered regions down the middle of (b)-(g) correspond to the edge dislocation cores
in (a). Although much of the evolution can be understood through a simple reduction of mean curvature, the arrows point
to examples of dislocation anchors that act to pin APB movement. The anchoring phenomenon was confirmed by initializing
another simulation with the same conditions but a different set of random Gaussian noise to start, and two sample time steps
from this second simulation are show in (f) and (g).
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