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Self-diffusion and interdiffusion coefficients of binary ionic mixtures are evaluated using the Ef-
fective Potential Theory (EPT), and the predictions are compared with the results of molecular
dynamics simulations. We find that EPT agrees with molecular dynamics from weak coupling well
into the strong coupling regime, which is a similar range of coupling strengths as previously observed
in comparisons with the one-component plasma. Within this range, typical relative errors of approx-
imately 20% and worst-case relative errors of approximately 40% are observed. We also examine
the Darken model, which approximates the interdiffusion coefficients based on the self-diffusion
coefficients.

I. INTRODUCTION

Strongly coupled plasmas arise in several frontier top-
ics of physics research. In the laboratory, they occur in
the imploding fuel capsules of inertial confinement fu-
sion experiments[1], the highly charged dust of complex
plasmas[2], and both neutral[3, 4] and non-neutral[5] ul-
tracold plasmas. In nature, strongly coupled plasmas oc-
cur in the interior of gas giant planets and white dwarfs,
and in the crusts of neutron stars[6, 7]. When the plasma
consists of more than one ion species, the transport of
mass via diffusion becomes a central practical concern.
It is important to optimizing the D-T reaction in inertial
fusion efforts, where the different diffusion rates of each
isotope and contamination from the plastic shell make
optimal mixing a challenge. In white dwarfs, gravity-
driven diffusion influences the chemical composition of
the star with substantial ramifications for the evolution
of the star and its lifetime estimates, as well as its optical
properties[6, 7].

The state of the art in quantifying diffusion in strongly
coupled plasmas is to conduct molecular dynamics (MD)
simulations of systems at thermal equilibrium and ex-
tract diffusion coefficients from velocity correlations[8–
11]. In order to tabulate the diffusion coefficients of
strongly coupled mixtures for use in hydrodynamic mod-
els, one must perform MD simulations not only at several
coupling strengths, but for each composition of interest.
Even with modern computing power, the computational
cost of such an undertaking becomes impractical if the
system spans a range of conditions. This underscores the
need for a flexible, efficient theory for strongly coupled
mixtures.

Traditional plasma transport theories based on a bi-
nary collision picture, e.g., Landau-Spitzer, typically
treat only weakly coupled plasmas. Improvements can
be made if one models screening by treating particles
as interacting through a Debye-Hückel potential[12], and
extensions to moderate coupling have been proposed via
modified screening lengths[13]. Such models, however,
show serious inaccuracies at strong coupling[14, 15].

Effective Potential Theory (EPT) is a recently pro-
posed method for extending Boltzmann-based plasma ki-

netic theory into the strong coupling regime[14–16]. It
relaxes the binary collision assumption by treating par-
ticle interactions via the potential of mean force[14]. It
also treats the excluded volume (or Coulomb hole) in
repulsive interactions using a modified version of En-
skog’s kinetic equation for hard spheres[16]. In a one-
component plasma (OCP), EPT has been shown to accu-
rately predict the self-diffusion coefficient up to coupling
strengths of 30[14], where strong, liquid-like correlations
are known to occur[17]. It was recently demonstrated
to achieve comparable accuracy for warm dense matter
when used in conjunction with the average-atom two-
component plasma model[15]. Beznogov and Yakovlev
were the first to use EPT to assess interdiffusion coeffi-
cient in binary ionic mixtures (BIMs)[18]. The present
work builds on theirs by comparing the EPT predictions
for both the self-diffusion and interdiffusion coefficients
against MD results over several orders of magnitude in
coupling strength for a variety of binary ionic mixtures.
It also extends the modified Enskog correction factor to
mixtures.

The binary ionic mixture (BIM) is a model plasma
consisting of two species of classical positive ions at a
temperature T , each with a charge Zie, mass mi, and
number density ni, that interact through the Coulomb
potential[19]

vij(r) = ZiZje
2/r . (1)

The electrons are treated as an inert, uniform, neutral-
izing background. We estimate the Coulomb coupling
strength of the BIM using the parameter

Γ ≡ 〈Z 5
3 〉〈Z〉 13 Γ0 , (2)

where

Γ0 =
e2

akBT
, (3)

and a is the mean inter-ionic spacing given by n =
3/(4πa3), n = n1+n2 is the total ion number density, kB
is the Boltzmann constant, and the angle brackets denote
number-weighted averages,

〈A〉 = x1A1 + x2A2 , (4)
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FIG. 1. Radial distribution functions in a 10% carbon (by
mass) H+C6+ BIM. Solid lines are hypernetted-chain predic-
tions. Dotted lines are molecular dynamics results.

with xi = ni/n being the mole fraction of each species.
We will also refer to the mass fraction of each species,
yi = ρi/ρ = mixi/〈m〉. When enumerating the species
in a BIM, we assign the label “1” to the lighter species
and “2” to the heavier species.

For symmetric mixtures, we find that EPT agrees with
MD from weak coupling into the strong coupling regime,
up to coupling strengths at which liquid-like behaviors
are known to onset. Typical relative errors of about 20%
are observed. The span of coupling strengths where EPT
succeeds for mixtures is similar to what was observed for
the OCP[14, 16].

The remainder of the paper is organized as follows.
In Section II, we discuss how to compute diffusion coeffi-
cients in the EPT model and extend the modified Enskog
correction concept to mixtures. In Section III, we com-
pare EPT predictions for the diffusion coefficients against
MD results. In Section IV, we assess the accuracy of the
Darken model for the interdiffusion coefficient based on
self-diffusion coefficients.

II. EFFECTIVE POTENTIAL THEORY

Here, we briefly outline the Effective Potential Theory
(EPT) and give detail only when extending on the theory
as laid out by refs. [14, 16, 20]. Further details on EPT
can be found therein.

In EPT, the transport coefficients are computed us-
ing the Chapman-Enskog formulas that result from the
solution of the Boltzmann equation with the Enskog
correction[21]. Instead of using the bare interaction po-
tential to compute the scattering cross-sections for bi-
nary collisions, an effective potential is used in order to
account for the effect of the surrounding plasma on the
mutual interactions between a pair of colliding ions. In a
mixture, the effective potential φij(r) is defined for each
pair (i, j) of ionic species. The effective potential is cho-
sen to be the potential of mean force, which is related to
the ion-ion pair distribution function, gij(r), though[22]

gij(r) = e−φij(r)/kBT . (5)

The potential of mean force corresponds to the interac-
tion potential between two ions held a distance r apart
when the surrounding particles of the plasma are canon-
ically averaged over all configurations.

The effective potential is used to calculate the colli-
sion cross-sections for the Ω-integrals that appear in the
Chapman-Enskog formulas[21, 23],

Ω
(l,k)
ij =

√
kBT

2πmij

∫ ∞
0

dξ ξ2k+3e−ξ
2

σ
(l)
ij . (6)

Above, mij is the reduced mass, ξ = |vi − vj |/v̄ij is the

dimensionless initial relative velocity, v̄ij =
√

2kBT/mij ,

and σ(l) is the l-th binary collision cross-section,

σ
(l)
ij (ξ) = 2π

∫ ∞
0

db b[1− cosl(π − 2Θij)] , (7)

with the scattering angle Θij determined from

Θij(ξ, b) =

∫ ∞
rmin
ij

dr
b

r2

[
1− b2

r2
− φij(r)

kBTξ2

]−1/2
, (8)

where b is the impact parameter and rmin
ij is the distance

of closest approach. In practice, it is convenient to also
define dimensionless generalized Coulomb logarithms,

Ξ
(l,k)
ij = χij

√
mij

2πkBT

(
2kBT

ZiZje2

)2

Ω
(l,k)
ij , (9)

where χij is a modified Enskog correction obtained from
the pair distribution functions, discussed further below.

To evaluate Ξ
(l,k)
ij , we require only the ion-ion pair dis-

tribution functions, gij(r), which we obtain by solving
the Ornstein-Zernike relation with the hypernetted-chain
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(HNC) closure,

ĥij(k) = ĉij(k)−
∑
s

nsĥis(k)ĉsj(k) (10)

gij(r) = e
− vij(r)

kBT +hij(r)−cij(r) , (11)

where hij(r) = gij(r) − 1 and hats denote Fourier
transforms[22]. Sample solutions for gij(r) are plotted
with MD results in Figure 1, showing that the HNC ap-
proximation φij = −uij + kBT (hij − cij) is accurate up
to the development of liquid-like correlations at strong
coupling.

The prefactors χij in Eq. (9) are correction factors
that arise in Enskog’s theory of hard-sphere gases[24].
They model the increase in collision frequency that oc-
curs when one accounts for the fact that hard spheres
collide when their edges make contact, rather than their
centers as in the Boltzmann equation. Extending the
OCP work of Ref. [16] to BIMs, we define three effective
hard-sphere diameters, σij , such that

gij(σij) = 0.87 . (12)

In evaluating the modified Enskog correction factors, we
assume that σ12 = 1

2 (σ1 + σ2). This exact property of
hard spheres is only approximate in a BIM, but we find
it is quite accurate for Γ > 1, as shown in Figures 2a
and 8a.

In the OCP, an expression for χ(σ) follows from re-
quiring that Enskog’s equation of state agrees with the
known virial equation of state. This is not sufficient in a
BIM; one must develop three such consistency relations
to uniquely determine χij(σ1, σ2). Two constraints can
be obtained by requiring that the partial pressures

pi
nikBT

= 1 +
∑
j

2π

3
σ3
ijnjχij (13)

coincide with those of the virial equation of state up to
some order in the density. For the third constraint, we
use a concept introduced by Piña[25], requiring that the
diffusion force also be consistent with irreversible thermo-
dynamics [26]. The resultant Enskog correction factors
are:

χ11 = 1 + n1
B111

B11
+ n2

B112

B11

3σ2
σ1 + 2σ2

, (14)

χ12 = 1 + n1
B112

B12

3σ12
σ1 + 2σ2

+ n2
B221

B12

3σ12
σ2 + 2σ1

, (15)

χ22 = 1 + n2
B222

B22
+ n1

B221

B22

3σ1
2σ2 + σ1

, (16)

where

Bij =
2π

3
σ3
ij , (17)

Biij =
π2

108
σ3
i (σ3

i + 6σ2
i σj + 15σiσ

2
j + 8σ3

j ) , (18)

are hard-sphere virial coefficients. In Eqs. (14)-(16), we
have taken Piña’s αi to be equal to σi, corresponding
to the choice that the Enskog correction be evaluated
at the point of contact. Other formulations for χij(σij)
have been proposed, some based on virial expansions with
other choices of the third closing relation (e.g., Ref. [27])
and others on the Percus-Yevick equation (e.g., Ref. [28]).

In our investigations, it was found that the ion diam-
eters determined by Eq. (12) can become very large in
certain strongly coupled mixtures. This is especially so
in mixtures containing a high-Z impurity such as the
H+C6+BIM of Figures 1 and 8. The resultant χ12 and
χ22 are large enough to cause EPT to significantly un-
derestimate the values of the impurity self-diffusion coef-
ficient and the interdiffusion coefficient compared to MD
results, seen in Figures 4c and f. To improve agreement
with MD, we developed the following procedure to cut
off the value of χij based on the partial-pressures virial
expansion, Eq. (13).
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FIG. 2. (a) Effective ion diameters and (b) modified Enskog
correction factors (with and without virial cutoff) in a 36.8%
helium (by mole) H+He2+BIM.
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Because Eqs. (14)-(16) are based on an O(n2) trunca-
tion of the hard-sphere equation of state, we require that
each term in the truncated partial virial expansions be
smaller than the previous,

1 >
∑
j

njBij >
∑
j

njBij(χij − 1) i = 1, 2 . (19)

For a given BIM composition, we use Eqs. (14) and (16)
unmodified up to the critical coupling strengths, Γ∗,i, for
which Eq. (19) is violated (for i = 1, 2 respectively). We
then cut off the value of each χii according to

χii → min
[
χii, χii(Γ∗,i)

]
. (20)

The cutoff value of χ12 is chosen by requiring that both
species’ partial virial expansions obey Eq. (19); in other
words it cuts off beyond Γ ≥ min

(
Γ∗,1,Γ∗,2

)
.

Cutoff procedures based on limiting the partial packing
fractions, ηi = xi(σi/2a)3, or total packing fraction, η =∑
i ηi, were also considered but proved ineffective. The

packing fractions were modest (η . 0.35) in all cases
studied here. Further, in the motivating H+C6+BIM,
η2 ∼ 0.05. This leads us to believe that the apparent
failure of the Enskog correction in high-Z impurities is
not due to close-packing.

Example plots of χij are shown in Figures 2b and 8b.
The uncut Enskog corrections tend to be small (less than
10%) at weak coupling, but their values grow rapidly
as the Coulomb hole widens with increased coupling
strength (see, e.g., Figure 1). The cutoff activates at
weaker coupling for larger ions as intended. One result
of this is that χ12 becomes the smallest of the Enskog
corrections at strong coupling.

Below we give the expressions for interdiffusion and
self-diffusion coefficients in the so-called first- and second-
order Chapman-Enskog approximation. We recall that
the level of approximation refers to the number of terms
retained in the Sonine polynomial expansion of certain
unknown functions occurring in the Chapman-Enskog so-
lution to the Boltzmann equation.

A. Interdiffusion Coefficient

In the first Chapman-Enskog approximation, the in-
terdiffusion coefficient is [D12]1 is given by[21]

[Dij ]1 =
3kBT

16nmijχij

1

Ω
(1,1)
ij

(21)

The second approximation can be written in the form

[Dij ]2 =
[Dij ]1

1−∆ij
, (22)

where ∆ij are given in terms of Ξ
(l,k)
ij in Appendix A.

Sample second-order corrections to the interdiffusion co-
efficient are plotted as solid black lines in Figure 3a. They
become negligible at strong coupling, where the Sonine
polynomial expansion converges rapidly.

FIG. 3. Second-order correction factors for (a) 70% he-
lium (by mass) H+He2+BIM and (b) 10% carbon (by mass)
H+C6+BIM.

B. Self-Diffusion Coefficient

Coefficients of self-diffusion are defined in terms of
single-particle fluctuations at equilibrium, not the col-
lective motion in a fluid. As such, they do not imme-
diately arise in Chapman-Enskog transport theory, since
it gives only the collective transport properties. In order
to derive Chapman-Enskog formulas for the self-diffusion
coefficients of a binary mixture, it is necessary to express
them in terms of interdiffusion coefficients. To do so, we
will split the second component into two equimolar pop-
ulations that are physically identical yet distinguishable
by some non-mechanical means, e.g., color. By then writ-
ing the interdiffusion coefficients of the ternary mixture
in microscopic Green-Kubo form and taking the limit
where species 2 and 3 are mechanically identical, we can
derive formulas for the self-diffusion coefficients in terms
of interdiffusion coefficients.

The three-component Maxwell-Stefan equations,[21,
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29]

da = −
3∑

b=16=a

Jab
Dab

(a = 1, 2, 3) , (23)

can be inverted in terms of new coefficients Lab(= Lba),

V a = −
3∑
b=1

Lab
xaxb

db , (24)

where da = xa∇µa/kT is the diffusion driving force from
species a, Jab = xaxb(V a − V b) is the particle current,

V a = N−1a
∑Na

i=1 v
a
i is the drift velocity of species a, and

vai is the velocity of the i-th particle of species a.
The Lab of Eq. (24) can be written in microscopic

Green-Kubo form and expanded[29],

Lab =
1

3N

Na∑
i=1

Nb∑
j=1

∫ ∞
0

dt〈vai (t) · vbj(0)〉 (25)

=

{
xaxbNCab a 6= b
xaDa + x2aNC

?
aa a = b

, (26)

where

Da =
1

Na

Na∑
i=1

1

3

∫ ∞
0

dt〈vai (t) · vai (0)〉 , (27)

C?aa =
1

N2
a

Na∑
i=1

Na∑
j=1 6=i

1

3

∫ ∞
0

dt〈vai (t) · vaj (0)〉 , (28)

Cab =
1

NaNb

Na∑
i=1

Nb∑
j=1

1

3

∫ ∞
0

dt〈vai (t) · vbj(0)〉 , (29)

are respectively the self-diffusion coefficient, the cross-
correlation function between particles of the same
species, and the cross-correlation function between
different-species particles[29]. Here, the angle brackets
denote an average over equilibrium configurations.

The interdiffusion coefficients, Dab, can be written in
terms of Lab by Eqs. (4-5, 20-21) of Ref. [29]. When
species 2 and 3 are mechanically identical and equally
abundant, D2 = D3 and C?22 = C?33 = C23, and the
interdiffusion coefficients simplify to

D12 = D13 = (1− x1)D1 + x1D2 + x1(1− x1)C̃ (30)

D23 = D2
(1− x1)D1 + x1D2 + x1(1− x1)C̃

D1 + x1C̃
, (31)

where C̃ = N (C?11 − 2C12 + C?22). The cross-correlations
in D23 can be eliminated in terms of D12 and the two
self-diffusion coefficients. Rearranging for D2 then gives

D2 =
D12D23

(1− x1)D12 + x1D23
. (32)

The Maxwell-Stefan equations, Eq. (23), can be also
obtained from Chapman-Enskog kinetic theory. One may

then write in correspondence with Eq. (32) that the first-
order self-diffusion coefficient is

[D2]1 =
[D12]1 [D22]1

(1− x1) [D12]1 + x1 [D22]1
, (33)

where the fact that [D23]1 = [D22]1 has been used.
Eq. (33) generalizes to both species and to second order
as

1

[Di]2
=

2∑
j=1

xj
[Dij ]2

, (34)

where [Dij ]2 are the same as in Eq. (22). It should be em-
phasized that [Di]2 6= [Dii]2, in contrast to the OCP case.
This can be understood by viewing Eq. (34) through the

lens of binary collision frequencies, νij ∼ [Dij ]
−1
2 . The

timescale for self-diffusion is set by the total collision fre-
quency νi =

∑
j xjνij , as one would expect from an ele-

mentary mean-free-path treatment of self-diffusion[30].

III. RESULTS AND DISCUSSION

We organize our findings into three categories of spe-
cial interest defined below: ordinary mixtures, equal-Z
mixtures, and mixtures containing a high-Z impurity. In
Figure 4, we plot the Γ dependence of the self- and inter-
diffusion coefficients of example BIMs that are illustrative
of each category. Each panel of Figure 4 compares EPT
predictions to MD results.

Our MD calculations are based on a parallel imple-
mentation of the particle-particle particle-mesh (P3M)
algorithm. The MD simulations were done with enough
particles (2× 103 ≤ N ≤ 2× 105) over long enough time
scales (1638.4 ≤ tωp1 ≤ 6553.6) and and with a small
enough time step (0.001 ≤ δtωp1 ≤ 0.1), to ensure con-
vergence of the transport coefficients with a statistical
uncertainty of at most ∼ 5% at the smallest couplings
(< 1% elsewhere). The calculations are particularly de-
manding at small couplings due to long collision mean-
free path, and for highly asymmetric mixtures (i.e., with
large mass or charge ratios) due to different time scales
and diversity in magnitude of inter-ionic forces.

The self- and interdiffusion coefficients were evaluated
according to Eq. (27) and

D12 =
1

3Nx1x2

∫ ∞
0

dt 〈J12(t) · J12(0)〉 , (35)

respectively.
The EPT self- and interdiffusion coefficients were com-

puted to second order from Eq. (34) and (22), respec-
tively, using the dimensionless form for [Dij ]1 ,

[Dij ]1
a2ωp

=

√
〈m〉/2mij

Z2
i Z

2
j 〈Z〉

√
π/3

Γ
5/2
0

1

Ξ
(1,1)
ij

, (36)
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FIG. 4. Diffusion coefficients versus BIM coupling parameter, Γ. (a-c): Self-diffusion coefficients, Di. Solid lines are second-order
Effective Potential Theory, shapes are molecular dynamics results, and dotted lines are Landau-Spitzer theory. Dash-dotted
lines are EPT without the Enskog correction cutoff. (d-f): Interdiffusion coefficients, D12. Solid lines are second-order Effective
Potential Theory, shapes are molecular dynamics, and crosses are the Darken approximate using MD self-diffusion coefficients
as discussed in Section IV. Dash-dotted lines are EPT without the Enskog correction cutoff.

where ωp =
√

4πn〈Z〉2e2/〈m〉 is an aggregate plasma
frequency. The EPT diffusion coefficients use the cut
off χij described in Section II, unless explicitly stated
otherwise.

In interpreting the results below, it is important to
distinguish between errors caused by the HNC approxi-
mation and errors due to the collision model underlying
EPT. For strongly correlated mixtures, like in the lower
panel of Fig. 1, some systematic error is introduced in the
EPT calculations by the neglect of bridge functions in the
HNC approximation for φ(r). However, it was shown in
Ref. [14] that the using an “exact” φ(r) from MD simula-
tions only affects the OCP self-diffusion coefficient above
Γ > 10, and even then only by a few percent. Because
the errors at strong coupling reported below are typically
greater than 10%, we predict that our results would not
significantly change if more accurate φij(r) were used.

In Figures 4a-c, we plot the Landau-Spitzer prediction
for the self-diffusion coefficients obtained by evaluating

Eq. (36) with the substitution

Ξ
(1,1)
ij → log Λij = log

1√
3Z2

i Z
2
j 〈Z2〉Γ3

0

. (37)

In Figures 4d-f, we include Darken approximation for the
interdiffusion coefficient in terms of the self-diffusion co-
efficients, further discussed in Section IV.

Lastly, we note that both the EPT and MD formu-
las for the interdiffusion diffusion coefficient exclude the
thermodynamic prefactor that arises in the formal the-
ory of diffusion from irreversible thermodynamics[31]. A
complete transport coefficient for use in hydrodynamics
applications can be obtained by multiplying Eq. (22) or
(35) by the thermodynamic factor[32],

J = lim
k→0

x1x2/Sxx(k) , (38)

where Sxx(k) is the concentration structure factor, which
can be calculated directly from the radial distribution
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functions. This prefactor enters into the EPT[33, 34] and
MD[8] diffusion coefficients in the same manner, thus its
exclusion does not affect the comparison between EPT
predictions and MD.

A. Ordinary Mixtures

We refer to an “ordinary” mixture as one for which
there are no obvious simplifications to be made based on
the composition. That is, there are neither any strong
symmetries nor asymmetries that would represent lim-
iting cases of the BIM model. Diffusion coefficients for
an example H+He2+BIM are plotted in Figure 4a and d.
These exhibit the same qualitative dependence on Γ as in
the OCP. In the limit of weak coupling, one can take φij
to be a Coulomb potential cut off at the Debye length, in
which case the generalized Coulomb logarithms become
the traditional Coulomb logarithms[20],

Ξ
(1,1)
ij = log Λij +O(1) , (39)

and EPT recovers LS theory.
Relative errors between EPT and MD are plotted in

Figure 5, where the error is

δD = |DEPT −DMD|/DMD . (40)

EPT predicts all three diffusion coefficients within 25%
of the MD results up to Γ = 30. Above Γ = 30, the
MD diffusion coefficients steeply decrease with increas-
ing Γ, and the self- and interdiffusion coefficients tend to
converge towards a common value. These trends are as-
sociated with the onset of the liquid-like dynamics in the
plasma[10, 17, 35]. In this regime, the binary collision
picture on which the EPT relies becomes invalid.

FIG. 5. Errors in EPT diffusion coefficients, relative to MD
values for a 70% helium (by mass) H+He2+BIM. Red circles:
hydrogen self-diffusion coefficient. Blue squares: helium self-
diffusion coefficient. Black triangles: interdiffusion coefficient.
Dashed lines are included to guide the eye.

B. Equal-Z Mixtures

In mixtures of equal charge, Z, but different masses
(e.g., isotopic mixtures), the potentials of mean force are
all identical to each other, and they are furthermore the
same as those of an OCP with ΓOCP = Z2Γ0. It then

follows from Eq. (9) that Ξ
(l,k)
ij = Ξ

(l,k)
OCP, and the diffusion

coefficients are all given according to

[Dij ]1
a2ωp

=

√
〈m〉
2mij

[DOCP]1
a2ωp

, (41)

where

[DOCP]1
a2ωp

=

√
π/3

Γ
5/2
OCP

1

Ξ
(1,1)
OCP

(42)

is the first-order self-diffusion coefficient of an OCP. The
second-order corrections depend on the mass ratio in a
more complicated way and do not lend themselves to
easy comparison with OCP expressions. Nevertheless,
the ability to use OCP φij(r) data to describe BIM dif-
fusion coefficient for arbitrary masses and concentrations
is convenient.

Relative errors between EPT and MD for a 50-50
H+D+mixture are plotted in Figure 6. For the coupling
strengths studied, EPT lies within 35% of the MD values
for all three diffusion coefficients.

Due to their simplicity, equal-Z mixtures are useful for
isolating and assessing the effect of electronic screening.
To demonstrate this, we consider a simple Debye-Hückel
potential for the bare ion-ion interaction,

vDH
ij (r) =

ZiZje
2

r
e−κer , (43)

FIG. 6. Errors in EPT diffusion coefficients, relative to MD
values for a 50-50 (by mole) H+D+BIM. Red circles: hydro-
gen self-diffusion coefficient. Blue squares: deuterium self-
diffusion coefficient. Black triangles: interdiffusion coefficient.
Dashed lines are included to guide the eye.
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FIG. 7. Dependence of the diffusion coefficients on deuterium mole fraction at selected coupling strengths for a H+D+BIM.
Lines are EPT predictions for D1 (solid red) and D2 (dashed blue). Shapes are MD results.

where κe sets the strength of electron screening. Screen-
ing weakens ion-ion interactions on average, leading to
weaker spatial correlations than in an identical, un-
screened plasma. At weak coupling, this manifests as
an enhancement to the ordinary ion-ion Debye screen-
ing. At strong coupling, the principal effect is shallower
peaks and troughs in gij(r), resulting in fewer many-body
scattering events on average. In both cases, one should
expect the ions in a screened plasma to be more mobile
than those in an unscreened plasma, corresponding to
larger values of the diffusion coefficients. Both MD and
EPT bear out this expectation; a summary is given in Ta-
ble I. We note that the effect becomes less pronounced
as Γ increases. From an HNC-EPT perspective, this can
be explained by the relatively weak dependence of the
gij(r) peak heights on κe at strong coupling.

In Figure 7, we show how the self-diffusion coefficients
in a hydrogen-deuterium BIM depend on the relative con-
centration of the isotopes. We find that up to Γ ∼ 1,
EPT consistently underestimates the MD self-diffusion
coefficients, although the trends are captured well. Be-
yond Γ ∼ 1, EPT does not capture the convergence of
the self-diffusion coefficients to a common value seen in
MD; however, Figures 4b and 4e show that the interdif-
fusion coefficient can still be well-predicted in absolute
terms up to Γ = 25.

C. High-Z Impurity

We classify a BIM as having a high-Z impurity if the
more highly charged species is much less abundant than
the lesser-charged species. Diffusion coefficients for an

Γ 0.5 1 10 50

κea 0 1 0 1 0 1 0 1

DEPT
1 6.00 8.45 1.89 2.54 0.131 0.145 0.0274 0.0304

DMD
1 6.69 8.91 2.19 2.64 0.135 0.147 0.0215 0.0244

DEPT
2 5.00 7.05 1.58 2.13 0.109 0.122 0.0229 0.0255

DMD
2 5.92 7.14 1.97 2.31 0.131 0.145 0.0210 0.0237

TABLE I. Self-diffusion coefficients in a 53.8% deuterium
H+D+BIM at selected coupling strengths. At each Γ, un-
screened (κe = 0) and screened (κe = 1) cases are compared.
Units are a2ωp.

example H+C6+BIM are plotted in Figures 4c and f, and
effective diameters and modified Enskog corrections are
plotted in Figures 8a and b.

In Figure 9, we plot the relative differences between
EPT and MD diffusion coefficients for a H+C6+with trace
abundance of carbon. EPT predicts the MD interdif-
fusion coefficient and impurity self-diffusion coefficient
within 40% across all coupling strengths studied. In ad-
dition, EPT predicts the majority species self-diffusion
coefficient within 20% up to Γ = 25, in line with the
range of accuracy observed in the other types of mixtures
examined in this work.

In the impurity limit, EPT predicts

D2 ≈ D12 (44)

D1 ≈ D11 (45)

which follow from Eq. (34) when x1 � x2 and the con-
centration dependence of Dij is neglected. These ap-
proximations are tested in Figure 10. At weak coupling,
the concentration dependence of [Dij ]2 is non-negligible,
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FIG. 8. (a) Effective ion diameters and (b) modified Enskog
correction factors (both with and without virial cutoff) in a
0.9% carbon (by mole) H+C6+BIM.

and Eqs. (44)-(45) do not hold. However, they become
increasingly correct at stronger coupling. These approx-
imate limits could be useful in molecular dynamics con-
texts, where self-diffusion coefficients are much less oner-
ous to compute than interdiffusion coefficients. They
may also be of use in developing specialized approximate
models of diffusion for this important class of mixtures.

IV. APPROXIMATIONS TO THE
INTERDIFFUSION COEFFICIENT

In this section, we briefly consider approximate expres-
sions for the interdiffusion coefficient of a binary mixture
in terms of the two self-diffusion coefficients. This is of
special practical utility for molecular dynamics studies
of diffusion, where the self-diffusion coefficients can be
calculated much more expediently than the interdiffu-
sion coefficient, which incurs large computational cost to

FIG. 9. Errors in EPT diffusion coefficients, relative to MD
values for a 10% carbon (by mass) H+C6+BIM. Red circles:
hydrogen self-diffusion coefficient. Blue squares: carbon self-
diffusion coefficient. Black triangles: interdiffusion coefficient.
Dashed lines are included to guide the eye.

FIG. 10. Test of the impurity-limit approximations Eqs. (44)-
(45) in a 0.9% (by mole) H+C6+BIM. All diffusion coefficients
plotted are second-order EPT results.

achieve good statistics.
We focus our attention on the Darken approximation,

DD
12 = x2D1 + x1D2 , (46)

which is based on a diffusion model where the flux of each
species is governed by its self-diffusion coefficient[36]. At
the microscopic level, it can be obtained from Eq. (35) by
neglecting all velocity cross-correlations between different
particles. Another mixing model, the Common Force
Model, has been the subject of recent study in plasma
physics[11], but for the mixtures shown in Figure 4, it did
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not differ dramatically from the Darken approximation.

We evaluate the interdiffusion coefficient from Eq. (46)
using MD self-diffusion coefficients as input. Compar-
isons with EPT and MD results for D12 are plotted in
Figures 4d-f. Relative errors are tabulated in Table II.
In the case of an ordinary H+He2+BIM, we find that the
Darken approximation underestimates the interdiffusion
coefficient by no worse than 20% up to Γ = 25, consis-
tent with the findings of Hansen et al[8]. In the case
of a high-Z impurity, it is especially successful, agreeing
with the Eq. (35) within 5% over the entire range of Γ
examined. This can be explained by the fact that Eq. 35
analytically reduces to D12 = D1 in the x2 → 0 limit.

While the Darken model is fairly accurate for all cases
considered here, it’s greatest practical utility seems to
be for strongly coupled mixtures containing an impurity.
MD calculations using the Darken model may be used to
obtain accurate interdiffusion coefficients for this regime
at reduced computational cost.

BIM H+He2+ H+D+ H+C6+

Γ 1 10 25 1 10 25 1 10 25

δDD
12 13.5 19.1 15.7 8.75 9.64 0.789 0.55 1.27 2.88

TABLE II. Percent errors in the Darken approximations to
D12 computed using self-diffusion coefficients from MD sim-
ulations. Errors are relative to the value of D12 computed
directly from MD via Eq. (35). BIM compositions are the
same as those in Figure 4.

V. CONCLUSIONS

Through comparison with molecular dynamics simula-
tions, we have presented evidence that Effective Poten-
tial Theory extends weakly coupled plasma theory into
the strong coupling regime for the self-diffusion and in-
terdiffusion coefficients of binary ionic mixtures with an
accuracy that is sufficient for many current applications.
We also demonstrated a method for uniquely determin-
ing the modified Enskog factors in a mixtures from a
single equation of state and showed that they should be
curtailed for the special case of mixtures containing a
large impurity. With these extensions, EPT improves
substantially upon traditional plasma theory, while also
being much more practical than molecular dynamics for
canvassing the wide BIM parameter space. Since it is
efficient to evaluate, EPT offers a way to build look-
up tables for use in fluid simulations of strongly coupled
plasmas. Furthermore, since it requires only the radial
distribution functions as input, EPT can be coupled to
models for dense plasmas that are more realistic for par-
ticular applications than the classical BIM, as was shown
in Ref. [15]. In this way, it is suitable for application to
present-day diffusion challenges such as those arising in

inertial confinement fusion and stellar astrophysics.
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Appendix A: Second-Order Corrections to Dij

The second-order correction to D12 is typically given
in standard texts in terms of dimensional Ω-integrals[21,
23]. Here we expose the mass and charge dependence by

writing it in terms of the dimensionless Ξ
(l,k)
ij defined in

Eq. (9). The correction ∆12 is given by

∆12 = 5(C− 1)2
x21P1 + x1x2P12 + x22P2

x21Q1 + x1x2Q12 + x22Q2
, (A1)

where

P1 =

(
m1

m1 +m2

)3

E1 (A2)

P12 = 3

(
m1 −m2

m1 +m2

)2

+ 4
m12

m1 +m2
A (A3)

Q1 = E1
6m1m

2
2 + 8m2

1m2A +m3
1(5− 4B)

(m1 +m2)3
(A4)

Q12 = 2
m12

m1 +m2
E1E2 + 3

(
m1 −m2

m1 +m2

)2

(5− 4B)

+
4m12

m1 +m2
A(11− 4B) , (A5)

and

A =
Ξ
(2,2)
12

5Ξ
(1,1)
12

(A6)

B =
5Ξ

(1,2)
12 − Ξ

(1,3)
12

5Ξ
(1,1)
12

(A7)

C =
2Ξ

(1,2)
12

5Ξ
(1,1)
12

(A8)

E1 = 2
Z2
1m2

Z2
2m12

Ξ
(2,2)
11

Ξ
(1,1)
12

, (A9)

and P2, Q2, and E2 are obtained by switching the species
labels in P1, Q1, and E1 respectively. Corrections for Dii

can be obtained by setting the species labels to be the
same, resulting in

∆ii =
(2Ξ

(1,2)
ii − 5Ξ

(1,1)
ii )2/Ξ

(1,1)
ii

55Ξ
(1,1)
ii − 20Ξ

(1,2)
ii + 4Ξ

(1,3)
ii + 8Ξ

(2,2)
ii

, (A10)

which is of the same form as the OCP case[20].
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