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Magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative
interaction between plasma layers moving relative to each other. The efficiency of current drive, and
with it the associated dynamo effect, is considered in a number of limits. It is shown here, however,
that predictions for these generated magnetic fields can be significantly higher when kinetic effects,
previously neglected, are taken into account.

I. INTRODUCTION

Cosmic magnetism is usually explained by MHD dy-
namo theory [1], which is, however, only an amplifica-
tion mechanism that still requires some initial seed field.
There have been many speculations about the origin of
the seed field, but consensus is still lacking [2, 3]. One
possible mechanism is a radiation induced drag force on
electrons in rotating astrophysical objects. This idea was
evidently first proposed by Cattani and Sacchi [4] and
later has been applied to different astrophysical condi-
tions and objects [5–17]. However, none of these studies
took into account kinetic effects. It is shown here that
predictions for these generated magnetic fields can be sig-
nificantly higher when kinetic effects are taken into ac-
count. In the presence of existing magnetic fields, these
kinetic effects can enhance the generated magnetic fields
by orders of magnitude.

A rotating astrophysical object is subject to asym-
metric incoming radiation, which exerts the Poynting-
Robertson drag force on electrons in the (toroidal) rota-
tion direction that leads to the poloidal magnetic field.
Within a fluid framework, this can be modeled by includ-
ing an additional term into the equation for the magnetic
field dynamics:

∂B

∂t
= − c

e
∇× frad. (1)

There are two ways in which kinetic effects modify the
effective radiation force. First, the Poynting-Robertson
force on an individual electron depends on the absorbed
power, which is, generally speaking, different for the elec-
trons of different energies; usually the more energetic
electrons absorb more power. Thus, to get the effective
radiation force on the electron fluid, one needs to average
the force for each electron over the absorbed power. Sec-
ond, toroidal current can be driven even without toroidal
momentum injection just by asymmetrically heating elec-
trons. Indeed, by heating electrons we increase their en-
ergy and since the collision frequency in plasma is en-
ergy dependent (∝ v−3) the toroidal drag force due to
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FIG. 1. Parallel radiating and absorbing slabs of plasma, im-
mersed in different magnetic fields at different temperatures,
in relative parallel motion.

Coulomb collisions is going to be asymmetric resulting
in the total toroidal current [18].

To simplify the problem and underscore the influence
of the kinetic effects, we consider a slab geometry, where
the parallel direction corresponds to the toroidal direc-
tion of the original rotating object (see Fig. 1). Namely,
we consider two parallel and possibly magnetized (in the
parallel direction) plasma slabs that move relative to each
other with velocity β̄ (velocities are measured in the units
of c). We label the upper slab as slab 1 and the lower
slab as slab 2.

The paper is organized as follows: In Sec. II we derive
the efficiency of current generation through the Poynting-
Robertson effect. In Sec. III, using kinetic rather than
fluid theory, we show how the efficiency of the cur-
rent generation through radiation effects can be much
enhanced when there is a seed magnetic field already
present and when kinetic effects are considered. We con-
sider, in subsection IIIA, the case of blackbody emission
and cyclotron absorption. In subsection IIIB, we consider
the case of cyclotron emission and cyclotron absorption,
where not only can the currents driven be driven much
more effectively, but there is even the curious effect that
the current in adjacent differentially moving plasma can
be either in the same direction or opposite directions. In
Sec. IV, we summarize and discuss our findings.

II. THE POYNTING-ROBERTSON EFFECT

Consider an electron that moves with velocity β‖ and
emits isotropic radiation in its own reference frame.
Imagine that this electron also absorbs external radia-
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tion, which is isotropic in its own reference frame moving
with parallel velocity βs = −β̄. Conservation of energy
and momentum then gives

mc
(
γβ̇‖ + γ̇β‖

)
+ ṗems
‖ = ṗabs‖ , (2)

mc2γ̇ = P abs − P ems, (3)

where P abs is the absorbed power, pabs‖ is the absorbed
parallel momentum, P ems is the emitted power, and pems

‖
is the emitted parallel momentum.

The time derivative of the wave momentum is de-
termined by the power delivered by the wave ṗwave =
(k/ω)Pwave. Using the Lorentz transformation we can
express it as ṗems =

(
β‖/c

)
P ems, ṗabs = (βs/c)P

abs.
Inserting these expressions into the energy-momentum
equations we find that electron parallel velocity satisfies

β̇‖ = − P abs

γmc2
(β‖ − βs). (4)

We see that the electron experience drag by absorbing
the external radiation. This effect is called the Poynt-
ing–Robertson effect. It is a relativistic effect by its very
nature, although it does not require that the relative ve-
locity between absorber and emitter be relativistic. In
the reference frame of an electron, this drag force can be
simply interpreted as a momentum transfer from asym-
metric external radiation to an electron. However, in the
reference frame of the external radiation source, there is
no parallel momentum injection; there is only an energy
increase, which makes the electron heavier relativistically.
Since the total parallel momentum must be conserved the
electron must slow down. Notice that, without external
radiation, there would be no radiation drag force (if we
define force as the cause of velocity change rather than
momentum), which is consistent with the well-known fact
that isotropically radiating charge conserves its parallel
velocity [19]. It should be emphasized that here, by ab-
sorption, we mean a generalized process of wave-particle
interaction, for example, it can denote Thomson scat-
tering. While electrons experience radiation drag, ions
are almost unaffected by radiation and hence current is
generated.

Let us estimate crudely the current drive efficiency in
this case. Assume that the parallel velocity is randomized
during the inverse collision time ν−1 and use the effective
electron-electron and electron-proton Coulomb collision
frequency ν = Γ/6β3 (see Refs. [20–22]), where Γ =
ω4
p lnΛ/4πnc3. Then, after averaging over the Maxwell

distribution, we find:

j‖

P abs
V

=

〈
β3
〉

15
β̄ ≈ 0.43β3

thβ̄. (5)

Here and later the current drive efficiency is expressed in
the units of e/Γmc except for Eq. (6).

III. KINETIC FORMULATION

The kinetic theory of current drive by external radia-
tion is well developed and experimentally demonstrated
[23]. This theory has been advanced to accommodate the
need for efficient non-inductive toroidal current genera-
tion required for the successful operation of commercial
tokamaks. The theory formulates the efficiency of cur-
rent generation as the ratio of the driven current density
to the absorbed power density [22]:

j‖

P abs
V

= − e

mc

[
n‖

ν
+
β‖

β

∂

∂β

(
1

ν

)]
. (6)

The first term in Eq. (6) can be associated with the
Poynting-Robertson drag, while the second is due to
asymmetric heating. The second term arises because the
collision frequency ν depends sensitively on the electron
energy. It leads to the electron cyclotron current drive
(ECCD) effect in tokamaks [18]. The radiative transfer
dynamo effect in astrophysical contexts is not much dif-
ferent from the situation described above. The major
difference is that the radiation driving current is set up
naturally rather than controlled.

Equation (6) gives the non-relativistic efficiency of the
current driven by a very narrow radiation band that af-
fects only a small region in velocity space. To calculate
the efficiency for arbitrary incoming radiation average
Eq. (6) over the power density absorbed per frequency
per solid angle per d3β. The absorbed power density is
given by

P abs
V =

∫∫
dωdΩαωΩIωΩ, (7)

where IωΩ is the incoming electromagnetic energy flux
density per unit frequency per solid angle and αωΩ is
the absorption coefficient (true absorption plus stimu-
lated emission). Due to the principle of detailed balance
the absorption coefficient can be expressed through the
emissivity of an individual electron ηωΩ (p) [24, 25]:

αωΩ = −8π3c2

n2
rω

2

∫
d3pηωΩ (p)

(
∂f

∂ε
+
n‖

c

∂f

∂p‖

)
, (8)

where nr is the ray refractive index, we will use approx-
imation of tenuous plasma and assume nr ≈ 1; n‖ is the
wave parallel refractive index, which we take to be just
n‖ = cos θ.

Thus, we can calculate the current drive efficiency for a
specific type of the absorption mechanism determined by
ηωΩ (p) and for a given external radiation spectrum IωΩ.
Although, in both emitting and absorbing radiation, the
two slabs form a coupled system, to get the efficiency
linear in power transferred, note that each slab may be
considered to see fixed radiation from the other slab.
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FIG. 2. Schematic picture of the magnetic field growth. Mag-
netic field grows approximately linearly with time until it sat-
urates at equilibrium value Beq. Kinetic effects increase Beq

to the same extent as they increase the current drive effi-
ciency, but they hardly change the time to reach equilibrium
teq. The actual value of the magnetic seed is determined at
some characteristic time tseed � teq and it increases to the
same extent as the efficiency increases.

We first argue that it is the current drive efficiency
that determines large-scale magnetic field generation in
optically thick plasma, for which the effect is maxi-
mized. For optically thick plasma, the incoming radi-
ation flux I =

∫∫
dωdΩIωΩ is absorbed over the char-

acteristic distance R = α−1, where α = P abs
V /I is the

characteristic absorption coefficient. Ampere’s law gives
B·2πr ≈ (4π/c) j‖Rh, where h is the height of the plasma
disk, so the large-scale equilibrium magnetic field at dis-
tance r outside the plasma is proportional to the current
drive efficiency:

B ≈ 2

c

h

r

(
j‖

P abs
V

)
I. (9)

Kinetic effects change the current drive efficiency and
thus the equilibrium field, but they do not affect much
the time to reach equilibrium teq, which is the so-called
"L/R time". That time is still determined by the Spitzer
conductivity, since the full distribution function is equally
pushed by an electric field [26]. The time to reach equi-
librium teq greatly exceeds the age of the universe, and
so the actual value of the magnetic seed is determined at
some characteristic time tseed � teq and it increases to
the same extent as the efficiency increases (see Fig. 2).

A. Blackbody incoming radiation and cyclotron
absorption

To take one example, let us assume that the incoming
radiation from the first slab is blackbody:

IωΩ =
ω2

8π3c2
T1

γ̄
(
1 + β̄ cos θ

) . (10)

If the plasma were already immersed in a parallel mag-
netic field, then one of the absorption mechanisms would
be synchrotron absorption. In the non-relativistic case,
it is determined by the emissivity [27]:

ηωΩ (β) =
e2β2
⊥ω

2

4πc

(
1 + cos2 θ

)
δ
[
ωc2 − ω

(
1− β‖ cos θ

)]
.

(11)
After some algebra it is easy to show that the current

drive efficiency in this case is

j‖

P abs
V

= −
〈
β2
⊥β

3I2
(
β‖
)〉

+ 3
〈
β2
⊥ββ‖I1

(
β‖
)〉

6
〈
β2
⊥I1

(
β‖
)〉 , (12)

where the averaging is over the initial distribution that
is taken to be a Maxwellian, and the following integrals
are introduced

I1
(
β‖
)

=

∫ 1

−1

dx
1 + x2(

1− β‖x
)3 (

1 + β̄x
) , (13)

I2
(
β‖
)

=

∫ 1

−1

dx
x
(
1 + x2

)(
1− β‖x

)3 (
1 + β̄x

) . (14)

Keeping only the terms of the order O(β2
‖), O

(
β̄2
)
,

O
(
β‖β̄

)
we find:

j‖

P abs
V

=

〈
β2
⊥β

3
〉

+ 9
〈
β2
⊥ββ

2
‖

〉
15 〈β2

⊥〉
β̄ ≈ 2.4β3

thβ̄. (15)

If we ignored the second term in the numerator of
Eq. (15) and also did not account for β2

⊥ in the absorp-
tion, then the efficiency would be given by Eq. (5), i.e.
correspond to the case of Thomson scattering analyzed
through fluid theory.

From comparison of Eq. (15) and Eq. (5), we see that
for cyclotron absorption the inclusion of the kinetic ef-
fects boosts the generated current by a factor of 6. This
is not a huge change, though it is not insignificant either.
For reference, the fluid estimates for the galactic mag-
netic field are about 10−19 G [28], while the estimates
for the required lower bound on the seed galactic field is
about 10−14 G [29].

Cyclotron absorption mechanism needs some parallel
(toroidal) magnetic field to be already present to work.
However, we see that the efficiency (15) is independent of
the magnetic field, so it seems that we can get poloidal
magnetic field from a very small toroidal field, gener-
ated, for example, by the Biermann battery effect [30].
This works only when all the incoming radiation is ab-
sorbed within the plasma, so that the effective absorption
length is less than the characteristic size of the system.
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For blackbody incoming radiation flux and cyclotron ab-
sorption the effective absorption coefficient is

α =
4

3π

k4
B

c3σSBT 3
1

ω2
p2ω

2
c2, (16)

or α ≈ 10−20+n+2b−3k cm−1 for T1/kB = 10k K, n2 =
10n cm−3, and B2 = 10b G. If we take typical proto-
galactic values T1/kB = 104 K and n = 1 cm−3, then
for B2 = 10−20 G that realistically can be produced by
the Biermann battery the effective absorption length be-
comes R ∼ 1071 cm, which is much larger than charac-
teristic size of the system. Thus, cyclotron absorption
mechanism cannot be responsible for the generation of
the galactic seed field. However, it might be a very effec-
tive mechanism of poloidal magnetic field generation in
already highly magnetized objects such as, for example,
neutron stars.

B. Cyclotron incoming radiation and absorption

So far we considered that the incoming radiation is
blackbody. We can expect that if the incoming radiation
were narrower in k‖, then its absorption would be more
asymmetric in parallel velocity of the second slab, which
would result in enhanced efficiency.

To investigate this, consider the case where each of
the slabs is immersed in an axial magnetic field, though
the respective magnetic fields are not not necessarily of
the same strength. Suppose that cyclotron radiation is
emitted by an optically thin surface layer of depth L.
The incoming flux is then given by [27]

IωΩ =
n1Le

2βth1

4π
√

2πc

ω

|cos θ|
(
1 + cos2 θ

)
e
− (ω−ωc1

ω cos θ
+β̄)

2

2β2
th1 .

(17)
The current drive efficiency for cyclotron absorption

has the same form as Eq. (12), but with the following
definition of I1, I2:

I1
(
β‖
)

=

(∫ −|a|
−∞

dx+

∫ ∞
|a|

dx

)
1

|x|3
(
x2 + a2

)2(
x− aβ‖

)2 e− (x+b)2

2 ,

(18)

I2
(
β‖
)

=

(∫ −|a|
−∞

dx+

∫ ∞
|a|

dx

)
a

x4

(
x2 + a2

)2(
x− aβ‖

)2 e− (x+b)2

2 ,

(19)

where a = (ωc2 − ωc1)/ωc2βth1 ≡ 4ωc/ωc2βth1, and b =
(ωc1/ωc2) (β‖/βth1) + β̄/βth1.

The first term in the denominator of Eq. (12) with I1
and I2 defined above is due to direct parallel momen-
tum injection and so depends on the sign of 4ωc, while
the second is due to asymmetric heating. Since now ab-
sorption is localized in velocity space and most of the
absorbed power goes into heating rather than giving a

slab 1

slab 2

(a)

slab 1

slab 2

(b)

FIG. 3. (a) ωc1 ' ωc2: electrons of slab 2 with negative
velocities around −β̄ (left blue region) interact with the large
number of electrons of slab 1 (left red region), while symmetric
electrons of slab 2 with positive velocities around β̄ (right blue
region) interact with small number of electrons of slab 1 (right
red region). (b) ωc1 6= ωc2: electrons of slab 2 with negative
velocities around −β̄ (left blue region) has large number of
electrons of slab 1 in the non-absorption window (left white
region) and thus absorb less energy than symmetric electrons
of slab 2 with positive velocities around β̄ (right blue region),
which have small number of electrons of slab 1 in the non-
absorption window (right white region).

parallel push, the second term completely dominates and
the efficiency becomes essentially independent of the sign
of 4ωc. There are two qualitatively different cases that
produce current of different sign: |a| � 1 (positive cur-
rent) and |a| & 1 (negative current). From numerical
treatment it appears that for wide range of parameters
the efficiency is approximately given by∣∣j‖∣∣

P abs
V

∼ 102β2
thβ̄. (20)

This is 102/βth larger efficiency than that for the black-
body radiation, for T/kB ≈ 104K is about ∼ 105. There-
fore, at least in the case when the plasma already pos-
sesses some toroidal magnetic field, one can expect the
generated poloidal magnetic field to be orders of mag-
nitude larger than the previous estimates based on the
fluid theory.

These results can be understood from the following
qualitative picture. The non-relativistic cyclotron reso-
nance condition for an electron of slab 2 moving with
velocity β‖2 to absorb the radiation emitted by an elec-
tron of slab 1 moving with velocity β‖1 is

ωc1 − k‖c
(
β‖2 − β‖1

)
= ωc2. (21)

Here we use k‖ corresponding to the reference frame
where the electron of slab 1 is stationary, and veloci-
ties β‖1, β‖2 are measured in the frame where slab 2 is
stationary.

If |a| � 1, then essentially ωc1 ' ωc2 and the resonance
condition is k‖ = 0 or β‖2 = β‖1. The former condition
does not depend on the velocities and cannot lead to the
asymmetry, the latter condition leads to an asymmetric
absorption. Indeed, the electrons with positive parallel
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velocity β‖2 ≈ β̄ absorb less power than the electrons
with negative parallel velocity β‖2 ≈ −β̄, because the
latter are in resonance with a much larger number of
electrons in slab 1. Thus the electrons with negative
parallel velocities will experience less Coulomb drag force
than the electrons with positive velocities resulting in
positive current. This situation is shown in Fig. 3(a).

If |a| & 1, then the magnetic fields are different
ωc1 6= ωc2 and the resonance condition (21) implies that
the electrons of slab 2 with velocity β‖2 will resonantly
interact with the electrons of slab 1 with parallel veloci-
ties satisfying

{
β‖1 < β‖2 − |4ωc| /ωc1,

β‖1 > β‖2 + |4ωc| /ωc1.
(22)

Thus there is a window in the absorption for each elec-
tron. The electrons of slab 2 with negative parallel ve-
locity around −β̄ will have larger number of electrons of
slab 1 in this window and thus will receive less power than
the electrons of slab 2 around β̄. The result is negative
current. This situation is shown in Fig. 3(b).

Notice that one gets the same efficiency but with dif-
ferent sign for the current driven in the first slab. For
blackbody incoming radiation, this current would be al-
ways in the opposite direction, but, interestingly, for cy-
clotron radiation, it is possible to have the situation when
currents in both slabs flow in the same direction. In-
deed, since the parameter a depends on temperature it
can have different values corresponding to two different
regimes (|a| � 1 and |a| & 1) in each slab. Thus, we
reach the surprising result that, for a differentially ro-
tating plasma disk immersed in a toroidal magnetic field
and with a temperature gradient , it is possible that a
toroidal current will be self-consistently generated in the
same direction throughout the disk.

Figure 4 shows the absorbed power per electron as a
function of the parallel velocity for βth = 0.01, β̄ = 0.05
and four different values of parameter a. We can clearly
see that the absorption is asymmetric. For |a| � 1 the
situation is basically analogous to the case of equal mag-
netic fields shown in Fig. 3(a) when the electrons with
negative parallel velocities (around −β̄) absorb more
power resulting in positive current. In contrast, for
|a| & 1 there is a dip in the absorption for the electrons
moving with negative velocities resulting in negative cur-
rent (see Fig. 3(b)). We can also see that, as the differ-
ence between magnetic fields of the slabs increases, i.e. as
the parameter |a| increases, the total absorbed power de-
creases rapidly. Thus, in the limit |a| � 1, the efficiency
should be viewed as questionable, because the total ab-
sorbed power density is negligible and radiation has to
pass through a very large volume of plasma to be fully
absorbed.
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FIG. 4. Absorbed power density per electron as a function of
parallel velocity for βth = 0.01, β̄ = 0.05 and different values
of a: a = 0.01 (solid blue), a = 0.1 (dotted red), a = 1.0
(dashed orange), a = 3.0 (dash-dotted green).

IV. CONCLUSION

The generation of cosmic magnetic fields due to radi-
ation transfer can be significantly larger when one takes
into account kinetic effects rather than simply relying on
fluid theory. In the case where the radiation is from cy-
clotron radiation, namely when there already exists an
ambient magnetic field, an increase in fields perpendicu-
lar to the ambient field can be orders of magnitude larger
when kinetic effects are considered. Curiously, in the
case of inhomogeneous field, it is possible to generate
these perpendicular fields such that the current produced
within two differentially traveling, radiating and absorb-
ing slabs is in the same direction, an effect that would
not be captured in the fluid theory.

The formalism advanced here shows how to deal with
a radiative process, which is kinetic by its very nature.
It is expected that the formalism advanced here can be
applied to various areas of astrophysics where radiative
kinetic effects might be important, for example, to ra-
diative magnetic reconnection [31]. It is also hoped that
the approach taken here might help to make more ac-
curate the currently widely used astrophysical radiative
transfer codes, which, to the best of our knowledge, only
exist in the hydrodynamic version (see, for example, Ref.
[32, 33]).
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