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Abstract 
While flame propagation through obstacles is often associated with turbulence and/or shocks, 
Bychkov et al. [Physical Review Letters 101 (2008) 164501] have revealed a shockless, 
conceptually-laminar mechanism of extremely fast flame acceleration in semi-open pipes (one 
end of a pipe is closed; a flame is ignited at the closed end and propagates towards the open one). 
The acceleration is devoted to a powerful jet-flow produced by delayed combustion in the spaces 
between the obstacles, with turbulence playing only a supplementary role in this process. In the 
present work, this formulation is extended to pipes with both ends open in order to describe the 
recent experiments and modelling by Yanez et al. [http://arxiv.org/abs/1208.6453] as well as the 
simulations by Middha & Hansen [Process Safety Progress 27 (2008) 192]. It is demonstrated 
that flames accelerate strongly in open/vented obstructed pipes, and the acceleration mechanism 
is similar to that in semi-open ones (shockless, laminar), although acceleration is weaker in open 
pipes. Starting with an inviscid approximation, we subsequently incorporate hydraulic resistance 
(viscous forces) into the analysis for the sake of comparing its role to that of a jet-flow driving 
acceleration. It is shown that hydraulic resistance is actually not required to drive flame 
acceleration. In contrast, this is a supplementary effect, which moderates acceleration. On the 
other hand, viscous forces are nevertheless an important effect because they are responsible for 
the initial delay occurring before the flame acceleration onset, which was observed in the 
experiments and simulations. Accounting for this effect provides good agreement between the 
experiments, modelling and the present theory.   
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I.   Introduction 

One of the critical fire safety demands is the prevention/mitigation of flame acceleration and 

deflagration-to-detonation transition (DDT). At the same time, the promotion of these processes 

is expected to improve advanced combustion technologies such as pulse-detonation and rotation-

detonation engines as well as micro-combustors. Among the geometries associated with flame 

acceleration [1, 2] and DDT [3-5], obstructed pipes, presumably, provide the fastest regime of 

burning. While flame propagation through obstacles is often associated with turbulence [6] or 

shocks [7], a shockless, laminar and inviscid mechanism of extremely fast acceleration has been 

found for flame spreading through a “tooth-brush” array of obstacles in a “semi-open” pipe [8-

10]. In such a configuration, one end of a pipe is closed such that a flame is ignited at the closed 

end, and it propagates towards the open one. This acceleration mechanism is devoted to a 

powerful jet-flow along the pipe centerline, generated by a cumulative effect of delayed burning 

in “pockets” between the obstacles, as detailed in Sec. II. This acceleration is extremely strong, 

and the mechanism is conceptually laminar, with turbulence playing only a supplementary role. 

To some extent, this makes the “tooth-brush” acceleration mechanism scale-invariant (Reynolds-

independent) and, thereby, relevant to a variety of scales – from micro-combustors till industrial 

conduits as well as mining and subway tunnels.     

 However, while the studies [8-10] were limited to the semi-open channels and tubes, 

industrial and laboratory conduits often have both ends open, or vented, with a flame ignited at 

one of these ends. In particular, this is the case for the recent hydrogen-air experiments in vented 

obstructed conduits [11]. The experiments [11] have demonstrated strong flame acceleration, 

which would resemble that of Ref. [8], unless in the experiments, acceleration started not 

immediately after ignition, but following a noticeable delay, during which the flame propagated 
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almost steadily. Furthermore, while the formulation [8] is inviscid, the authors of Ref. [11] have 

devoted the entire acceleration scenario, observed in their experiments, to the viscous forces, 

following the studies [13, 14].  

 In addition to the experimental component, the study [11] also included ad-hoc numerical 

simulations performed by means of the combustion code COM3D. The simulations supported 

the experiments in that they also showed a delay prior to strong acceleration, and the locus of the 

transition to this accelerative regime was computationally prescribed quite well. However, the 

simulations overestimated the delay time. Such a discrepancy can be devoted to the chemical 

kinetics and other time-sensitive features from the practical reality that cannot be captured by the 

simulations. In addition, the FLACS simulations [12] also imitated the experiments [11], with 

better agreement on the delay time than that of the COM3D simulations. Still, the FLACS 

slightly underestimated of the locus of the acceleration onset. 

 Overall, the experiments [11] and the computational simulations [11, 12] identified a new 

phenomenon of near-steady flame propagation prior to a sudden transition to fast acceleration. In 

this respect, the major purpose of the present work is to elucidate and describe the experimental 

and computational findings [11, 12], in general, and the initial delay observed, in particular. For 

this purpose, the formulation [8] for semi-open obstructed channels is extended to that for 

open/vented ones (both ends of a channel are open). First, the inviscid approximation is kept, 

Sec. III, and it is shown that flame acceleration in the open obstructed pipes is qualitatively 

similar to that in the semi-open ones. Nevertheless, the acceleration rate in a pipe with both ends 

open is smaller because the flame-generated gas volume is distributed between the flows towards 

both open ends in this case, while in a semi-open pipe, the entire flow is pushed towards the 

single exit. Second, the viscous effects (hydraulic resistance) are incorporated into the analysis in 
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Sec. IV. As a result, good qualitative and quantitative agreement with the experiments [11] and 

the simulations [11, 12], including the initial delay prior to strong acceleration, is obtained. 

Specifically, it is found that the delay is related to hydraulic resistance, which opposes flame 

acceleration directly from the open pipe end. 

 As a result, in contrast to the statement of Ref. [11], devoting this acceleration to viscous 

effects, the present formulation shows that hydraulic resistance is not required at all to drive 

obstacles-based acceleration, which can be described even within the frame of an inviscid model. 

Nevertheless, the present study also justifies an important role of viscous forces: they hinder 

flame acceleration at the initial stages of combustion in obstructed conduits, thus causing a 

considerable delay in the onset of extremely strong acceleration.  

II.    Flame Acceleration in Semi-Open Obstructed Pipes 

First, we briefly recall the physical mechanism of extremely fast flame acceleration in semi-

open, obstructed channels, which has been identified in Ref. [8] and validated by numerical 

simulations [8, 9] and experiments [15]. Namely, we consider a two-dimensional (2D) channel of 

half-width R , with a part Rα  blocked by the obstacles in the form of a “tooth-brush” array of 

infinitely thin, parallel plates with spacing zΔ  between them; see Fig. 1. While we consider the 

obstacles to be placed close to each other with rather deep pockets, Rz α<<Δ , according to the 

computational simulations [9], the large spacing between the obstacles would not change the 

basic flame acceleration mechanism. Nevertheless, this might lead to noticeable complications of 

the analysis such as the need to account for the turbulent flow pulsations, which could actually 

conceal the main physical mechanism of flame acceleration. However, averaged-in-time, the 

turbulent pulsations would provide a minor (if any) contribution to the acceleration scenario [9].  
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 The formulation [8] employed the conventional model of an infinitely thin flame front 

propagating locally with the laminar flame speed LS . The initial stage of flame acceleration may 

be described in terms of an incompressible flow. Conceptually, the acceleration mechanism does 

not involve viscosity and turbulence; hence, it appears Reynolds-independent. A flame is ignited 

at the closed end, propagating fast towards the open end along the free part of the channel, and 

leaving the unburnt fuel mixture trapped in the pockets between the obstacles. The thermal 

expansion of the burning matter is characterized by the fuel-to-burnt density ratio, bf ρρ /≡Θ , 

which is 8~3  for typical fuels. Delayed burning in the pockets produces the extra gas volume, 

which flows out of the pockets with the velocity LS)1( −Θ . The flow out of numerous pockets is 

deflected in the channel free part, and it is cumulated into a strong jet-flow along the channel 

axis, which drives the flame tip and produces new pockets. The positive feedback between the 

flame and the flow leads to powerful, extremely fast flame acceleration.  

 Due to the symmetry, only the upper half of the channel is considered, 0>x , with the z- 

and x-velocity components being );( wu=u . Delayed burning out of pockets sets the boundary 

condition in the burnt gas LRx Sw )1(| )1( −Θ−=−= α  for fZz < , where )(tZ f  is the flame tip 

position. While the flame gets turbulized in the practical reality, according to Ref. [9], the curved 

(turbulent) shape of the flame tip provides a minor contribution into the acceleration mechanism 

and may be neglected. The solution to the incompressible continuity equation in the burnt gas, 

0=⋅∇ u , with the boundary condition at the closed channel end, 0| 0 ==zu , yields the velocity 

distribution in the free part of the channel in the form 

z
R
Su L

)1(
)1(

α−
−Θ

= , x
R
Sw L

)1(
)1(

α−
−Θ

−= ,      (1) 

such that the flow velocity of the burnt gas at the flame tip position, fZz = , is  
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( ) f
L

f Z
R
S

Zu
)1(
)1(

α−
−Θ

= .        (2) 

The flame tip velocity in the laboratory reference frame, fZ& , is a sum of the flow velocity of the 

brunt gas, )( fZu , and the flame tip velocity with respect to the brunt gas, LSΘ , 

Lf
Lf SZ

R
S

dt
dZ

Θ+
−
−Θ

=
)1(
)1(

α
.        (3) 

Solution to Eq. (3), with the initial condition ( ) 00 =fZ , takes the form 

 { }1)/exp( −Θ= RtSRZ Ls
s

f σ
σ

,       (4) 

with the scaled exponential acceleration rate  

α
σ

−
−Θ=

1
1

s ,          (5) 

where, the label “s” indicates a semi-open channel.  

 Equations (3) – (5) constitute the basics of the flame acceleration mechanism in semi-

open channels with a “tooth-brush” set of the obstacles. This obstacles-based acceleration is very 

powerful, and it gets stronger with the increases in the blockage ratio α  and the thermal 

expansion factor Θ . Say, for 8=Θ  and 2/1=α , Eq. (5) yields 14=sσ . If a flame accelerated 

in the isobaric regime forever, this would imply the velocity increase by a factor of 710)14exp( ≈

(!) during the characteristic burning time LSR / . Obviously, such a huge velocity increase never 

happen in the practical reality because (i) the compressibility effects moderate flame acceleration 

at the developed stages [9, 10, 16] and (ii) a detonation would occur at much lower speeds. 

While obstacles-based acceleration resembles finger-shaped flame acceleration [16-18], the 

pockets filled with a fresh fuel mixture separate the free part of the channel from the walls 

enabling this acceleration to last longer than that of the finger flame model, where acceleration 

stops as soon as the flame front contacts the wall. In this light, to some extent, the tooth-brush 

mechanism can be treated as unlimited in time as long as the assumptions employed are justified.   
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III.   Flame Acceleration in Open/Vented Obstructed Pipes: Inviscid Formulation 

We next extend the analysis to a channel with both ends open and ignition occurring at the open 

end, as illustrated in Fig.2. Similar to Sec. II, here we still neglect the viscous effects; they will 

be accounted in Sec. IV. The conceptual difference between the semi-open and open pipes is that, 

in the latter configuration, the extra gas volume produced by delayed burning in the pockets is 

distributed at a certain turning point, tZ , between two flows: (i) that of the burnt gas (label “1”), 

leaving the channel entrance, 0=z , with the velocity 1U ; and (ii) that of the fuel mixture (label 

“2”), leaking through the channel exit, Lz = , with the velocity 2U . Here L  is the total length of 

the channel, but it is noted that the quantity L  does not influence the formulation as long as 

viscosity is neglected. 

 The values 1U , 2U , tZ  are unknown a priori and have to be found from the momentum 

conservation. Specifically, we next assume a zero net force on the gas in the channel. Such an 

approach was successfully employed, in particular, in Ref. [19] for unobstructed pipes, where it 

allowed explaining a conceptual difference between flame acceleration in semi-open channels 

and quasi-steady flame propagation (oscillations) in open-open channels. It is nevertheless 

recognized that in the present, obstructed configuration a discontinuity along the line of the 

obstacles may create extra vortexes moving inside the gas flow and thereby influencing the net 

force. However, this effect is omitted in the present formulation and requires a separate study. 

Here, accounting for the balance of the momentum fluxes behind and ahead of the flame front, in 

the burnt matter and fuel mixture respectively, 

 22
fffbbb UPUP ρρ +=+ ,        (6) 
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with the relation bf ρρ /≡Θ , and the pressure difference across the flame front, between the 

unburnt and burnt gases, in the form 2)1( Lfbf SPP ρ−Θ=−  , we find 

 222 )1( Lfb SUU −ΘΘ+Θ= .        (7) 

The quantities bU  and fU  generally may depend on time and tube length/position, so they may 

vary with the flame propagation. At the tube entrance and exit, they attain the values 1U  and 2U , 

respectively, such that Eq. (7) reads  

 22
2

2
1 )1( LSUU −ΘΘ+Θ= .        (8) 

The matching condition at the flame front for the normal velocity component reads 

 Lf SZuU )1()(2 −Θ=− ,        (9) 

where )( fZu  is taken in the burnt gas just behind the flame front. Together, Eqs. (8) and (9) 

relates the velocities of the burnt gas at the entrance and just behind the flame, 1U  and )( fZu , as 

 [ ] 222
1 )1()1()( LLf SSZuU −ΘΘ+−Θ+Θ= .      (10) 

Similar to Sec. II, we next solve the incompressible continuity equation, 0=⋅∇ u , in the burnt 

gas but with the new boundary conditions for the z-velocity component,  

 )(| ffZz Zuu == ,     10| Uu z −== ,    0| == tZzu ,     (11) 

while the boundary conditions for x-velocity component are the same as in Sec. II. Then the 

counterpart of Eq. (1) becomes 

 )(
)1(
)1(

t
L Zz

R
S

u −
−
−Θ

=
α

, x
R
S

w L

)1(
)1(

α−
−Θ

−= .     (12) 

Combining Eqs. (10) – (12), we find 

 )(
)1(
)1()( tf

L
f ZZ

R
SZu −

−
−Θ

=
α

,       (13) 
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 [ ] =−=−ΘΘ+−Θ+Θ =0
22 |)1()1()( zLLf uSSZu  

     )(
)1(
)1(

)1(
)1(

ff
L

t
L ZuZ

R
SZ

R
S −

−
−Θ=

−
−Θ

αα
.  (14) 

In the limit of strong flame acceleration, Lf SZu )1()( −Θ>> , LSU )1(2,1 −Θ>> , Eq. (10) reads 

)(21 fZuUU Θ≈Θ≈ , and Eq. (14) is therefore reduced to  

 
R
SZ

Zu Lf
f 1)1(

)1()(
+Θ−

−Θ=
α

,  
1+Θ

Θ
= f

t
Z

Z .     (15) 

The transition from Eq. (14) to Eq. (15) is justified in Fig. 3, where both equations are solved and 

compared for the variety of expansion factors Θ  and blockage ratios α . Specifically, the scaled 

flame tip position, RZ f / , is plotted versus the scaled flow velocity at the front, Lf SZu /)( , for 

the fixed 38.3=Θ  (the same as in Ref. [11]) and various 6.0,5.0,4.0=α  in Fig. 3a; and for the 

fixed 5.0=α  and various 8,5,38.3=Θ  in Fig. 3b. It is seen that the difference between Eqs. 

(14) and (15) is minor for typical 8~3=Θ  and 3/23/1 << α , which thereby justifies Eq. (15) 

that will be employed hereafter, and according to which )( fZu  in an open channel is 1+Θ  

times smaller than that in a semi-open one, Eq. (2). Also, the transition from Eq. (14) to Eq. (15), 

employing the approach LSU )1(2,1 −Θ>> , obviously allows neglecting the last term in Eq. (8) 

making it 21 UU Θ≈ , or 2
2

2
1 UU Θ≈ . In this respect, the momentum fluxes balance equation, 

Eq. (6), written for the entire tube from the entrance to exit, splits into 2
2

2
1 UU fb ρρ =  and 

ambPPP == 21 . The latter equality simply denotes that the pressure at the open entrance and exit 

of the tube equals to the ambient (laboratory) pressure. Then the counterpart of Eq. (3) reads 

 L
fLf S

Z
R
S

dt
dZ

Θ+
+Θ−

−Θ
=

1)1(
)1(

α
,       (16) 

with the solution       
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 { }1)/exp( −Θ= RtSRZ Lo
o

f σ
σ

,       (17) 

where  

 
1)1)(1(

1
+Θ

=
−+Θ

−Θ= s
o

σ
α

σ        (18) 

is the scaled exponential acceleration rate and the label “o” stands for an open channel. Although 

the acceleration rate in an open channel, Eq. (18), is smaller than that in a semi-open one, Eq. 

(5), acceleration remains quite strong and, foremost, Reynolds-independent. To illustrate this 

statement, Fig. 4 presents a detailed parametric analysis of the present formulation and compares 

our results to the experimental data [11] as well as to the simulations [11, 12]. Specifically, Fig. 

4a shows the time evolution of the flame tip position, )(tZ f , Eq. (17), for the fixed 38.3=Θ  

and various 7.0~4.0=α , while Fig. 4b presents )(tZ f  versus time for the fixed 2/1=α  and 

various 38.5~38.2=Θ . The thermal expansion is essential for the burning time in the pockets, 

and therefore for the jet-flow towards to center of the channel. Indeed, according to Fig. 4a, the 

increase in Θ  makes acceleration sudden, with no delay observed, while the reduction in Θ  

leads to a slight delay prior to strong acceleration. Nevertheless, this delay is still far away from 

that observed in Refs. [11, 12] as seen in Fig. 4c – the first attempt to compare the present study 

to the experimental and computational (COM3D) data [11] as well as to the FLACS simulations 

[12] for 38.3=Θ , 2/1=α , cm7.8=R , and m/s 5.3=LS . For these values, Eq. (18) yields 

7.1≈oσ , implying a powerful acceleration: 5.5≈  times increase in the flame propagation 

velocity during a characteristic time sec025.0/ ≈LSR . It is seen that both sets of simulations 

basically supported the experiments in terms of the acceleration rate and the general trend. In 

particular, they also identified a delay prior to strong acceleration (though the COM3D [11] 

overestimated the delay time by about 80% and its locus by almost 30%; while the FLACS [12] 
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overestimated the delay time by 20% and underestimated its locus by circa 30%). In contrast, all 

experimental and computational results [11, 12] disagree with the theoretical prediction of Eq. 

(17). Indeed, while the theoretical instantaneous acceleration rates of Fig. 4c can actually be 

compared to that of Refs. [11, 12], the delay observed in the experiments [11] and modelling [11, 

12] cannot be predicted within an inviscid approach; it will be explained in Sec. IV.   

IV.   Flame Acceleration in Open/Vented Obstructed Pipes: Viscous Formulation 

After ignition at the open end of the conduit and prior to sudden acceleration, the experiments 

[11] demonstrated almost steady, quasi-isobaric flame propagation with the speed smSL /5.3≈ , 

which lasts 1-2 sec, during which the flame overcomes 3-7 m, i.e. ½ - ¼ of the entire conduit. 

The COM3D [11] and FLACS [12] simulations have supported this result. The main purpose of 

this section is to find out the reason for such a delay by extending the formulation of Sec. III to 

account for viscous forces. It is natural to assume that viscosity influences the small scales first 

such that a flame front spreads as a “brush”, and the upcoming formulation is devoted the 

dynamics of such a brush. It will be demonstrated below that the viscous effects in the brush 

modify the acceleration exponent, making it a time-dependent quantity. The sketches of the 

problem are shown in Fig. 5, which are more realistic than Fig. 2. Specifically, Fig. 5a presents 

an approximate schematic that will be employed in the formulation below, while the sketch in 

Fig. 5b is closer to the practical reality. Nevertheless, a flame front inside a pocket between the 

obstacles may actually be corrugated depending on a way how flame originally enters the pocket.  

 Since a flame may propagate rather slowly at the initial stages of the process, now we 

have to account for the finite length of the delayed burning zone. Namely, bZ  stands for the 

position of the last burning pocket in Fig. 5a. In the case of quasi-steady flame propagation, this 

position lags only slightly behind the flame tip, such that RZZ bf α≈−  (here we approximate 
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that the flame in the pockets propagates with the laminar flame speed LS  and, hence, the time 

interval LSRt /α=Δ  is required to burn one pocket). However, in the case of considerable flame 

acceleration, the lag may be quite large, 

 [ ])exp(1)/exp( oLo
o

bf RtSRZZ ασσ
σ

−−≈− .     (19) 

Substituting Eq. (17) into Eq. (19) yields 

 [ ])exp(1 o
o

fbf
RZZZ ασ

σ
−−⎥

⎦

⎤
⎢
⎣

⎡
+≈− .      (20) 

It is noted that Eq. (20) is valid for both strong and weak acceleration, yielding RZZ bf α≈−  

for 0→oσ . In the latter case, we should also account for the extra gas volume produced by the 

combustion process at the flame front in the free part of the channel, so the total flame-generated 

volumetric flow rate is  

 [ ] ybfL LRZZS
dt
dV )1()1( α−+−−Θ= ,      (21) 

where yL  is the channel width in the y-direction (perpendicular to the plane of Fig. 5a).  

 We next analyze the viscous forces produced by an accelerating flame front. Generally 

speaking, three viscous flows have to be considered: two flows to the right, 0>u , i.e. (i) that in 

the fuel mixture )( fZz > and (ii) that in the burnt matter )( ft ZzZ << ; and (iii) one flow to the 

left, in the burnt matter, 0<u , tZz < . Nevertheless, being interested herein only in the initial 

stage of flame propagation (namely, in the delay prior to the acceleration onset), we approximate 

ftb ZZZ ≈≈ , having thereby only two viscous flows: for fZz >  and fZz < , respectively. 

Both the flows in the fuel mixture and the burnt matter are assumed to be plane-parallel shear 

flows, ),( txuu = , of the same dynamic viscosity, ρνη = , for which the Navier-Stokes 

equation reads [2] 
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  2

2
)(

x
ut

t
u

∂
∂+Π−=

∂
∂ ν ,         (22) 

with the boundary condition ( ) 0| 1 =−= Rxu α , and dzdPt /)( 1−=Π ρ  being the scaled pressure 

gradient along the channel axis, which depends only on time in a shear flow. In a flow driven by 

exponential flame acceleration, we have )/exp( RtSu Lσ∝Π∝ , and Eq. (22) reduces to 

 2

2

dx
udCu

R
SL +−= Πν

σ ,         (23) 

where ΠC  is a constant related to the pressure gradient. Solving Eq. (23) with the non-slip 

boundary conditions, 0=u  at Rx )1( α−= , we find (see Ref. [2] for the details of the method) 

 ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

±=
R

xtU
txu

)1(
coshcosh

1cosh
, 2,1

2,1
2,1

2,1

α
μ

μ
μ

,    (24) 

where )/exp()(2,1 RtStU Lσ∝  denote the maximal unburnt and burnt flow velocities attained at 

the channel axis, 0=x , and Θ−= Re/)1(1 σαμ , Re)1(2 σαμ −= , with ηρ /Re RS Lf=  

oftentimes named the Reynolds number associated with flame propagation. Unlike typical flow 

Reynolds numbers, the quantity Re  is not related to any actual flow. However, it is an important 

descriptor of the flame dynamics. In particular, Re  couples the radius of the channel with the 

size of the burning zone. Indeed, with the flame thickness defined, conventionally, as the ratio of 

the thermal diffusivity coefficient and the laminar flame speed, Lthf SDL /= , we obtain 

Pr///Re fLLf LRRSRS === νηρ , where Pr  is the Prandtl number. In the present theory, it 

is Re that describes the effect of viscosity as will be shown below. In the case of the experiments 

[11], the flame propagation Reynolds number was as large as 41002.2Re ×≈ . With Eq. (24), the 

total volumetric flow rates are  
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 , (25) 

and the continuity condition for the flows of the fuel mixture and the burnt matter yields 

1cosh
sinhcosh

1cosh
sinhcosh1

)1(
)1(

2

2
1

22
2

1

1
1

11
1 −

−
+

−
−

=⎥
⎦

⎤
⎢
⎣

⎡
+

−
−

−Θ
−−

μ
μμμ

μ
μμμ

α
UU

R
ZZ

S bf
L . (26) 

With Eq. (20), Eq. (26) can also be rewritten as 

 [ ] =
⎭
⎬
⎫

⎩
⎨
⎧

+−−
−
+

−Θ 1)exp(1
)1(
/

)1( ασ
α

σ
R

RZ
S f

L  

    
1cosh

sinhcosh
1cosh

sinhcosh

2

2
1

22
2

1

1
1

11
1 −

−+
−

− −−

μ
μμμ

μ
μμμ UU .  (27) 

Equation (27) couples the quantities 2,1U  and fZ . One more relation between them comes from 

the momentum fluxes balance. To be rigorous, we would have to integrate the velocity profiles 

(24) over the channel free path cross-section. However, since these profiles are almost “П”-

shaped for the realistically large 2,1μ  (see Ref. [2] for the details), we can employ the evaluation 

 RUdxu
R

)1(2
2,1

)1(

0
2 α

α
−≈∫

−
.        (28) 

With Eq. (28), averaging an inviscid counterpart of Eq. (6) over the channel free path cross-

section yields 

 yfyLf
f RLURLSU )1()1()1( 2

2
22

1 αραρ
ρ

−=−⎥
⎦

⎤
⎢
⎣

⎡
−Θ−

Θ
.    (29) 

Inviscid Eq. (29) is subsequently updated to incorporate the viscous forces. The viscous stresses 

in the burnt (label “1”) and unburnt (label “2”) gases, at the level of obstacle edges, are  

R
U

dx
du
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with the respective viscous forces 

1cosh
sinhcosh

)1)(/exp(
2,1

2,1
1
2,12,1

2,1

)1(

02,1 −
−

−==⎟
⎠
⎞

⎜
⎝
⎛

−−

∫ μ
μμμ

ασ
α

RURtSLdxuL
dt
dV

Ly

R

y



 

 15 

 RL
R

Z
R

U
F y

f )1(
)1()1(1cosh

sinh 1

1

11
1 α

αα
η

μ
μμ

−
−−−

= ,     (31) 

 RL
R

ZL
R

UF y
f )1(

)1()1(1cosh
sinh 2

2
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μ
μμ

−
−
−

−−
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It is recalled that L  is the total length of the channel. Unlike Secs. II and III, here L  appears a 

parameter of the formulation as soon as the viscous effects are considered. For instance, the 

experiments [11] employed m2.12=L . It is also noted that L comes to play in the combination 

with the dynamic viscosity η  (or, say, the kinematic viscosity ν ), which should be another key 

parameter of the formulation. Specifically, the viscous stresses of Eq. (30) are proportional to η , 

and the viscous forces of Eqs. (31) and (32) are proportional to the combinations fZη  and 

),( fZL −η  respectively, such that Eqs. (30) – (32) yield zeros if 0→η . With Eqs. (30) – (32), 

the viscous counterpart of Eq. (29) becomes 
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. (33) 

Eventually, the evolution equation for the flame tip reads  

 ( ) Lff
Lf SZURZ

R
S

dt
dZ

+=
⎭
⎬
⎫

⎩
⎨
⎧ +≈ Re,2σ

σ .      (34) 

Altogether, Eqs. (27), (33), and (34) describe flame acceleration in open obstructed channels 

accounting for the viscous effects. It is recalled that viscosity is incorporated into these equations 

by means of the flame propagation Reynolds number ηρ /Re RSLf=  such that ∞→Re  if 0→η . 

V.   Results and Discussion 

The system of equations (27), (33) and (34) has been solved numerically for the variety of 

parameters α , Θ ,  Re and L , namely, 7.0~4.0=α , 38.5~38.2=Θ , 410)4~1(Re ×= , and 
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2.14~2.10=L m. It is emphasized that while the exponential acceleration rate σ  was a 

constant in the inviscid model, Eq. (18), the viscous forces make σ  varying with the flame 

spreading along the channel. This is illustrated in Fig. 6, where the acceleration rate is plotted 

versus the flame tip position, )( fZσσ = . All the plots show that although the “viscous” σ  is 

less than the inviscid limit (18), it grows with fZ  and thereby strongly promotes the acceleration 

trend. Similar to Sec. III, here σ  also grows with α , Fig. 6a, and with Θ , Fig. 6b, because both 

quantities provide a positive impact on flame acceleration, making the pockets deeper and the 

flame-generated volumetric flow rate larger, respectively. In contrast, an increase in the total 

channel length L  promotes viscous effects and thereby reduces σ , as shown in Fig. 6c (though 

the dependence is relatively weak). As for the effect of the flame propagation Reynolds number 

Re, the acceleration rate σ  emerges earlier but also saturates faster with the increase in Re, Fig. 

6d. When ∞→Re , the inviscid formulation will be reproduced, with the time of initial near-

steady flame propagation diminishing to zero, and σ  approaching a constant value.  

 Figures 7 (a-d) are the counterparts of Figs. 6 (a-d) for the time evolution of fZ  at 

vairous α , Θ , Re and L . It is seen that the increase in σ  during the flame spreading in a 

channel eventually leads to very strong acceleration, after a certain delay associated with almost 

steady flame propagation. It is recalled that such a delay was observed in Refs. [11, 12], 

experimentally and computationally, it was not found in the inviscid model of Sec. III, but it is 

identified now within the viscous formulation of Sec. IV. Consequently, the delay is clearly 

attributed to the viscous effects. According to Fig. 7, the delay decreases with α , Fig. 7a, and 

with Θ , Fig. 7b, because both these quantities facilitate acceleration. In contrast, the delay is 

larger for longer channels, Fig. 7c. The situation with the flame propagation Reynolds number is 
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opposite: the delay is reduced with the increase in Re. The latter fits our expectations: indeed, 

with ∞→Re , viscosity disappears from the present formulation and therefore no delay is seen.  

 It is also noted that the delay is inherent to open channels, while it has been observed 

neither experimentally nor computationally nor analytically in semi-open ones. Such a difference 

can be explained as follows. In a semi-open channel, the entire flame-generated volume is 

pushed towards the only exit (i.e. into the fuel mixture); the effect is very strong and it dominates 

over the viscous forces. In contrast, in a channel with both ends open, the flame-generated gas 

volume is distributed between two outward flows (to both ends). Since the momenta of these 

opposing flows almost balance each other, the role of viscous forces becomes noticeable, and it 

actually constitutes the focus of the present study. A similar mechanism has also been discussed 

in Ref. [19] but for unobstructed channels and tubes.   

 Eventually, Fig. 8 is an update of Fig. 4c, where the inviscid (Sec. III) and viscous (Sec. 

IV) formulations as well as the experiments [11] and the simulations [11, 12] are compared 

altogether. Specifically, )(tZ f  is plotted for 38.3=Θ , 2/1=α , 41002.2Re ×= , cm7.8=R , 

m2.12=L , and m/s 5.3=LS [11]. Unlike Eq. (17), the present viscous formulation shows very 

good qualitative and good quantitative agreement with the experiments (in fact, it is better than 

that of the simulations [11, 12]; especially the ad-hoc simulations [12]), thereby justifying the 

present formulation.  

 Finally, it is recognized that the present work is only a pilot theoretical study of flame 

acceleration in obstructed open pipes, with a number of effects left beyond the consideration. In 

particular, similar to the theory of Ref. [8] for semi-open channels, the present formulation is 

incompressible; therefore, both analyses are acceptable only at the initial, near-isobaric stage of 

flame acceleration. In fact, a slight deviation between the experimental and theoretical plots in 
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Fig. 8 may be devoted to the effect of compressibility, which is neglected in the present work.  

Nevertheless, the suitability of the approach [8] has been validated computationally [8, 9] and 

experimentally [15]. The method how to incorporate compressibility in the analysis is developed 

in Ref. [10], for the semi-open obstructed channels, and it will be extended to the present 

configuration of pipes with both ends open elsewhere. Besides, while our theory is laminar, the 

flows and flames in obstructed pipes are turbulent in the practical reality [15], which provides an 

additional corrugation and, thereby, acceleration of the flame front. However “tooth-brush” 

acceleration is so strong and prompt that turbulence may provide only a supplementary impact as 

compared to this effect [9]. Furthermore, the present theory is 2D, while the real open/vented 

conduits are three-dimensional (3D). In this respect, our next aim is to reproduce the present 

analysis for a cylindrical axisymmetric open obstructed tube instead of a 2D channel. Such a task 

will be performed in the foreseeable future provided that a counterpart of the formulation [8] for 

cylindrical semi-open obstructed tubes has already been developed [9].  

VI.   Conclusions  

In order to elucidate the recent experiments [11] and simulations [11,12], in the present work, the 

analytical formulation of extremely strong flame acceleration in “tooth-brushed” obstructed 

pipes [8] has been extended from the geometry of a semi-open 2D channel to that with both ends 

open. It is shown that flame acceleration in the open obstructed channels is very strong and, 

mechanistically, it is quite similar to that in the semi-open channels [8]: it is also shockless and 

conceptually laminar. Still, the acceleration rate in open channels is smaller than that in semi-

open ones, and it varies during flame propagation.  

 It is noted that a number of assumptions and simplifications have been employed in the 

course of the derivations of Secs. II – IV, such as   
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• obstacles in the form an array of identical infinitely thin, parallel plates; 

• axial symmetry; 

• conventional model of an infinitely thin flame front propagating locally with the laminar 

flame speed LS  (including planar flame propagation in the pockets with the speed LS ); 

• initial stage of flame acceleration is described in terms of an incompressible flow; 

• flame tip is locally planar; 

• zero net force on the gas in the channel (yielding Eqs. (6) and (29)); 

• strong flame acceleration (yielding Eq. (15));  

• ftb ZZZ ≈≈  such that only two viscous flows are considered;  

• plane-parallel shear flows in the fuel and burnt gases, of the same dynamics viscosity; 

• evaluation (28) fir the “П”-shaped velocity profiles. 

All these assumptions have been discussed when adopted in the present formulaiton, and their 

relevance has been verified when possible.    

 We started with an inviscid model, Sec. III, and then incorporated the viscous forces 

(hydraulic resistance) into the analysis in Sec. IV. A conceptual deference between the inviscid 

and viscous approaches is demonstrated. Specifically, is it is shown that the initial delay prior to 

the strong flame acceleration is attributed to the viscous effects because it has not been found in 

the inviscid model of Sec. III, but it has been identified within the viscous formulation of Sec. IV. 

 While Ref. [11] devoted the entire acceleration scenario to hydraulic resistance, the 

present work opposes this idea: it is shown that hydraulic resistance is not required to drive the 

obstacles-based acceleration, which can be explained within an inviscid model. Nevertheless, our 

formulation justifies an important role of hydraulic resistance: it hinders flame acceleration at the 
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initial stages of combustion, thus causing a considerable delay in the acceleration onset observed 

in the experiments [11].   
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FIGURES 
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FIG 1: An illustration of inviscid flame propagation in a semi-open obstructed pipe.   

 
FIG. 2: An illustration of inviscid flame propagation in an open obstructed pipe. 
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FIG. 3: Comparison of Eqs. (14) and (15): the scaled flame tip position, RZ f / , versus the 

scaled flow velocity at the front, Lf SZu /)( , for various expansion factors Θ  and blockage 

ratios α : a) 38.3=Θ , 6.0,5.0,4.0=α ; b) 5.0=α , 8,5,38.3=Θ . 
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FIG. 4: Time evolution of the flame tip position, )(tZ f , Eq. (17), for a) ,38.3=Θ ;7.0~4.0=α  

b) 2/1=α , 38.5~38.2=Θ ; c) comparison to the experiments [11] and simulations [11, 12] for 

38.3=Θ , 2/1=α , cm7.8=R , and m/s 5.3=LS .  
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FIG. 5: Illustration of flame propagation in an open obstructed pipe (viscous formulation): the 

flame shape employed in the formulation (a) and a more realistic flame shape (b).  

 

 



 

 27 

 

 



 

 28 

 

 

FIG. 6: Exponential acceleration rate σ  versus the flame tip position fZ  for a) 38.3=Θ , 

m2.12=L , 4102Re ×= , 7.0~4.0=α ; b) 2/1=α , m2.12=L , 4102Re ×= , 38.5~38.2=Θ

c) 38.3=Θ , 2/1=α , 4102Re ×= , m)2.14~2.10(=L ; d) 38.3=Θ , 2/1=α , m2.12=L , 

410)4~1(Re ×= . 
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Fig. 7: Time evolution of the flame tip position, )(tZ f  for a) 38.3=Θ , m2.12=L , 4102Re ×= , 

7.0~4.0=α ; b) 2/1=α , m2.12=L , 4102Re ×= , 38.5~38.2=Θ ; c) 38.3=Θ , 2/1=α , 

4102Re ×= , m)2.14~2.10(=L ; and d) 38.3=Θ , 2/1=α , m2.12=L , 410)4~1(Re ×= . 



 

 31 

 
FIG. 8: Comparison of the inviscid and viscid formulations with the experiments [11] and the 

simulations [11, 12]: evolution of the flame tip position for 38.3=Θ , 2/1=α , 41002.2Re ×= , 

cm7.8=R , m2.12=L , and m/s 5.3=LS . 


