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The thermodynamic dislocation theory presented in preceding papers is used here to describe
shear-banding instabilities. Central ingredients of the theory are a thermodynamically defined effec-
tive configurational temperature, and a formula for the plastic strain rate determined by thermally
activated depinning of entangled dislocations. This plastic strain rate is extremely sensitive to varia-
tions of the stress and the ordinary temperature. As a result of this sensitivity, the system undergoes
rapid shear banding instabilities when ordinary thermal relaxation is slow. It also undergoes rapid
changes from elastic to plastic behaviors at yielding transitions.

I. INTRODUCTION

In the preceding paper [1], I reviewed basic features of a
thermodynamic theory of dislocation-mediated plasticity
in polycrystalline solids. I showed there, in an oversim-
plified toy model, how this theory might explain shear-
banding instabilities in such materials. My purpose here
is to use those ideas in a more realistic analysis of shear-
banding dynamics. More generally, I want to explore the
implications of this theory in other nonequilibrium situ-
ations, especially yielding transitions.

There is a large body of literature, extending over more
than three decades, devoted to what is known as adia-
batic shear banding (ASB) in metals and alloys. For
example, see [4–6]. This subject is important; the band-
ing instability is generally recognized as a principal fail-
ure mechanism in rapidly stressed structural materials.
However, the experimental observations of ASB that I
have found so far are not completely adequate for my
purposes.

The thermodynamic dislocation theory described in
[1–3] has focussed on strain hardening and related strain-
rate dependent phenomena. It describes those phenom-
ena in terms of a small number of physically meaningful
state variables that are consistent with basic principles
of nonequilibrium statistical physics [7]. The ASB ob-
servations, however, are generally not accompanied by
measurements that allow me to determine equations of
motion for those variables. When stress-strain curves are
shown in the ASB literature, they usually show a yielding
transition at a large stress and a very small strain, and
then a sudden stress drop at a larger strain indicating
failure. As will become clear here, that initial yielding
transition is strongly sensitive to sample preparation. It
cannot tell us much about the intrinsic dynamical prop-
erties of the material.

My main theme in this paper is that ASB is a remark-
ably deep probe of the internal dynamics of structural
materials. The “adiabaticity” of ASB refers to the idea
that these banding instabilities are caused by thermal
softening in situations where heat flow is slower than plas-
tic deformation. A local increase in strain rate produces a
local increase in heat generation that, in turn, softens the
material and further increases the local strain rate. The

result is a runaway instability if the heat is unable to flow
away from the hot spot more quickly than new heat is
being generated there. Thus, we are looking at a delicate
balance between thermal and mechanical behaviors. To
understand what is happening, we need a first-principles
theory of the underlying deformation mechanism. I can-
not find the information that I need for developing such
a theory in the existing ASB literature.

To work around this difficulty, I will use the same strat-
egy here that I used in [1]. Thanks to the pioneering work
of Kocks, Mecking, Follansbee, Meyers and others [8–10],
we have a first-principles picture of plastic deformation in
copper. (Other papers that I have found useful for under-
standing the present state of this field include [11–13].)
The trouble is that copper is not observed to undergo
ASB, probably because its thermal conductivity is too
high. In [1], I invented a “pseudo copper” by using the
material parameters that I had available for real copper.
Then I used artificial values for the thermal parameters
so that my pseudo copper exhibited a rudimentary form
of ASB. I will do the same thing here in a more realistic,
position-dependent, dynamical framework. In this way,
I will present what I believe to be an interesting descrip-
tion of ASB and, in addition, a description of yielding
transitions in polycrystalline materials.

In Sec.II of this paper, I summarize the equations of
motion for the thermodynamic dislocation theory, with
emphasis on aspects of it that are especially important
for present purposes. In Sec.III, I describe theoretical ex-
periments in which I harden samples by straining them to
various degrees and then compute the ways in which they
undergo yielding transitions and shear banding at high
strain rates. The paper concludes in Sec.IV with further
remarks about needs for experimental information.

II. EQUATIONS OF MOTION

A. Basics

As in [1], consider a strip of polycrystalline material,
of width 2W , oriented in the x direction, being driven in
simple shear at velocities Vx and −Vx at its top and bot-
tom edges. The total strain rate is Vx/W ≡ Q/τ0, where
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τ0 = 10−12s is a characteristic microscopic time scale. In
contrast to [1], here we will look at spatial variations in
the y direction, perpendicular to the x axis. Eventually,
we will need to consider general three-dimensional vari-
ations in order to model the effects of notches or other
crack-initiating spatial irregularities; but, for the present,
this simple geometry provides as large a range of dynami-
cal behaviors as is needed. It is the same as the geometry
used by Manning et al. [14] in an analysis of shearband-
ing in amorphous materials.
The local, elastic plus plastic strain rate is ǫ̇(y) =

dvx/dy, where vx is the material velocity in the x di-
rection. This motion is driven by a time dependent,
spatially uniform, shear stress σ. Because this system
is undergoing steady-state shear, we can replace the
time t by the accumulated total strain, say ǫ, so that
τ0 ∂/∂t → Q∂/∂ǫ. Then denote the dimensionless, y-
dependent plastic strain rate by q(y, ǫ) ≡ τ0 ǫ̇

pl(y, ǫ).
The internal state variables that describe this system

are the areal density of dislocations ρ ≡ ρ̃/b2 (where b is
the length of the Burgers vector), the effective tempera-
ture χ̃ (in units of a characteristic dislocation energy eD),

and the ordinary temperature θ̃ (in units of the pinning
temperature TP = eP /kB, where eP is the pinning en-
ergy defined below). Note that ρ also may be interpreted
as the total length of dislocation lines per unit volume,
and that 1/

√
ρ is the average distance between disloca-

tions. All three of these dimensionless quantities, ρ̃, χ̃,
and θ̃ are functions of y and ǫ.

B. Depinning Rate

The central, dislocation-specific ingredient of this anal-
ysis is the thermally activated depinning formula for the
dimensionless plastic strain rate q as a function of a non-
negative stress σ:

q(y, ǫ) =
√

ρ̃ exp
[

−
1

θ̃
e−σ/σT (ρ̃)

]

. (2.1)

As shown in [2, 3], this formula is an Orowan relation
in which it is assumed that the plastic flow is deter-
mined entirely by the rate at which entangled disloca-
tions jump instantaneously between near-neighbor pin-
ning sites. Here, σT (ρ̃) = µT

√
ρ̃ is the Taylor stress. It

is equal to the ratio of the range of the pinning forces to
the average spacing between dislocations (a strain), mul-
tiplied by the shear modulus µ; thus µT is a small frac-
tion of µ, and σT is a geometrically determined stress,
mathematically independent of the strain rate, the tem-
perature, or the effective temperature. The fact that the
stress dependence occurs in Eq. (2.1) as a function of
the ratio σ/σT is important and, I think, very natural;
but the exponential function in which that ratio occurs
could be replaced by any smoothly decreasing function
without changing the qualitative predictions of this the-
ory. In the following analysis, we shall see that eP is
large, of the order of eV’s, so that θ̃ is very small, and

q(y, ǫ) is an extremely rapidly varying function of σ and

θ̃. This behavior is the key to understanding the banding
instability. Conversely, as shown in [2], it is also the key
to understanding why observed steady-state stresses are
such slowly varying functions of the strain rate.

C. Dislocation Density and the Onset of Hardening

The equation of motion for the scaled dislocation den-
sity ρ̃ describes energy flow. It says that some fraction
κρ of the power delivered to the system by external driv-
ing is converted into energy of dislocations, and that that
energy is dissipated according to a detailed-balance anal-
ysis involving the effective temperature χ̃. This equation
is:

∂ρ̃

∂ǫ
= κρ

σ q

γ̃D Q

[

1−
ρ̃

ρ̃ss(χ̃)

]

, (2.2)

where γ̃D = γD/b2 is a dislocation energy per unit vol-
ume, and γD is the more familiar dislocation energy per
unit length. Here, ρ̃ss(χ̃) = e−1/χ̃ is the equilibrium
value of ρ̃ at given χ̃.
It is important to understand the relation between

the various ingredients of this formula and the onset
of strain hardening. That rate is defined to be Θ0 ≡
(1/µ) (∂σ/∂ǫ)onset. It has been known for decades (for
example, see [8]) that Θ0 often (but not always) remains
a material-specific constant over wide ranges of strain
rates and temperatures. We need to understand a phys-
ical basis for this rule in order to know when and how to
use it. See, for example, my analysis of the strain-rate
anomaly in [3].
To see why Θ0 may be a constant, consider the fol-

lowing argument made in [2]. Hardening begins when
the deformation switches from elastic to plastic so that
q ∼= Q. In most of the situations discussed in [8], the
materials apparently have been prepared in such a way
that they are relatively free of dislocations. That is, the
initial dislocation density ρ̃ is still much smaller than ρ̃ss,
so that the energy-conservation law in Eq.(2.2) has the

form ∂ρ̃/∂ǫ ∼= κ
(0)
ρ σ/γ̃D ∼= κ

(0)
ρ µT

√
ρ̃/γ̃D. Here, I have

assumed that the dislocations are still far enough apart
from each other that the stress is well approximated by
the simple Taylor formula, σ ∼= σT = µT

√
ρ̃. I also

have used a “bare” conversion factor κ
(0)
ρ assumed to be

strain-rate independent. Combining these two relations,

we find that Θ0 = µ2
T κ

(0)
ρ /2µ γ̃D. Note that this formula

is independent of both ρ̃ and the strain rate, and also is
likely to be independent of temperature because γ̃D and
the elastic moduli ought to scale thermally in the same
way.
Now return to Eq.(2.2) to evaluate the conversion fac-

tor κρ. To do this, it is useful, for stresses that are not
too small or negative, to solve Eq.(2.1) to find

σ

σT (ρ̃)
∼= ln

(1

θ̃

)

− ln
[

ln
(

√
ρ̃

q

)]

≡ ν(ρ̃, q, θ̃). (2.3)
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To evaluate κρ, we need to look only near onset, where
q ∼= Q and ρ̃ is again appreciably smaller than ρ̃ss. Be-
cause q and ρ̃ appear only as arguments of a slowly vary-
ing double logarithm, we can write σ ∼= ν0 µT

√
ρ̃, where

ν0 ≡ ν(ρ̃ss, Q, θ̃0), and θ̃0 is the scaled ambient temper-
ature. Now we can repeat the analysis in the preceding

paragraph to find that κρ = κ
(0)
ρ /ν20 . Finally, Eq.(2.2)

can conveniently be rewritten in the form

∂ρ̃

∂ǫ
= κ1

σ q

ν20 µT Q

[

1−
ρ̃

ρ̃ss(χ̃)

]

, (2.4)

where

κ1 =
2µ

µT
Θ0. (2.5)

Note that the factor γ̃D has cancelled out, so that the
prefactor κ1 in Eq.(2.4) is completely determined by di-
rectly observable quantities.

D. Thermal Equations

The equation of motion for the scaled effective temper-
ature χ̃ is a statement of the first law of thermodynamics
for the configurational subsystem. The derivation leading
to Eq.(2.20) in [3] tells us that, in the present notation,
this equation is

ceff
∂χ̃

∂ǫ
=

σ q

Q

(

1−
χ̃

χ̃0

)

− γ̃D
∂ρ̃

∂ǫ
, (2.6)

where ceff is the effective specific heat; and χ̃0
∼= 0.25

(see [2]) is the steady-state value of χ̃ for strain rates ap-
preciably smaller than inverse atomic relaxation times,
i.e. much smaller than τ−1

0 . The last term on the right-
hand side of Eq.(2.6) is the rate at which configurational
energy is stored in the form of dislocations. In [1] I as-
sumed this term to be negligible. I will do the same thing
in this paper; but I keep the term here because there are
circumstances in which it may be important. (See [3].)
With the same analysis that led from Eq.(2.2) to

Eq.(2.4), Eq.(2.6) becomes

∂ χ̃

∂ǫ
= κ2

σ q

µT Q

[

1−
χ̃

χ̃0
−

κ3

ν20

(

1−
ρ̃

ρ̃ss(χ̃)

)]

; (2.7)

where the storage term is the expression proportional to
κ3 inside the square brackets, with

κ3 =
γ̃D
µT

κ1. (2.8)

The overall, dimensionless factor κ2 is inversely propor-
tional to ceff . Unlike κ1, whose value is determined di-
rectly from experiment via Eq.(2.5), κ2 must be deter-
mined on a case to case basis by fitting the data.
The equation of motion for the scaled, ordinary tem-

perature θ̃ is the usual thermal diffusion equation with a

source term proportional to the input power. I assume
that, of the three state variables, only θ̃ diffuses in the
spatial dimension y. Thus,

∂θ̃

∂ǫ
= K

σ q

Q
+

K1

Q

∂2θ̃

∂ y2
−

K2

Q
(θ̃ − θ̃0). (2.9)

Here, K = β/(TP cp ρd), where cp is the thermal heat
capacity per unit mass, ρd is the mass density, and
0 < β < 1 is a dimensionless conversion factor. K1 is pro-
portional to the thermal diffusion constant, and K2 is a
thermal transport coefficient that assures that the system
remains close to the ambient temperature θ̃0 = T0/TP

under slow deformation, i.e. small Q.

E. Stress

It remains to write an equation of motion for the stress
σ(ǫ) which, to a very good approximation, should be in-
dependent of position y for this model of simple shear.
In some applications of this theory, I have used Eq.(2.3)
to evaluate σ. The problem here is that the arguments of
ν(ρ̃, q, θ̃) are strongly dependent on ǫ and y, especially in
the neighborhood of a shear band. I start, therefore, with
the local relation σ̇ = µ[ǫ̇(y)− ǫ̇pl(y)], which becomes

dσ

dǫ
= µ

[

τ0
Q

dvx
dy

−
q(y, ǫ)

Q

]

. (2.10)

One simple strategy is to integrate both sides of this re-
lation over y and divide by 2W to find

dσ

dǫ
= µ

[

1−

∫ +W

−W

dy

2W

q(y, ǫ)

Q

]

. (2.11)

An even simpler strategy for numerical purposes is to
replace Eq.(2.11) by

∂σ

∂ǫ
= µ

[

1−
q(y, ǫ)

Q

]

+M
∂2σ

∂y2
, (2.12)

and to use a large enough value of the “diffusion con-
stant” M that σ remains constant as a function of y. I
have used both of these strategies for checking the ac-
curacy of the numerical results shown in what follows.
When using Eq.(2.12), I have chosen M = 105; and I
have set W = 1 in defining my length scale.

III. THEORETICAL EXPERIMENTS

Figure 1 shows two room-temperature, stress-strain
curves for real copper, measured and computed at two
very different total strain rates, ǫ̇ = 0.002 s−1 and
2, 000 s−1. The experimental points (red circles) are the
same as those used in [2], where they were taken from
[15, 16]. It is from this data, plus other measurements at
other strain rates and temperatures, that my colleagues
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FIG. 1: (Color online) Hardening curves for ǫ̇ = 0.002 s−1

(the lower curve) and for ǫ̇ = 2, 000 s−1 (the upper curve).
The red circles are the experimental data used in [2]

and I in [1–3] obtained values for many of the param-
eters appearing in the equations written here in Sec.II.
Specifically, the parameter values to be used in what fol-
lows are: TP = 40800K, T0 = 298K, µT = 1600 MPa,
µ = 31µT = 39.6GPa, κ1 = 3.1, κ2 = 11.2, and κ3 = 0.
Because I cannot use real copper to study shear band-

ing, I have arbitrarily chosen the thermal coefficients for
pseudo copper to be K = 10−5 (so that it is slightly
smaller than 1/TP , i.e. so that the conversion factor β
is very roughly of the order of unity), K1 = 10−12 (so
that thermal diffusion is relevant to the strongly spatial
dependent behaviors driving shear banding, but is not so
strong as to eliminate those behaviors), and K2 = 10−9

(so as to be roughly comparable in magnitude to the
larger values of Q, and thus to keep T ∼= T0 at smaller
strain rates). The initial values of ρ̃ and χ̃ used for com-
puting both of these curves are ρ̃i = 10−5 and χ̃i = 0.18.
Because the thermal terms have not been set to zero for
computing the curves in Fig. 1, the upper (fast) curve
exhibits thermal softening at large ǫ; but the agreement
with experiment at small ǫ remains quite good.
Now do the following (theoretical) experiments. Re-

peat the slow deformation shown by the lower curve in
Fig. 1 (for ǫ̇ = 0.002 s−1), but, this time, stop straining
at ǫ = 0.2. Do this again, for a different sample, stop-
ping at ǫ = 0.4. Next, make pseudo notches in these pre-
strained (i.e. pre-hardened) samples by making spatially
localized, negative perturbations of their initial effective
temperatures:

χ̃(0, y) = χ̃i − δ e−y2/2 y2

0 , (3.1)

with δ = 0.02 and y0 = 0.05. Finally, strain these sam-
ples again at the high rate, ǫ̇ = 2, 000 s−1, by using the
final values of ρ̃ and χ̃ in the first deformations as the
initial values for these second stress-strain calculations.
For the first case (the softer, less strained sample), I find
these values to be ρ̃i = 0.0085, and χ̃i = 0.219. For the
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FIG. 2: (Color online) Stress-strain curves for two pre-
hardened samples. The harder sample, shown by the dark
curve, fails via shear banding at ǫ ∼= 0.2. The softer sample,
shown by the red curve, fails at ǫ ∼= 0.6. The nearly vertical
elastic parts of these curves, just above ǫ = 0, have slope µ.
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FIG. 3: (Color online) Relative strain rates q/Q across the ini-
tial yielding transition for the two pre-strained samples whose
stress-strain curves are shown in Fig.2. The softer sample,
shown by the red curve, is the one that yields earlier.

second case (the harder, more highly strained sample),
ρ̃i = 0.0149, and χ̃i = 0.243. The resulting stress-strain
curves are shown in Fig.2. Both samples undergo abrupt
stress drops that, as will be seen, indicate shear-banding
failures. The first case, i.e. the harder sample shown by
the dark curve in the figure, is the one for which failure
occurs earlier; it is the more brittle of the two. The softer
sample, shown by the red curve, fails later; it is tougher.
Before looking in more detail at the shear-banding

events, consider what is happening near ǫ = 0, where
both samples exhibit what appear to be – and indeed
are – yielding transitions. Both curves in Fig. 2 start
with very steep elastic sections whose slopes are equal to
the shear modulus µ = 39.6GPa, and then bend sharply
to plastic behavior. These transitions are not infinitely
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FIG. 4: (Color online) Relative plastic strain rates q(ǫ, y)/Q
as functions of position y/W for a sequence of increasing total
strains ǫ = 0.20, 0.22, 0.23, 0.24, and 0.25.
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FIG. 5: (Color online) Relative plastic strain rates q(ǫ, y)/Q
as functions of position y/W for total strains ǫ =
0.25, and 1.0. The latter is shown by the dashed line. Note
that, in comparison with Fig. 4, the horizontal axis has been
expanded by a factor of 2 and the vertical axis compressed by
a factor of about 4.

sharp, however. We see in Fig. 3 that the relative plas-
tic strain rate q(ǫ)/Q jumps rapidly but smoothly during
the transition from elastic to plastic deformation. (The
curves shown here have been computed at y = 0.5W in
order that they not be affected by the pseudo notch at
y = 0.) The fact that there is a small amount of plastic
flow q below the onset point (where q/Q → 1) means that
there is a small rate at which dislocations are jumping be-
tween pinning sites, consistent with the fact that these
systems are known to be noisy near yielding transitions
even when plastic flow is unmeasurably small.

Shear band formation near y = 0 for the harder,
more highly strained sample is shown in Fig. 4. Plot-
ted here are graphs of q/Q as functions of position
y/W for a sequence of increasing total strains ǫ =
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FIG. 6: (Color online) Temperatures as functions of position
y/W at total strains ǫ = 0.24, 0.25, 0.27, 0.40, and 1.0, from
bottom to top.

.

0.20, 0.22, 0.23, 0.24, and 0.25. A diffuse shear band is
visible at ǫ = 0.20 and becomes increasingly stronger as
ǫ increases. At ǫ = 0.24, the band is starting visibly
to become narrower as it intensifies at the expense of
the plastic strain rate at larger values of y. Finally, at
ǫ = 0.25, the band has suddenly strengthened and sharp-
ened so much that the strain rate outside this region has
dropped to zero. Figure 5 focusses in on, and expands
this picture vertically, at ǫ = 0.25. Also shown here by
the dashed curve is the plastic flow distribution much
later, at ǫ = 1.0. Apparently, this band has reached its
peak intensity and is beginning to spread as heat diffuses
away.

The corresponding sequence of temperature distri-
butions is shown in Fig. 6. Here, the sequence of
total strains, shown from bottom to top, is ǫ =
0.24, 0.25, 0.27, 0.40, and 1.0. Note that the band has
achieved its peak sharpness in the strain-rate distribu-
tion at the second of these curves, shown in Fig. 5, for
ǫ = 0.25; but it theoretically continues to generate heat
for a long time afterwards. Almost certainly, this behav-
ior is not physically realistic. At the temperatures shown
here, the material inside the band will have melted or un-
dergone other structural changes. But the onset of rapid
failure of one kind or another seems to be a plausible
prediction of this analysis.

While the late stages of the ASB behavior shown in
Figs. 4-6 cannot be realistic in detail, the general picture
seems generic for this kind of banding instability. Within
the present set of theoretical experiments, the graphs in
Figs. 4-6 remain almost unchanged when recomputed for
the softer sample in Fig. 2. One way to make a bigger
change in the banding behavior is to reduce the diffu-
sion constant K1. Even if I let K1 → 0, however, the
only qualitative change that I see is that the stress drop
becomes sharper and deeper, going all the way down to
σ ∼= 0, and the band becomes narrow enough to challenge
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my numerical capabilities.
The present results are essentially identical to those

found experimentally in 1988 by Marchand and Duffy [4]
for shear banding in steel. In fact, the overall agreement
between their experiments and the present theory goes
well beyond the results shown here. For example, in their
Fig. 8, Marchand and Duffy show a stress-strain curve
that looks almost identical to the softer of the two curves
shown here in Fig. 2. They also show the equivalent curve
for a very much smaller strain rate. In that case, the
yield stress decreases by about ten percent, and no shear
banding failure occurs. The same behavior can be re-
produced here simply by changing the strain rate and no
other parameters. Similarly, in their Fig. 9, Marchand
and Duffy show stress-strain curves at fixed (large) strain
rate at a series of different temperatures. As the temper-
atures increase, the yield stresses decrease, and failure is
shifted to increasingly large strains. The same behavior
occurs here when only the temperature is changed. The
Marchand-Duffy sequences of pictures of strain as func-
tions of transverse position at various times are directly
analogous to the graphs of q(y)/Q shown here in Figs. 4
and 5; and the temperature as a function of transverse
position shown in their Fig. 20 can be compared with
the sequence of such graphs shown here in Fig. 6.

IV. CONCLUDING REMARKS

So far as I know, the microscopic picture of a rapid but
intrinsically smooth yielding transition presented here is
different from the one found in phenomenological descrip-
tions of solid plasticity. It is also qualitatively differ-
ent from the picture of yielding in amorphous materials,
where transitions between jammed and flowing states are
determined by the balance between noise driven creation
and annihilation of flow defects, e.g. shear transforma-
tion zones (STZ’s) [17, 18]. Plastic flow in amorphous
materials, and their yielding transitions, are determined
primarily by their chemical compositions and states of
disorder. These materials do not have long-term memo-
ries.
In polycrystalline solids, however, the flow defects are

the dislocations, whose lifetimes are almost infinitely
longer than those of STZ’s. These solids do not quickly

forget their past deformations. As seen in Sec.III, the
history of a strain hardened sample is partially encoded
in its density of dislocations, which determines how it
responds to subsequent forcings. To test this picture,
we can observe yielding transitions such as those shown
in Fig. 3. But, to construct and test a physics-based
theory of such transitions, we need independently deter-
mined values of parameters such as µT , TP , κ1, etc., for
which we need other kinds of experiments. In particular,
we need measurements of strain hardening, starting with
samples with small dislocation densities; and we need to
make those measurements over a range of different tem-
peratures and strain rates.
The advantage of having detailed material-specific in-

formation is that it would allow us to test – not just
the present theory of yielding and shear banding – but
also a wide range of related conjectures. For example,
there is an intriguing set of observations by Rittel and
coworkers [19–22] in which they see dynamically recrys-
tallized grains (DRX) appearing in association with, and
apparently preceding, the appearance of ASB’s. I would
have preferred to write this paper using parameters ap-
propriate for Rittel’s ASB-forming titanium alloy – or for
Marchand and Duffy’s steel – instead of using “pseudo
copper.” Then, discrepancies between my results and the
experimental data might have told us whether or not the
theory is missing physically essential ingredients. As I
stressed in [1], what I have presented here is a bare-bones
theory. It is missing dynamical ingredients such as stack-
ing faults, cellular dislocation patterns, grain boundaries,
etc., in addition to DRX. All of these could be included
in the theory in various ways; but we need to find out
whether and when to do so in order to draw useful con-
clusions.
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