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Atomically thin cylindrical nanopores can change shape in response to physically adsorbed gas
inside. Coupled to a gas reservoir, an initially collapsed pore can expand to allow the adsorbed
gas to form concentric shells on the inner part of the pore, driven by adsorption energetics, not gas
pressure. A lattice gas model describes the evolution of the pore/nanotube shape and absorbed gas
as a function of gas chemical potential at zero temperature. We found that narrow-enough tubes
are always expanded and gas inside adsorbs in sequences of concentric shells as the gas chemical
potential increases. Wider tubes, which are collapsed without gas, can expand with one or more
concentric shells adsorbed on the inner surface of the expanded region.

PACS numbers: 68.43.-h, 61.48.De, 64.70.Nd

I. INTRODUCTION

The flexible, mechanically strong nature of certain
atomically thin, two-dimensional materials can promote
degrees of freedom previously thought of as simply ther-
modynamic constraints – the surface area and volume –
into fully dynamical variables. Consider, for example,
a two-dimensional material rolled into a cylindrical ge-
ometry, i.e. a nanotube. The nanopore defined by the
cylinder’s interior can adsorb inert gases. At a static
level, the nanotube geometry just accentuates the gas-
substrate interaction by increasing coordination number,
thus facilitating the formation of concentric shells of ad-
sorbed gases1. But if the pore wall is allowed to express
dynamics, then new modes of response can emerge, par-
ticularly when the wall enters a mechanically nonlinear
regime. Large-radius nanotubes from carbon, boron ni-
tride, or other two-dimensional materials are mechani-
cally bistable2–8 with both circular/expanded and flat-
tened/collapsed cross-sectional shapes. The flattened
shape is favored at sufficiently large radii, where the elas-
tic energy cost of collapse is overpowered by the interfa-
cial energy gain of placing the opposing interior faces into
contact. Not only does the cross-sectional shape of the
system affect the behavior of the adsorbed gas (by defin-
ing the character of the adsorption sites), but the ambient
gas also affects the cross-sectional shape (by changing the
interfacial energies). The gas degrees of freedom interact
with the container degrees of freedom on an equal footing
and phase transitions in the gas should be able to control
the shape of their nanoscale container.

Recent investigations have studied the response of the
partially collapsed tube depicted in Fig. 1 to changes
in the temperature9, voltage10, or the strength of the
Lennard-Jones interaction11, and used these behaviors to
design nano-scale motors, generators, and pumps of heat
or fluid10. Coupling to a gas reservoir provides another
means of control, with interior gas expected to generi-
cally favor expansion. Previously studies of the expan-
sion of a slit pore12 or narrow nanotube13 due to gas
uptake were limited to small, linear deformations. Here
we explore shape transitions with large radial displace-
ments that convert a low-symmetry collapsed structure
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FIG. 1: (Color online) Equilibrium shapes of a partially col-
lapsed tube of length L with gas inside. Left and right ends are
held open and closed by boundary conditions. Characterizing
the tube shape by the length ` of the expanded region, the
following configurations are considered: collapsed with ` = 0
(C, top); mixed collapsed-expanded with 0 ≤ ` ≤ L (CE,
middle); and expanded with ` = L (E, bottom).

to a high-symmetry circular cross-section in response to
gas adsorption, facilitated by boundary conditions that
pin one end of the tube open (as could be imposed by
a rigid endcap) and the other end closed (as could be
imposed by mechanical compression)14.

We investigate equilibrium configurations of atomically
thin nanotubes with absorbed gas at zero temperature
by minimizing the full grand free energy, including con-
tributions from the tube wall, gas-gas interactions, and
gas-wall interactions. The inert gases considered in this
work exhibit strong wetting interactions with the walls of
carbon nanotubes15–17. The wall of the tube is described
within a quasi-one-dimensional approximation10 in which
the elastic energy is modeled as a sum of two contribu-
tions that are linearly proportional to the lengths of the
expanded and collapsed regions (see Fig. 1). The propor-
tionality coefficients, representing the energies per unit of
length of the expanded and collapsed cross-sections, were
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computed using atomistic simulations as described in the
Appendix. As mentioned above, in our model one end of
the tube is taken to be pinned in the inflated state and the
other end pinned in the collapsed state, so that a tran-
sition region between collapse and expansion is always
present and merely shifts along the tube axis as the tube
changes state. Thus the energy of the transition region
itself can be neglected for the purposes of determining
equilibrium configurations, since it cancels out of all free
energy comparisons. (Subtle effects when the transition
region interacts with a boundary condition can also be
neglected when the tube is much longer than the tran-
sition region). The other contribution to the grand free
energy comes from the absorbed gas, which is treated in
the lattice-gas approximation for condensation inside the
tube1,18. Lattice gas atoms interact with both the tube
wall and nearest-neighbor gas atoms, and reside either
within the tightly confining bulbs at either edge of the
collapsed cross-section (which can accommodate just a
single close-packed shell of adsorbed gas at the low tem-
peratures considered here) or within the more roomy in-
terior of the expanded cross-section, as depicted in Fig. 2.
The equilibrium configuration of the system for a fixed
chemical potential and tube radius will be found by min-
imizing the grand free energy (incorporating the elastic
energy of the tube wall and the energy of the absorbed
lattice gas) with respect to relative lengths of the ex-
panded and collapsed regions of the tube and the number
of the absorbed gas shells in the expanded and collapsed
regions.

To denote configurations of the system that combine
the shape of the tube wall with the structures of the
absorbed gas atoms, we develop the following nomencla-
ture. We use a letter C or E to convey the cross-sectional
shape, followed by an integer to represent the number of
adsorbed layers of gas. A collapsed tube without gas
(C0) competes against one with a single shell of gas ad-
sorbed in the bulbs (C1), a mixed collapsed-expanded
tube with one shell in the bulbs and m shells absorbed
in the expanded region (C1Em), and an expanded tube
without gas (E0) or with m shells of adsorbed gas (Em).
Any gas adsorbed onto the outer surface does not couple
strongly to the wall geometry, since the accessible surface
area on the outside is essentially unchanged by the shape
transition.

II. ZERO-TEMPERATURE ANALYSIS

Consider adsorption of an inert gas at T = 0 inside a
nanotube that has atomically thin walls and whose oppo-
site ends are pinned open and closed, as in Fig. 1. Char-
acterizing the tube wall geometry by the radius R and
the length ` of the expanded region, and assuming ap-
propriate structure of the absorbed gas shells, we search
for equilibrium configurations of such a system by min-
imizing the grand free energy. The energy of the tube
filled with gas is approximated by three contributions:
the energy of the tube wall calculated using a quasi-















FIG. 2: (Color online) Allowed locations for gas atoms within
the lattice gas model for both expanded and collapsed shapes.
Red lines show shells.

FIG. 3: (Color online) The difference in energy per unit length
∆U(R) = U◦−U− between expanded (U◦) and collapsed (U−)
configurations for an empty tube. The expanded shape mini-
mizes the energy for tubes with radii below the vertical dashed
line at Rt; the collapsed shape minimizes for radii above. The
two shapes provide different accessible surface areas for atoms
adsorbed onto the inner surface. Note that both shapes are
metastable at large-enough radius.

one-dimensional model10 with parameters determined by
atomistic simulations; the interaction energy between the
absorbed gas atoms determined by a lattice-gas model in
which the structure of the absorbed gas shells depends
on the tube’s cross-sectional shape; and the interaction
energy between carbon atoms of the tube wall and the ab-
sorbed gas atoms, also calculated within the lattice gas
model.

In a quasi-one-dimensional approximation10, the en-
ergy of a gas-free tube of length L is a function U(`) =
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LU− + `∆U of length ` with ∆U = U◦ − U− being the
difference in the energy per unit length of expanded (U◦)
and collapsed (U−) regions. To parametrize this model,
the potential energies U◦(R) and U−(R) for uniformly ex-
panded and collapsed tubes of different radii were com-
puted using molecular dynamics simulations within the
LAMMPS package19 with the bonded and non-bonded
inter-carbon interactions modeled by the adaptive in-
termolecular reactive empirical bond order (AIREBO)
potential20 (see Appendix). The resulting radius depen-
dence of ∆U(R) for one archetypal system, a pure-carbon
sp2 pore wall of armchair geometry, is shown in Fig. 3;
(similar phenomena should occur for other atomically
thin cylinders, e.g. hexagonal boron nitride). The ex-
panded shape wins when R < Rt, marked by a dashed red
line. These narrow tubes are fully expanded, as shown on
the left inset in Fig. 3, even without interior gas. Wider
tubes in the absence of interior gas are most stable when
collapsed. These two geometries are shown in Fig. 3.
Tubes with radii greater than Rt ≈ 25 Å can be grown
by chemical vapor deposition with a tailored catalyst21.
(Note here that we quote the energies of the expanded
and collapsed states as per unit length of the tube, rather
than as an energy per atom of the tube wall: this is
the natural choice of units for the quasi-one-dimensional
treatment and also the natural language for describing
any nucleation barriers against transitions between ex-
panded and collapsed states, since they would depend on
the characteristic axial length of a transition region).

To construct the lattice gas model1,18, the structure
of the absorbed gas shells, their number, and the inter-
shell distances have to be specified in the expanded
and collapsed regions (Fig. 2). To determine these, we
model gas-gas interactions by a Lennard-Jones potential
φ(r) = 4ε[(σ/r)12 − (σ/r)6]. The gas-tube interactions
are described by integrating the Lennard-Jones potential
over an infinite tube22:

v(r,R) = 3πθεσ2

[
21

32

( σ
R

)10
M11(x)−

( σ
R

)4
M5(x)

]
(1)

Here x = r/R measures the dimensionless distance of
the gas atom from the central axis, θ = 0.38 Å−2 is the
atomic surface density of the wall, and the parameters ε =√
εW εG and σ = 1

2 (σW +σG) come from the conventional
combining rules for interactions between a gas atom G =
He, H2, Ar, Ne, Kr, and Xe and a wall atom W . M11(x)
and M5(x) are elliptic integrals. The error in extending
the integral to infinity is small if R, r � L, `, which is
typically the case. Wall parameters εW and σW for an
sp2 carbon wall23 and the parameters εG and σG for He,
Ne, Ar, Kr, and Xe22 and H2

24 are taken from the cited
sources.

The expanded region can hold M concentric shells
of adsorbed gas. We assume that the shells have a
close-packed structure (consistent with finite temperature
atomistic simulations discussed in Appendix) and are sep-
arated by a distance δ = 21/6σ with the shell closest to the
tube wall located at the distance minimizing the gas-wall

potential, ∂v(r,R)
∂r = 0. All shells interact with the tube

wall at the appropriate separation distance, in addition
to interactions with z⊥ = 6 nearest neighbors in the same
shell and z‖ = 3 neighbors in adjacent shells (adjusted for
shell curvature as described below). The gas parameters
ε and σ and the tube radius together determine M .

The detailed structure of the gas shell in the bulb re-
gions is less obvious because atoms and molecules adsorb-
ing into pores whose diameter is comparable to the sizes
of the adsorbed species can assume varied packing ge-
ometries, as is observed for fullerenes25, diamondoids26,
and organic molecules27 within nanotubes. To determine
a type of packing most suitable for our situation, we used
molecular dynamics to simulate helium filling a nanotube
at 10 K. The results presented in the Appendix reveal
that the radius of the tube wall forming the bulb is r ≈ 5Å
(see Fig.10) and that the gas absorbs into a single close-
packed shell in the bulb that is separated from the tube
wall by ∼3Å (see Fig. 9b,c). More complex staggered
or helical shell geometries are not observed. The diam-
eter ∼4Å of the first shell leaves no room for a second
shell: the formation of a second shell would require a
substantial elastic deformation of the bulb wall, which is
unfavorable at low temperatures. For comparison, reg-
ular inflated carbon nanotubes filled with helium only
form a second (i.e. axial) shell when the tube radius is
≥ 6Å28, which is significantly larger than the bulbs ob-
served in our simulations. Thus we assume that the bulbs
are occupied by a single close-packed shell. Later, we will
discuss possible effects of different packing geometries in
the bulbs on the observed phase behavior. For simplic-
ity, we assume that the gas atoms in the bulb see an
adsorption potential similar to that of tube 5 Å in ra-
dius, but we model the geometry of the adsorbed layer
in the bulb as a semicircle at the appropriate equilibrium
radius plus two straight segments of length 9Å, as shown
in Fig. 2. These dimensions approximate the geometry
of the bulb region obtained from atomistic simulations of
the cross-sectional shape; the essential results are not an-
ticipated to be sensitive to the details of this geometrical
approximation. Note that the bulb regions are much less
capacious than the corresponding inflated regions of the
same tube, thus the relative phase stability of the various
inflated and collapsed states discussed below is affected
only weakly by assumptions about the detailed packing
geometry in the bulbs.

The T = 0 equilibrium state of the system is a function
of gas chemical potential µ and the tube radius. The
grand free energy of the tube of length ` with zero or m
absorbed shells in the expanded region and zero or one
shell m− in each bulb is

Ω(`,m,m−, µ) =

`

∆U +

m∑
j=1

nj

[
ε

(
z‖

2
+
nj+1

nj
z⊥

)
+ vj − µ

]+

+ (L− `)n−
[ε z‖

2
+ v− − µ

]
m−, (2)

where nj =
2πrj
a0

is the number of lattice gas sites per
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FIG. 4: (Color online) Schematic showing two different sce-
narios for the evolution in gas coverage as µ increases. Narrow
tubes simply add successive layers to the inner surface of the
expanded cross-section, following the sequence E0→ E1→ E2
→ · · · → Em. Wider tubes adsorb first in the bulbs; further
gas adsorption then forces the pore open along the sequence
C0→ C1→ E1→ E2 → · · · → Em.

unit axial length in the jth shell of the expanded region,
vj is the value of the wall potential from Eqn. 1 in the jth

shell at radius rj , and n− and v− are the corresponding
quantities for the bulbs. The curvature factor

nj+1

nj
=

rj+1

rj
< 1 accounts for the reduction of nearest neighbors

in the innerward adjacent shell due to its smaller radius.
a0 is the area per gas atom in an adsorbed layer. The
dependence of Ω(`,m,m−, µ) on tube radius is implicit
in the dependences on rj , nj , and vj . For a given tube
radius and chemical potential, the T = 0 isotherms are
determined by minimizing Ω(`,m,m−, µ) with respect to
the length ` of expanded region, the number of shells m
in that region, and optional occupation of the bulbs m−
and comparing to the empty tube with U(`) = `∆U .

Narrow tubes with R < Rt have the simplest be-
havior since they are always fully expanded, with ` =
L. The first absorbed shell forms when Ω(L, 1, 0, µ) <
Ω(L, 0, 0, µ) = L∆U ,

µ = ε
z‖

2
+ v1, E0→ E1. (3)

The (m + 1)th shell forms on top of the mth shell when
Ω(L,m+ 1, 0, µ) < Ω(L,m, 0, µ),

µ = ε
(z‖

2
+ z⊥

)
+ vm+1, Em→ E(m+ 1). (4)

This sequence of shell-filling transitions is shown
schematically in the left column of Fig. 4.

FIG. 5: (Color online) The shape of tube of radius 26.7 Å
as a function of the gas chemical potential µ and the gas-
gas interaction strength ε. As µ increases, the bulbs of the
initially empty collapsed tube fill with gas at the lower blue
line. The tube then expands into a state with one or two
shells of adsorbed gas. Further increase of µ yields additional
concentric shells. ε and µ are given in units of εW .

Wider tubes start collapsed, but can expand upon gas
adsorption, as shown in the right column of Fig. 4. The
first absorbed shell forms in the bulbs of the empty col-
lapsed tube when Ω(0, 0, 1, µ) < U(0) = 0,

µ > ε
z‖

2
+ v−, C0→ C1. (5)

Although the coordination of a gas atom to the wall is
higher in the tightly curved bulbs, the number n− of ab-
sorbed atoms per unit length in the collapsed state is
much smaller than the number nj in each shell of the
expanded state. Therefore the system can minimize its
free energy at higher µ by expanding and forming shells
in the expanded region. The one-shell expanded phase
is favored relative to the one-shell collapsed phase when
Ω(L, 1, 0, µ) < Ω(0, 0, 1, µ),

µ >
∆U + n1(

εz‖
2 + v1)− n−(

εz‖
2 + v−)

n1 − n−
,

C1→ E1.

(6)

At this threshold, the system transitions from fully col-
lapsed at ` = 0 to fully expanded with ` = L and one
absorbed shell.

Since wider tubes more strongly favor collapse, they
require multiple shells to force expansion and transform
directly into a multiple-shell structure Em. The m-shell
phase in the expanded state is favored relative to the one-
shell phase in the collapsed state when Ω(L,m, 0, µ) <
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FIG. 6: (Color online) Chemical potential corresponding to
a given number of adsorbed shells in the expanded tube for
various adsorbed gases and tube radii. The shell thicknesses
on the negative slope to the left of minimal µm are skipped,
and those systems expanded directly into a state with multiple
shells. µ is given in units of εC .

Ω(0, 0, 1, µ):

µ >
∆U +

∑m
j=1 nj

[
ε
(
z‖
2 +

nj+1

nj
z⊥

)
+ vj

]
− n−(

εz‖
2 + v−)∑m

j=1 nj − n−
,

C1→ Em.
(7)

Fig. 5 shows the tube configuration as a function of the
gas-gas interaction strength ε and the chemical potential
µ for a representative radius R > Rt. The dots rep-
resent ε and µ for He, H2, Ne, Ar, Kr, and Xe. As µ
increases, a first shell absorbs C0 → C1 inside the bulbs
of the empty collapsed tube across the blue line defined
by Eqn. 5. The collapsed tube inflates C1 →Em at the
brown line defined by Eqn. 7. For He, H2, Ne, and Ar a
single shell absorbs inside the expanded region during in-
flation, whereas Kr and Xe expand into a state with two
shells. Further increase in µ deposits additional concen-
tric shells. Thus a phase boundary exists between Ar and
Kr where the shell thickness at the moment of expansion
increases from one to two.

Combining the expansion process C1 → Em with the
sequential addition of shells to an already-expanded tube
Em → E(m + 1), we obtain a full phase diagram as a
function of gas chemical potential. Eqn. (7) identifies the
number of shells m in the expanded region that minimizes
µm at C1 → Em. After expansion, Eqn. (4) yields the

values µm+1, ...,µM at which the remaining M −m inner
shells form: the first m values µ1, ..., µm are monotoni-
cally decreasing, so they are unstable against the minimal
value µm. These transitions are shown in Fig. 6 for var-
ious gases and representative tube radii. Consider the
case of helium. For R = 26.7 Å, the sequence µ1, µ2, ... is
monotonically increasing, so expansion occurs at m = 1.
For a slightly wider tube with R = 28.7 Å, µ1 is larger
than µ2, so the system transitions from the one-shell col-
lapsed state C1 into a double-shell expanded phase E2 at
µ2. Larger radii carry this trend further, until at large-
enough radius the gas absorbs into all shells simultane-
ously at µM – the maximal possible shell number – in a
process of simultaneous pore opening and capillary con-
densation. In this case µm is a monotonically decreasing
function of m so that µm+1 ≤ µm. Fig. 7 shows the
thickness of the adsorbed shell at the transition to the
expanded state across a broad range of tube radii and
gas-gas interaction strengths. The large jump in initial
layer thickness indicated by the transition to boldface
font marks the onset of capillary condensation. Unlike
traditional capillary condensation into a rigid pore, this
phenomenon involves two simultaneous transitions: one
in pore shape and another in adsorbate configuration.
Since the bulbs are effectively already capillary condensed
at a single layer, this can also be thought of as a tran-
sition between two different capillary condensed states,
with different pore shapes.

Instead of working at fixed chemical potential, we can
instead minimize the total energy at fixed number of gas
atoms N = (L−`)n−+`

∑m
j=1 nj inside the tube, which is

the appropriate constraints for fully encapsulated gas. A
system with fixed N remains collapsed below a threshold
N1 = (L − `)n−, presents a mixed collapsed/expanded
state (C1Em) from N1 < N < N2, and fully expands for
N2 =

∑m
j=1 nj . The number of shells m formed at C1

→ Em in Fig. 7 now corresponds to transitions C1 →
C1Em→ Em where the partially inflated state may have
a variable number of shells as it works its way towards
the fully expanded state.

We expect that more complex staggered or helical gas
shell structures in the bulbs, as mentioned previously for
adsorption into narrow pores, will not change the main
sequence of transitions in which the bulbs (with higher
carbon coordination number) are populated first and then
the expanded part is populated after the expansion of
the tube. An alternative packing could have a different
number of in-shell z‖ and out-of-shell z⊥ neighbors, which
could shift the value of chemical potential corresponding
to the bulb-filling C0 → C1, 2 (2 is for axial shell) and
tube-expansion C2 → Em transitions. However, these
shifts will be small, since the number nj of gas atoms in
the expanded region is much larger than that the number
n− in the collapsed region: i.e. the adsorbtion energetics
in the inflated region dominates the transition C2→ Em
(6). In general, the relatively small capacity of the bulbs
means that the details of bulb packing will only weakly
affect the overall phase behavior of the system.

For concreteness, the discussion above describes the
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FIG. 7: The number m(ε,D) of shells formed in the expanded region of carbon and boron-nitride tubes during the initial
expansion C1 → Em. Bold font indicates a transition directly into a fully filled pore: capillary condensation simultaneous with
shape transition. The bottom of the range of radii shown corresponds to Rt, the size at which collapse becomes energetically
favorable. ε is given in units of εC .

case of a wide, single-layer sp2 carbon pore, but the phe-
nomena are general to any thin-walled geometry that can
change its shape in a bistable manner through variation
in mean curvature and interfacial contact. For exam-
ple, boron nitride nanotubes have lower elastic stiffness
(0.0275 eV Å2/atom versus 0.0405 eV Å2/atom for car-
bon29) and larger interfacial energies (εBN = 5.08 · 10−3

versus εC = 2.39 ·10−3), thus they cross over to favor col-
lapse at a much smaller pore radius, as depicted in Fig. 11
of the Appendix. The gas-tube interaction energy of Eqn.
(1) increases relative to that for carbon, due to the larger
values of εW that enter the combining rules. The right
panel of Fig. 7 shows the resulting sequence of expanded
shell phases for the BN system. Since the crossover radius
Rt is much smaller, gas atoms adsorbed in the expanded
region coordinate more strongly to the pore walls, thus
making the coupling of pore expansion to capillary con-
densation particularly strong. The C1 → Em transition
always occurs at the maximal shell number m consistent
with the boron nitride pore radius.

III. SUMMARY AND CONCLUSIONS

Employing a lattice gas model, we have investigated
shape transformations between collapse and expansion
driven by adsorbed gas in pores with atomically thin,

flexible walls as could be produced by a wide range of
emerging two-dimensional materials, when wrapped into
suitable pore geometries. Narrow-enough tubes are al-
ways expanded and simply form sequences of absorbed
concentric shells as the gas chemical potential increases.
Wider tubes without gas are most stable when collapsed,
but can be expanded when connected to a gas reservoir,
with one or more concentric shells adsorbed on the inner
surface of the expanded region. This inflation is driven
not by the pressure of a bulk vapor phase, but by the
increased surface area for adsorption liberated by lifting
apart the opposing faces of the collapsed pore. The num-
ber of concentric shells formed at the threshold chemical
potential for expansion depends on gas-gas interactions,
gas-substrate interactions, and pore radius. For a fixed
number of gas atoms, the system can also assume a mixed
state with partial collapse and partial expansion. The
precise conditions for these transitions are sensitive to
the detailed parametrization of the interaction potentials
(and potential inclusion of quantum effects for the lightest
gases), but the overall behavior of these shape-changing
pores is generic and robust.
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FIG. 8: Periodic (in axial direction) unit cells of (40,40) col-
lapsed and expanded tube configurations. Similar cells of dif-
ferent diameter tubes were used for computations of per unit
length energies U−, U◦, and difference ∆U = U◦ − U− shown
in Fig. 3.
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V. APPENDIX: ATOMISTIC SIMULATION

A. Elastic energy of the tube wall

Molecular dynamics simulations with the LAMMPS19

packaged were used to calculate the energy per unit of
nanotube length for the empty expanded (U◦) and col-
lapsed (U−) configurations shown in Fig. 8. The bonded
and non-bonded inter-carbon interactions were modeled
with an adaptive intermolecular reactive empirical bond
order (AIREBO) potential20. Energies were computed
for armchair nanotubes of different radii R after corre-
sponding unit cells were relaxed (at zero temperature)
with periodic boundary conditions. The resulting ra-
dius dependence of ∆U(R) = U◦(R)−U−(R) for a pure-
carbon sp2 pore wall is shown in Fig. 3.

B. Low temperature molecular dynamics
simulations

To validate the structures of the gas shells absorbed
inside the tube that were used in our zero-temperature
approach, we performed representative low-temperature
molecular dynamics simulations of a carbon nanotube
with a fixed number of helium atoms inside. Initially,
an empty 900Å long (44,44) single-wall carbon nanotube
was relaxed with one end fixed in the expanded state and

the other in the collapsed state. Similar to the top im-
age in Fig. 1, this empty tube is mostly collapsed. 11200
helium atoms were then arranged inside the expanded
part of the nanotube, both ends of which were sealed by
potential barriers to prevent gas from exiting the tube.
Using a Nose-Hoover thermostat, the system was initially
heated to 100 K for several hundred ps, so that the he-
lium could wet the accessible area inside the tube. The
system was then cooled and equilibrated at 10 K for 400
ps. Examples of equilibrium configurations are shown in
Fig. 1. A face-on view of exactly half of the system – col-
lapsed at the top and expanded at the bottom – is shown
in Fig. 9a. Figs. 9d and e show one fully formed closed-
packed gas shell and a second partially filled shell inside
the expanded segment of the tube. Figs. 9b and c show a
segment of the collapsed region of the tube with a single
closed packed shell in the bulb. (For clarity, each view
shows exactly one-half of the full structure). Defects in
the closed-packed structure of the shell may result from
either finite temperature effects, incomplete system equi-
libration due to slow dynamics at low temperature, or
the fixed number of gas atoms being incommensurate to
the number required to form a completed shell in this
finite-length system. Since the center-to-center distance
between opposing gas atoms in the bulb (∼4Å) is signif-
icantly smaller than twice the equilibrium distance be-
tween gas atoms (∼6Å), the formation of a second shell
in the bulb is highly suppressed, and such a shell can
be populated only at high temperatures that are beyond
the scope of our study. Gases heavier than helium would
require larger inter-shell equilibrium distances, making
formation of second shell in the bulb at low temperature
even less likely.

VI. APPENDIX: SIMPLIFIED ELASTIC MODEL

A brief analysis given here establishes the parame-
ters of mechanical bistability needed to analyze systems
with walls composed of hexagonal boron nitride, follow-
ing a method similar to that used previously3,5. Taking
the curvature-dependent elastic strain energy density29

Ue◦ = C/2R2 to be a function of local radius R, the energy
per axial unit length of the expanded tube is U◦ = πC/R
(measured relative to the energy of formation of the elas-
tic sheet). The D2 dihedral symmetry of the collapsed
tube’s cross-section allows its shape to be described by
measuring arc lengths within one quarter of the cross-
section, as shown in Fig. 10. a is a half of the flat re-
gion where two walls come in contact; r is the radius of
the bulb; and l = πR/2 − a is the length of the non-
contacted region, a portion b = l − πr/2 of which forms
the non-circular part of the bulb. The energy density U−
of the collapsed tube consists of the strain elastic energy
Uer− = πC/r of two bulb regions of total length 2πr; the

strain elastic energy Ueb− together with a non-bonded in-

terlayer energy Uvb− in four transition tube segments of
length b each; and a non-bonded interlayer attraction be-
tween the walls in the flat middle regions of width 2a.
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a b

c

d

e

FIG. 9: (Color online) Shell structures of helium (red) ab-
sorbed inside a (44,44) carbon nanotube (gray) at T = 10K.
The portion of the system cloest to the viewer is removed for
clarity, to expose the interior. (a) Longitudinal view showing
the interior of the tube and the transition between collapse
(top) and expansion (bottom). Fig. 1 shows a side view of
a similar system. (b) Close-up of the collapsed region, show-
ing a close-packed single shell of helium absorbed in the bulb.
The gray area is the region where the opposing tube walls in
in direct contact. (c) Side view of single shell in the bulb. (d)
Close-up of the expanded region with close-packed gas shells.
(e) Gas is absorbed into two shells with the second one being
incomplete.

a b

r

FIG. 10: Schematic showing geometric parameters of the col-
lapsed tube cross-section. 2a is the width of the collapsed
region; b is the length of the non-contacted wall part. r is the
radius of the bulb region.

The last energy can be approximated using the interac-

tion energy density of two infinite flat sheets:

Usheet(d) =

8επθ2
∫ ∞
0

[(
σ√

r2 + d2

)12

−
(

σ√
r2 + d2

)6
]
rdr

= 2πεθ2σ6(2σ6 − 5d6)/(5d10).

(8)

Here θ = 0.38 Å−2 is the areal density of atoms in one
sheet; ε, σ are the Lennard-Jones well depth and the zero-
potential distance. Minimization of Usheet(d) with re-
spect to inter-sheet distance d provides equilibrium spac-
ing d0. Therefore, the interaction energy per unit ax-
ial length of the central flat tube region of width 2a is
Uva− ≈ 2aUsheet(d0). Linear plate theory yields the elas-
tic strain energy in each out of four transition regions of
length b as

Ueb− =
6C

(l − πr/2)3

(
r − d0

2

)2

. (9)

The non-bonded interlayer energy associated with the
same region of length b is approximated by the averaged
value Uvb− = b[Usheet(d0) + Usheet(2r)]/2. Using dimen-
sionless parameters α = πr/2l and β = d0/2l, the tube
energy per axial unit length becomes

U− = 4Ueb− + Uer− + Uva− + 4Uvb−

=
24C

l(1− α)3

(
2α

π
− β

)2

+
π2C

2αl

+ (2l − πR)Usheet(d0)

+ 2(l − αl)
(
Usheet(d0) + Usheet(2r)

)
. (10)

The system of equations a = πR/2−l, b = l−αl, ∂U−/∂l,
and ∂U−/∂α, solved for a, b, α, and l, determines the
shape of the collapsed tube. Assuming that shape of the
transition region of length b does not depend on the tube
size R, the corresponding term 4Uvb− can be omitted dur-
ing the shape determination but retained for the calcula-
tion of the energy U−. The energy difference

∆U(R) = U◦ − U− (11)

between expanded and collapsed shapes is shown with
black and orange lines in Fig. 11 for carbon and boron-
nitride walls respectively. For comparison, the blue line
shows the results of molecular dynamics relaxation of an
atomistic model of an armchair tube with the same radius
– the deviation between these two treatments of carbon
gives a sense of the level of approoximation involved in
the simplified continuum model. We take29 CC = 4.05 eV
Å2/atom and CBN = 2.75 eV Å2/atom and use Lennard-
Jones parameters23 εC = 2.39 ·10−3 eV and σC = 3.41 Å.
The boron-nitride parameters are obtained through the
combining rules εBN =

√
εBεN and σBN = (σB + σN )/2,
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FIG. 11: (Color online) The difference in energy per unit
length ∆U(R) = U◦−U− between the expanded (U◦) and col-
lapsed (U−) configurations for an empty tube. The blue line
shows results of molecular dynamics simulations; the black
and orange lines show U(R) results from the simplified con-
tinuum model of Eqn. (11). The collapsed shape minimizes
the energy for tubes with radius R for which ∆U(R) > 0.

where boron and nitrogen values of εB = 4.116 · 10−3 eV,
σB = 3.453 Å, and εN = 6.281·10−3 eV, σN = 3.365 Å are
from a continuum analysis of hexagonal BN systems30.
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