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We consider a mathematical model that consists of a nematic liquid crystal layer sandwiched
between two parallel bounding plates, across which an external field is applied. We investigate how
the number and type of solutions for the director orientation within the layer change as the field
strength, anchoring conditions and material properties of the nematic liquid crystal layer vary. In
particular, we focus on how the inclusion of flexoelectric effects alters the Freedericksz and saturation
thresholds.

I. INTRODUCTION

Over the past several decades, Liquid Crystals (LCs)
and in particular Nematic Liquid Crystals (NLCs) have
emerged as important industrial materials due primarily
to increased production of electronic devices using liq-
uid crystal displays (LCDs) [1]. A typical LCD device
consists of millions of pixels, each made of a NLC layer
confined between two parallel plates, and crossed polar-
izers. The plane of polarized light passing through the
layer may be rotated, to a degree that depends on the
orientation of the NLC molecules within the layer. The
molecular orientation is in turn controlled by the bound-
ary conditions at the plates (the preferred orientation of
molecules at the boundaries, known as anchoring) as well
as the external forces (usually an applied electric field).
The basic operating principle of a conventional LCD is
that the plane of the polarized light is differently rotated
in the “field on” and “field off” states, hence the two states
appear optically distinct when viewed through the second
polarizer.

NLCs typically consist of rod-like molecules, which
have a dipole moment. An electric field can affect
the molecular orientation within an NLC layer via two
mechanisms. Applying an electric field causes the NLC
molecules to align parallel or perpendicular to the elec-
tric field direction according to the orientation of their
dipole moment. If the dipole moment is parallel to the
long molecular axis then the molecules align parallel to
the electric field; in contrast, if it is perpendicular to the
long axis then they will align perpendicular to the elec-
tric field [2]. In addition to this “dielectric effect”, the
asymmetric nature of the molecules induces a distortion
in the form of molecular splay and bend; the so-called
“flexoelectric effect” [3, 4].

The effect of an applied external field on a confined
NLC layer has been widely investigated and the Freed-

ericksz transition phenomenon has been well understood
for many years now [2, 5–7]. A Freedericksz transition
cell consists of a NLC layer bounded between two paral-
lel plates where an electric field is applied in a direction
perpendicular to the layer. It is observed that in the
presence of strong planar anchoring, the nematic direc-
tor field (representing the local average molecular orien-
tation) aligns parallel to the bounding plates throughout

the entire layer, when the applied field strength is low.
As the applied field increases past a critical value (known
as the Freedericksz threshold), a new director configura-
tion, which aligns partially with the applied field in the
interior of the layer while respecting the strong planar
anchoring at the boundaries, is favored energetically [2].

In the presence of weak planar surface anchoring, the
same observations hold initially as the field is increased.
However now, as the electric field is increased further still,
a second critical value, known as the saturation thresh-

old is reached: this is the magnitude of the applied field
at which the director aligns fully with the electric field
direction, breaking the anchoring of the director at the
surfaces [8, 9]. This is also often called the weak Freed-

ericksz transition. In this scenario three steady-state di-
rector configurations exist: (i) the director aligns parallel
to the anchoring orientation at the boundary (the “hori-
zontal” solution for which anchoring dominates); (ii) the
director aligns parallel to the electric field (the “vertical”
solution for which the electric field dominates); and (iii)
the director adopts a nontrivial solution for which there
is a balance between surface anchoring and electric field
effects.

The classical Freedericksz transition cell model ac-
counts for the dielectric effect of the applied field but
neglects flexoelectric effects, and assumes strong planar
anchoring at the cell boundaries. This is the setup con-
sidered by most authors, with a few notable exceptions.
Brown & Mottram considered the effects of flexoelectric-
ity on a Freedericksz cell above the Freedericksz tran-
sition [6]. A theoretical investigation carried out by
Derzhanski et al. [7] studies the effect of flexoelectricity
and surface polarization on a Freedericksz transition cell
as a weak electric field is applied (the applied voltage con-
sidered is strong enough to induce a deformation in the
director field across the layer, i.e., past the Freedericksz
threshold, but deformations are assumed to remain small
so that the equation governing the director angle is lin-
earized). Four different geometries are considered: (a) a
homeotropic layer (director field is homeotropic through-
out the layer in the absence of an electric field) with an
electric field applied parallel to the bounding substrates
(parallel electric field), (b) a homeotropic layer with an
electric field applied perpendicular to the bounding sub-
strates (perpendicular electric field), (c) a planar layer
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(director field is planar in the absence of an electric field)
with parallel electric field, and (d) a planar layer with
perpendicular electric field. Each case is expanded to
include positive and negative dielectric anisotropy and
different anchoring strength at each boundary (16 total
cases considered), but always in the linear deformation
regime. In each case, the authors study the effects of
flexoelectricity and surface polarization and how each of
them affect the director configurations.

In this paper, we consider a setup similar to case (d)
in [7] i.e. a Freedericksz transition cell where an electric
field is applied perpendicular to the NLC layer, which
has positive dielectric anisotropy. We account for both
dielectric and flexoelectric contributions to the free en-
ergy, with anchoring of arbitrary strength at both bound-
ing surfaces. We investigate how the inclusion of flexo-
electricity affects not only the Freedericksz threshold but
also the saturation threshold, via a dimensionless ma-
terial parameter that measures the ratio of flexoelectric
and elastic effects. We also consider systematically the
effect of anchoring strength on the results, and study
how even small changes of the anchoring conditions can
change the outcome dramatically. Where applicable, we
interpret and compare our results with those obtained by
Derzhanski et al. in [7]. While our approach is mainly
numerical (necessitated by the fact that we consider ar-
bitrary electric field strength so the director governing
equation is nonlinear), we complement our study with
some analytical results.

Our previous related work has focused on two specific
issues of relevance to LCDs. First, we have studied how
anchoring conditions may be tuned to permit bistability

– the existence of two (optically) distinct stable states
in the absence of an applied electric field – in a proto-
type LCD, using a model very similar to that considered
here [10–12]. Bistability in LCDs is important since it
offers potential for considerable energy savings: a device
can maintain its display configuration without drawing
power. When the display needs to be changed, individ-
ual pixels can be switched to the alternative stable state
by transient application of an electric field. Second, we
have studied the electric field nonuniformities that can
arise in a confined NLC layer across which a voltage is
applied [13]. Most investigations of electric field effects
within such NLC layers assume a uniform field, whereas
in reality the NLC and field interact, leading to gradi-
ents in the field. The present paper is concerned primar-
ily with investigating the bifurcations between distinct
solution types; determining how bifurcation thresholds
are affected by material properties of the system; and in
some cases how bifurcations may be destroyed altogether
by small changes in anchoring conditions. The relevance
of our earlier work to the present study will be discussed
later, in particular in Sec. III where our simulations en-
ter regimes in which the uniform field assumption may
not be valid and in Sec. V where we discuss the regime
such that changes in the anchoring conditions can induce
bistability.

The paper is laid out as follows: in Sec. II we present
the mathematical model and discuss its nondimensional-
ization, leading to the key dimensionless parameters for
the system. In Sec. III we outline our solution scheme,
present selected numerical results, focusing on the effect
of flexoelectricity on the director solution and how our
results compare with the predictions outlined in [7]. In
Sec. IV we explore how flexoelectricity affects the Freed-
ericksz and saturation thresholds in a Freedericksz transi-
tion cell while Sec. V briefly explores how changes in the
anchoring conditions affect the results. In our investiga-
tion, we pay particular attention to the stability of each
director configuration, augmenting our numerical results
with analytical techniques such as the calculus of varia-
tions, and Linear Stability Analysis (LSA), as described
in the Appendix. Section VI summarizes our conclusions.

II. MATHEMATICAL MODEL

We consider a layer of nematic liquid crystal of thick-
ness h∗, placed between two parallel bounding surfaces at
z∗ = 0 and z∗ = h∗ as shown in Fig 1. The local average
molecular orientation throughout the layer is described
by a unit vector director field n , which we assume lies
in the (x∗, z∗) plane, with its properties varying in the
z∗-direction only. Hence, we consider a one-dimensional
model where the director is expressed in terms of a sin-
gle angle, θ(z∗) ∈ (−π/2, π/2], the angle the director
makes with the z∗-axis: n = (sin θ, 0, cos θ). We assume
that an electric field E

∗ = E∗(0, 0, 1) is applied in the
z∗-direction, perpendicular to the bounding plates. The
generated field is assumed to be uniform everywhere as if
the field were applied in vacuo. In reality, the molecules
of the NLC layer contain electric dipoles that interact
with the applied field, causing it to deviate from its uni-
form state. However, we have shown in prior work [13]
that the uniform field approximation is good under cer-
tain conditions, which we will discuss later after outlining
our model and associated parameters.

The mathematical model is based on the Ericksen-
Leslie continuum theory for nematics where the total
energy density of a liquid crystal layer comprises bulk
and surface energy densities, that are functions of the
director orientation n . To simplify the model, we make
the common assumption that the bend and splay elas-
tic constants are equal in magnitude. In the presence of
a uniform electric field, the bulk energy density consists
of the elastic, dielectric and flexoelectric contributions
W ∗

e ,W
∗
d ,W

∗
f [2, 14, 15] given by

2W ∗
e = K∗[(∇∗ · n)2 + ((∇∗ × n)× n)2], (1)

2W ∗
d = −ε∗0(ε‖ − ε⊥)(n ·E ∗)2, (2)

W ∗
f = −E

∗ · (e∗1(∇
∗ · n)n + e∗3(∇

∗ × n)× n), (3)

where K∗ is the single elastic constant for the NLC,
ε∗0 = 8.854× 10−12 C2N−1m−2 is the permittivity of free
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Figure 1. (Color online) Sketch showing the setup and sum-
marizing the key parameters in dimensional coordinates.

space and ε‖ and ε⊥ are the relative dielectric permittiv-
ities parallel and perpendicular to the long axis of the ne-
matic molecules. The flexoelectric effect typically arises
because NLC molecules possess shape asymmetry [4, 16].
When they align in an electric field, therefore, distor-
tions may be induced. For example, if molecules are
slightly pear-shaped, being fatter at one end than the
other, then when all the “pears” align in a field a splay
distortion will be induced due to the fat ends occupying
more space than the thin ends. Similarly, if molecules
are slightly banana-shaped, and all the “bananas” align
in an electric field, then a net bend distortion results.
Flexoelectricity is also possible in symmetric polar liquid
crystals such as 5CB. In this case, polar liquid crystals
tend to form dimers with antiparallel alignment between
molecular dipoles. In the presence of an electric field,
the alignment is not completely antiparallel leading to a
net polarization. This polarization couples to a bend and
splay deformation [4, 16]. We note that the flexoelectric
coefficients used in this paper are imported from exper-
imental literature [4] and account for both dipolar and
quadrupolar flexoelectricity.

It has been observed that the effect of flexoelectricity
in a weakly anchored NLC layer is closely related to sur-
face polarization [7, 17]. In fact, these two effects are
so tightly bound that substantial errors in the flexoelec-
tric coefficients may be induced when trying to separate
the two effects in experiments [7, 18]. Surface polariza-
tion can arise as a result of the asymmetric nature of the
NLC molecules and their interaction with the substrate
molecules or as a result of the spatial dependence of the
nematic order parameter in a thin layer close to an in-
terface [18–21]. Although our study does not explicitly
account for surface polarization, it has been shown [20]
that these effects can easily be incorporated into the
present framework. Specifically, they may be included
by modifying the coefficient of the flexoelectric term in

the boundary conditions (upcoming Eqs. (6a)–(6c)). Our
results may therefore be considered to cover surface po-
larization effects also, at least in the symmetric anchoring
cases considered for the majority of this paper.

The total free energy of the system J∗ (per unit area
of bounding plates) is given as follows

J∗ =

∫ h∗

0

W ∗dz∗ + g∗0 |z∗=0 + g∗h∗ |z∗=h∗ , (4)

where g∗{0,h∗} are the surface anchoring energies at

boundaries z∗ = 0, h∗ and, under the assumptions out-
lined above, W ∗ =W ∗

e +W ∗
d +W ∗

f simplifies to

W ∗ =
K∗

2
θ2z∗ −

E∗2ε∗0(ε‖ − ε⊥)

2
cos2 θ

+
E∗(e∗1 + e∗3)

2
θz∗ sin 2θ, (5)

where the subscript, (·)z∗ denotes the derivative: ∂/∂z∗.
For the surface energy contributions, we use the Rapini-
Papoular form [22]: g∗{0,h∗} = (A∗

{0,h∗}/2) sin
2(θ −

α{0,h∗}), where α{0,h∗} are the preferred anchoring an-
gles at z∗ = 0, h∗, respectively, and A∗

{0,h∗} are the asso-

ciated anchoring strengths. From a formal mathematical
viewpoint, surface anchoring is strong if the molecules
at each surface align exactly with the preferred anchor-
ing angles at the corresponding surfaces; and it is weak
if the molecules deviate from the preferred orientation.
Strictly speaking therefore, strong anchoring is achieved
only in the limit A∗ → ∞.

We follow several authors (e.g. Kedney and Leslie [23],
Davidson & Mottram [24], Cummings et al. [11]) in as-
suming that the system evolves as a gradient flow to its
total free energy minimum. This process can be repre-
sented as follows:

〈µ∗θt∗ , η〉+ 〈W ∗
θ , η〉+ 〈W ∗

θ
z
∗
, ηz∗〉+

[ν̃∗ηθt∗ + ηg∗h∗θ]|z=h∗ + [ην̃∗θt∗ + ηg∗0θ]|z=0 = 0,

where 〈A,B〉 =
∫ h∗

0 AB dz∗, the parameter η is a suffi-
ciently smooth test function and the parameters µ∗ and
ν̃∗ represent the bulk and surface rotational viscosities
associated with the NLC molecules (see [11, 23, 24]; for
consistency we use the same notation as our earlier work
[11]). Integration by parts leads to the following evolu-
tion equation and boundary conditions:

µ∗θt∗ = K∗θz∗z∗ −
ε∗0(ε‖ − ε⊥)E

∗2

2
sin 2θ, (6a)

ν̃∗θt∗ = K∗θz∗ −
A∗

0

2
sin 2(θ − α0) (6b)

+
E∗(e∗1 + e∗3)

2
sin 2θ

∣

∣

∣

∣

z∗=0

,

−ν̃∗θt∗ = K∗θz∗ +
A∗

h∗

2
sin 2(θ − αh∗) (6c)

+
E∗(e∗1 + e∗3)

2
sin 2θ

∣

∣

∣

∣

z∗=h∗

.
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We nondimensionalize Eqs. (5-6c) as follows:

z =
z∗

h∗
, t =

t∗K∗

µ̃∗h∗2
, W =

h∗2W ∗

K∗
, (7)

g{0,1} =
g∗{0,h∗}h

∗

K∗
, A{0,1} =

h∗A∗
{0,h∗}

K∗
,

(W plays an important role in the calculus of variations
approach used in the Appendix), obtaining the following
dimensionless boundary value problem:

θt = θzz −D sin 2θ, (8a)

ν̃θt = θz −
A0

2
sin 2(θ − α0) +

F

2
sin 2θ on z = 0,

(8b)

−ν̃θt = θz +
A1

2
sin 2(θ − α1) +

F

2
sin 2θ on z = 1,

(8c)

where ν̃ = ν̃∗/(µ∗h∗) represents the dimensionless
surface viscosity and D and F represent the relative
strengths of dielectric anisotropy and elasticity; and of
flexoelectricity and elasticity, respectively:

D =
h∗2E∗2ε∗0(ε‖ − ε⊥)

2K∗
, F =

h∗E∗(e∗1 + e∗3)

K∗
.

(9)

We consider the common case in which the molecules
align parallel to the direction of the electric field, rather
than perpendicular to it (i.e, ε‖ − ε⊥ > 0), so D > 0
always in our model. The parameter F can change sign,
if the electric field direction is reversed. We note that
if surface polarization is taken into account, the govern-
ing equations (Eqs. (8a)–(8c)) remain unchanged and we
only need to modify the value of F in the boundary con-
ditions as shown in Ref. [20]. In the following, however,
for clarity and to keep the discussion focused, we will re-
fer only to flexoelectric effects when considering the influ-
ence of the parameter F on results. The ratio Υ = F2/D
is independent of the applied electric field:

Υ =
2(e∗1 + e∗3)

2

K∗ε∗0(ε‖ − ε⊥)
. (10)

Υ is thus a material parameter of the liquid crystal layer,
independent of cell design and constant for a specific liq-
uid crystal material.

With characteristic values of h∗ ∼ 1 − 20µm, E∗ ∼
1 Vµm−1, K∗ = 8× 10−12N, e∗1+ e

∗
3 ∼ 5× 10−12Cm−1−

280 × 10−12Cm−1 and ε‖ − ε⊥ ∼ 5 [4], the dimension-
less parameters F and D can take a wide range of values
(|F| ∈ (5, 125) and D ∈ (2, 1100)). Consistently with
this range of values, in Sec. III, we fix |F| and D and
vary the anchoring strength and field direction (sign(F))
to determine the influence on the director configuration
throughout the layer. In Sec. IV, we vary Υ (and inher-
ently F) while keeping D = 10 to explore how flexoelec-
tricity affects the Freedericksz and saturation thresholds.

The presentation so far assumes a uniform electric
field, but in reality the applied field interacts with the
NLC leading to some nonuniformity. Cummings et al.

[13] studied the validity of the uniform field approxima-
tion in our model. They concluded that the approxima-
tion is valid in the large field limit, when |F| ≫ 1 (with
Υ,A0,A1 ∼ o(|F|)) as well as the small field limit (with
Υ ∼ |F| ≪ 1 and Υ−1 ∼ |F| ≪ 1). In the latter case, the
director does not feel the nonlinearity that arises in the
electric potential due to the small field strength. Caution
should however be exercised in using the uniform field
approximation in the case where Υ ≫ 1 (strong flexo-
electric effect) and |F| = O(1). We present simulation
results both in the regime where the uniform approxi-
mation is valid and where it may not be. For the latter
cases, we note that some corrections to the results may
be needed.

The parameters A{0,1} in Eqs. (8) represent the dimen-
sionless anchoring strength at each boundary. In exper-
iments, typical values for strong anchoring hover around
A∗ ∼ 10−3Jm−2 while A∗ ∼ 10−5 − 10−6Jm−2 for weak
anchoring [25]. Depending on the thickness of the NLC
layer, A{0,1} can take a wide range of values A{0,1} ∈
(125, 2500) (strong anchoring) and A{0,1} ∈ (0.125, 25)
(weak anchoring). Consistently with this range of val-
ues, in our simulations we use A{0,1} = 0.1, 1, 5, 10, 20 to
represent weak anchoring and A{0,1} = 1000 for strong
anchoring. For most of our work here, we consider
the case where anchoring is planar at both boundaries,
α{0,1} = π/2, with equal anchoring strengths (A0 = A1).
This symmetry guarantees monostability (only one stable
director configuration for a given electric field strength).
In cases where asymmetry is introduced (through anchor-
ing angles), the system can be bistable, admitting two
nontrivial director configurations θn,1 and θn,2 [10, 11];
such cases are briefly considered in Sec. VB.

In the following sections, we use numerical and ana-
lytical methods to determine and investigate solutions to
the boundary value problem given by Eqs. (8) for vari-
ous electric field strengths accounting for both dielectric
and flexoelectric contributions. In particular, we focus on
how the stability of each director solution changes with
the electric field strength, and with the material parame-
ter Υ, which characterizes the strength of flexoelectricity
relative to elasticity. We also extend our investigation
to determine the influence of variations in the anchoring
strength and angles at the boundaries in both monostable
and bistable systems.

III. SOLUTION SCHEME & NUMERICAL

RESULTS

We begin by illustrating some key features of the di-
rector configurations in the classical case where the an-
choring at each boundary is planar (α{0,1} = π/2) and
the layer is subjected to an applied perpendicular electric
field. Both “strong” and “weak” anchoring are considered.
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We note that the effect of flexoelectricity for planar (weak
and strong anchoring) angles has been previously inves-
tigated [6, 7]. Here, we extend those results to include
the effect of flexoelectricity not only on the Freedericksz
threshold but also on the saturation threshold (arbitrary
electric field strength). In addition, we consider systems
with different anchoring orientations (e.g. the nearly pla-
nar anchoring case and the hybrid aligned case), and in-
vestigate the structure of each system as the electric field
strength varies. In our numerical simulations, we solve
the boundary value problem given by Eqs. (8) using the
Crank-Nicolson discretization scheme for the linear parts
of the equations. Nonlinear terms are treated explicitly
using the forward Euler discretization scheme [26]. A
grid size ∆z = 10−3 and ∆t = 10−4 is found sufficient to
produce accurate results in all cases considered.

Except where explicitly stated otherwise, the initial
condition on all of our simulations is taken as θ(z, 0) =
πz/4. We note, however, that except for some simu-
lations of Sec. VB (where asymmetric anchoring condi-
tions may lead to bistability), all scenarios considered are
monostable, and the final state reached is independent of
the initial condition used. Figure 2 shows the evolution of
the director field in time for two cases: (i) when no elec-
tric field is applied across the layer, (ii) when an electric
field of moderate strength characterized by |F| = 5 and
D = 25 is applied. Strong and weak planar anchoring
represented by A{0,1} = 1000 (Fig. 2(a)) and A{0,1} = 5
(Figs. 2(b), 2(c)), with α{0,1} = π/2, are considered; for
both cases we observe that, in the absence of an electric
field, the director evolution is driven purely by the an-
choring angles, hence we obtain a director solution that is
parallel to the bounding plates (θ(z, t) = π/2) through-
out the domain (black horizontal lines). In the presence
of an electric field however, the molecules should tend to
align parallel to the electric field direction since D > 0.

Consistently with our expectations and with the re-
sults of [6], we observe that for a strongly anchored sys-
tem (Fig. 2(a)), the director aligns nearly parallel to the
applied field in the interior of the layer and nearly par-
allel to the walls close to the boundaries (see red lines in
Fig. 2(a)). Although our model includes both dielectric
and flexoelectric contributions, flexoelectric deformations
are not observed here (as noted also by Derzhanski et

al. [7]). Flexoelectricity is dominated by the surface an-
choring in this strongly-anchored case. This may also be
seen from the boundary conditions, Eqs. (8b)–(8c), which
are the only place in the model where the flexoelectricity
parameter F and the surface anchoring strengths A{0,1}

appear. These boundary conditions suggest that it is the
ratio of these two parameters that is key in determining
whether flexoelectricity significantly affects the system
behavior. Consistent with [6], we also note from these
conditions that, in the symmetric anchoring case consid-
ered here (A0 = A1, α{0,1} = π/2), if F = 0, we antici-
pate symmetry about the layer’s centerline z = 0.5, but
asymmetry when F 6= 0. As the anchoring strength A in-
creases for fixed F , we would therefore expect that the di-
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Figure 2. (Color online) Evolution of director field in time
for α{0,1} = π/2, with (a) A{0,1} = 1000 (strong anchoring),
F = 5 and D = 25, (b) A{0,1} = 5 (weak anchoring), F = 5
and D = 25 and (c) A{0,1} = 5, F = −5 and D = 25. All
figures show the director evolution in dimensionless time when
no electric field is applied, D = F = 0 (black solid lines) and
when an electric field of strength F = ±5 and D = 25 is
applied (red dotted lines).

rector configuration observed becomes increasingly sym-
metric about z = 0.5, and this is borne out by Fig. 2(a),
where F = 5 and A{0,1} = 1000: the director config-
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uration shown in this figure is almost exactly the same
as in the Freedericksz transition cell where the flexoelec-
tric effects are neglected and anchoring is strong [6] (and
would be identical to the results of [6] in the formal limit
A{0,1} → ∞).

For the weakly anchored system (A{0,1} = 5) shown
in Figs. 2(b), 2(c) however, we observe significant asym-
metry about the cell centerline: with an electric field of
strength F = 5,D = 25, the molecules align parallel to
the electric field at the upper boundary z = 1 as well
as in the interior (see red lines in Fig. 2(b)). This is a
consequence of the asymmetric nature of the molecules
discussed earlier which is reflected in the flexoelectric free
energy density, see Eq. (3). Due to the weak anchoring
conditions, the flexoelectric distortion plays an important
role in the director alignment and hence in the response
to the electric field [3, 7, 27]. The direction of the elec-
tric field dictates the sign of F . Figure 2(c) confirms our
expectations that if the sign of F is reversed, then the
director profile is simply reflected about the line z = 0.5.

z

0 0.2 0.4 0.6 0.8 1

θ
(z
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Υ = 0.0
Υ = 0.2
Υ = 1.0
Υ = 5.0
Υ = 10.0

Figure 3. (Color online) Director solution θ(z) for different
values of the material parameter Υ while keeping D = 10.
Υ = 0 corresponds to a NLC layer with no flexoelectric con-
tribution. Υ = 1 corresponds to the director configuration
shown in Fig. 2(b).

For this simple monostable case of symmetric, planar,
surface anchoring (α0 = α1 = π/2 and A0 = A1) we
next investigate how flexoelectricity changes the steady-
state molecular orientation of the NLC layer with weak
planar anchoring (α{0,1} = π/2, A{0,1} = 5), when an
electric field, above the Freedericksz threshold but be-
low the saturation threshold, is applied in the z direc-
tion. Neglecting flexoelectricity (F = 0 in Eqs. (8)), but
accounting for the weak anchoring, Ref. [8] has shown
that a director solution symmetric about z = 0.5 is the
minimum free energy solution. To study the effects of
flexoelectricity we vary the material parameter Υ (given
by Eq. (10)) while keeping D fixed and observe how the
director configuration changes as Υ (and inherently F)

is increased. Figure 3 shows the steady-state director
profiles obtained at large times after solving Eqs. (8) for
different values of Υ. When Υ = 0 (black solid curve),
we recover the results of Ref. [8] for weak anchoring but
no flexoelectricity. The molecules align nearly parallel to
the electric field direction in the interior of the layer while
at the boundaries there is a tradeoff between the weak
planar anchoring and the field-aligning dielectric effect.
As Υ increases (strong flexoelectric effect), the molecules
will splay and bend causing the director to align almost
parallel to the electric field in the bulk and at the up-
per boundary. Note that Υ = 10 falls under the case
where Υ ≫ 1 and F = O(1), where the uniform field as-
sumption may not be valid [13]. However, assuming that
the director solution we calculate here for Υ = 10 is not
significantly different than that for the true nonuniform
field case, we conclude that flexoelectricity plays an im-
portant role in the alignment of liquid crystal molecules
in the presence of an electric field and it affects the Freed-
ericksz and saturation thresholds.

IV. STABILITY ANALYSIS AND

BIFURCATIONS FOR SYMMETRIC

ANCHORING CONDITIONS

We now investigate how changing the flexoelectric
strength affects the Freedericksz and saturation thresh-
olds in a nematic liquid crystal layer (these thresholds
have been extensively studied in the absence of flexoelec-
tricity, see, e.g., [2, 8, 9, 14, 25]). In order to do this, we
first identify certain properties of Eqs. (8) as well as in-
troduce measures that allow us to quantify our findings.
We observe that, with α0 = α1 = π/2, in addition to non-
trivial director solutions of the type seen in Figs. 2 and
3 (which we now call θn), the boundary value problem
(Eqs. (8)) admits two additional steady state solutions
that exist for all values of D, F : θv(z, t) = 0 (a vertical
state) and θh(z, t) = π/2 (a horizontal state). These so-
lutions are linearly stable only if, when subjected to suffi-
ciently small perturbations, such perturbations die away
and the steady state is recovered at large times. Lin-
ear stability of each solution type depends on the choice
of model parameters, and can be determined either nu-
merically or analytically (see Appendix for details of our
analytical approach). Solutions gain or lose stability as
model parameters are varied, and this may be visualized
by constructing bifurcation diagrams. In order to con-
struct such diagrams, we plot the norm || · ||2, of the
steady state director solution, defined as

||θ||2 =

√

∫ 1

0

θ2 dz.

Since the three distinct solutions θh, θn, θv have differ-
ent norms, bifurcations between solution types are clearly
visible. Figure 4 illustrates the bifurcation diagram ob-
tained by plotting ||θ||2 as a function of F for several
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different values of the material parameter Υ, which char-
acterizes the strength of the flexoelectric effect. The di-
agram is obtained using the continuation method as fol-
lows: since we anticipate that the horizontal state is a
unique steady solution at zero field, we use a weakly per-
turbed state, θ = π/2 − δ, as the initial condition when
F = 0. We then slowly increase F from F = 0, al-
ways using the solution obtained with the previously used
smaller value of F (forward continuation). We also carry
out reverse continuation using a similar process: since
we anticipate that the vertical state is a unique steady
solution at electric field strengths above the saturation
threshold (F > Fs), we use this state with a small per-
turbation, θ = δ, as the initial condition for the largest
value of F , and thereafter decrease F , at each stage us-
ing the previous large-time solution as the new initial
condition. When generating our bifurcation diagrams
(Figures 4–10), both forward and reverse continuations
are carried out, to reveal any bistability that might be
present for a range of electric field strengths. In Figs. 4
and 5 however, we show results for F ≥ 0 only (since
changing the electric field direction, F → −F , simply
flips the director solution profile θ about the centerline
z = 0.5 (see Figs. 2(b) and 2(c)) leading to bifurcation
diagrams symmetric about the vertical axis); and for for-
ward continuation only (since the system is found to be
monostable).
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Figure 4. (Color online) Bifurcation diagram showing ||θ(z)||2
vs F with A0 = A1 = 5 and α0 = α1 = π/2 for different Υ,
obtained using continuation in F . Ff denotes the Freeder-
icksz threshold and Fs denotes the saturation threshold with
the arrows pointing where the thresholds occur for each Υ.

For the range of F -values considered here, Fig. 4 shows
that, for small values of Υ (specifically Υ = 0.5 and Υ =
1), three director configurations are found: the horizontal
(||θh||2 = π/2) represented by the upper left portion of
the graph for all Υ, the nontrivial (0 < ||θn||2 < π/2) and
the vertical (||θv||2 = 0) solutions. In these two cases,
the director configuration transitions as follows: at low

F values the horizontal solution θh is obtained. Then
if F passes a critical value Ff (Freedericksz transition),
the nontrivial solution θn is observed. As F is increased
further still, past a second critical value Fs (saturation
threshold), the vertical solution θv is observed.

These observations are as expected, but the question
of how flexoelectricity affects these results has not yet
been addressed. Looking at Fig. 4, we observe that both
threshold values increase with Υ. While the Freedericksz
threshold Ff is present for all values of Υ considered, the
saturation threshold is only seen for the lowest two values
of Υ, at least for the range of F -values considered here.
In order to determine whether the saturation threshold
is present for all Υ ≥ 0, we use an analytical approach
based on the calculus of variations. We study specifically
the stability of the vertical solution, θv = 0. If it can
be shown that θv is always stable for sufficiently large
F , then we may conclude that a saturation threshold Fs

should exist, for all Υ ≥ 0.

The calculus of variations approach proceeds by di-
rectly seeking minimizers, θ(z), of the total free energy
J = h∗J∗/K∗ (where J∗ is defined in Eq. (4)). Small
perturbations to a minimizer, θ(z) → θ(z) + ǫη(z), (0 <
ǫ ≪ 1) induce variations in J : J → J [θ + ǫη] =
J0 + ǫJ1 + ǫ2J2 + O(ǫ3). For θ(z) to be a free energy
minimizer, we require J1 = 0 and J2 > 0 for all admis-
sible variations η (see Appendix for more details). Upon
obtaining expressions for J1 and J2 (see Eq. (16–18) in
Appendix), it may be seen that, for θ(z) = θv = 0 and
any Υ > 0, we have J1 = 0, and for sufficiently large |F|
the second variation J2 > 0, hence θ(z) = 0 is a stable
solution for such F . It may also be seen from Eq. (18)
that the larger the value of Υ, the larger F must be to
guarantee positivity of J2 for all admissible variations
η. Similarly we are able to show that the horizontal so-
lution θ(z) = θh = π/2 is stable for sufficiently small
|F|. Hence, the calculus of variations allows us to con-
clude that inclusion of flexoelectric effects in the model
does not affect the fundamental mathematical structure
of the system: with the weak anchoring considered here,
both Freedericksz and saturation thresholds (Ff and Fs)
always exist, both being increasing functions of Υ. We
note, for completeness, that the Υ = 10 result in Fig. 4
may lie in the regime where the uniform field approxima-
tion begins to lose validity [13].

We next investigate how the strength of the surface
anchoring (here assumed the same at both boundaries)
affects results, for a fixed value of the material parame-
ter Υ. We consider a range of anchoring strength values
from A0 = A1 = 0.1 to A0 = A1 = 1000 and obtain
a bifurcation diagram by plotting ||θ||2 as a function of
F . As shown in Figure 5, we observe that both Freeder-
icksz and saturation thresholds are present for all except
the largest value of A used, and both thresholds increase
with A. As before, where our numerics are inconclusive
we may augment with an analytical approach. The calcu-
lus of variations technique outlined earlier again reveals
that the vertical solution θv is stable for sufficiently large



8

F
0 10 20 30 40 50 60 70

||
θ
(z
)|
| 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A = 0.1
A = 1
A = 5
A = 10
A = 20
A = 1000

Ff

Fs

Figure 5. (Color online) Bifurcation diagram showing ||θ(z)||2
vs F with Υ = 1 for different anchoring strengths: A0 =
A1 = 0.1, 1, 5, 10, 20, 1000 obtained using continuation in F .
The portion of the diagram where ||θ||2 = π/2 represents the
horizontal state (θh(z) = π/2), while ||θ||2 = 0 represents the
vertical state (θv(z) = 0). The intermediate portion (slowly
decaying as |F| increases) represents the nontrivial solution
θn(z) found numerically.

F and finite A. Note that in the limit as A → ∞, posi-
tivity of the second variation J2 > 0 (see Eq. (18) in the
Appendix) is not guaranteed, as we recover the Freed-
ericksz transition cell with strong anchoring where the
saturation threshold and therefore the vertical solution
disappear.

Figures 4 and 5 verify the prediction of [7] that there
exists a polarity independent flexoelectrically enhanced
Freedericksz Transition. Indeed, we find that the Freed-
ericksz threshold value is independent of the direction of
the electric field. In addition, we observe that the sat-
uration threshold increases with |F| and it is also inde-
pendent of the direction of the electric field. We remind
the reader that for the cases considered in Figs. 4–5, the
system is monostable: only one steady director configu-
ration is stable for a given electric field strength. In the
following section, we consider how breaking the symme-
try in the anchoring conditions, specifically, changing the
anchoring strength and anchoring angles at each bound-
ary, affects the mathematical structure of the system.

V. STABILITY ANALYSIS AND

BIFURCATIONS FOR ASYMMETRIC

ANCHORING CONDITIONS

The coexistence of two (or more) stable director con-
figurations gives rise to the potential for development
of bistable LCD devices, noted in the introduction. If
two stable states exist at zero field then contrast be-
tween neighboring pixels could be maintained without

use of energy, with an electric field needed only to switch
pixels from one configuration to the other as needed
[10, 11, 23, 24, 28, 29]. In our model represented by
Eqs. (8) we find that breaking the symmetry of the an-
choring conditions can lead to bistability. In the following
section we see how such bistability arises, and study the
effect of flexoelectricity on director profiles, with particu-
lar attention paid to how the Freedericksz and saturation
threshold are affected.

A. Asymmetric anchoring strengths

We begin our investigation into anchoring asymme-
try by maintaining planar anchoring at both boundaries
(α0 = α1 = π/2), but allowing anchoring strengths to
differ. We keep the lower anchoring strength constant
at A0 = 10 and vary the upper anchoring strength in
the range 1 ≤ A1 ≤ 12. We expect the system to retain
the same qualitative features of a weak Freedericksz tran-
sition cell where all three director configurations (θh, θn
and θv) seen in Fig. 5 persist despite the different anchor-
ing strengths at each boundary. However, due to the loss
of symmetry in the anchoring strength and the inherent
dependence of the flexoelectric effect on the direction of
the electric field (see [7]), we now anticipate results for
F < 0 to differ from those for F > 0.

Figure 6 illustrates the bifurcation diagram, obtained
by forward continuation in |F| from F = 0, showing
the stable director configurations for a range of values
of A1. Here, as in Figs. 4 and 5, we use a slightly
perturbed horizontal state as an initial condition when
F = 0, followed by the solution obtained with the previ-
ous electric field strength when F 6= 0 (continuation).
For this particular set of simulations, the size of the
Freedericksz threshold, |Ff |, increases with A1 (see in-
set of Fig. 6). We also observe that the Freedericksz
threshold at positive F , F+

f , is different than the Freed-

ericksz threshold at negative F , |F−
f |, for each anchor-

ing strength considered. This observation confirms and
quantifies the predictions of Derzhanski et al., who stated
that if the anchoring strength is different at each bound-
ary, A0 6= A1, there exists a polarity dependent flexo-
electrically enhanced Freedericksz transition.

Figure 6 also shows that the saturation threshold at
positive F , (F+

s ) appears to be essentially independent
of A1; but its value at negative F , (F−

s ) depends strongly
on A1, with |F−

s | being an increasing function of A1. The
dependence of the saturation threshold for positive and

negative values of F , (denoted by F
{+,−}
s ) on A{0,1} can

be understood by considering the behavior of the non-
trivial director solution θn with weak anchoring (recall
that this solution exists only for F -values between the
Freedericksz and saturation thresholds; see, e.g., Fig. 2
for the symmetric weak anchoring case). Consider the
case F > 0 first. It is clear from Fig. 2(b) that, where
θn exists, the director behavior is very different at the
two boundaries, respecting the anchoring at z = 0 but



9

F
-50 0 50

||
θ
(z
)|
| 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
A1 = 1
A1 = 4
A1 = 8
A1 = 12

F
-2 0 2

||
θ
(z
)|
| 2

1.57

1.575
Ff

Fs

Figure 6. (Color online) Bifurcation diagram showing ||θ(z)||2
vs F with Υ = 1 for A0 = 10.0 and 1 ≤ A1 ≤ 12 using
continuation in F .

aligning with the field at z = 1. Since the director is
already field-aligned at z = 1, we would not anticipate
that the anchoring strength at that boundary will have
much effect on the saturation threshold value at which
the director solution switches to the fully-aligned state –
the value of A0 will be more important. When F < 0
however, the situation is reversed: the director is field-
aligned at z = 0, while strongly influenced by the surface
anchoring at z = 1 (Fig. 2(c)). In this case we expect the
value of A1 to have a significant effect on the saturation
threshold, and this is borne out in Fig. 6.

B. Asymmetric anchoring angles

We next investigate how perturbations in the anchor-
ing angles can change the structure of the system; in
particular how the Freedericksz and saturation thresh-
olds are affected. We begin by considering a system
that is somewhat special: anchoring angles α0 = 0 and
α1 = π/2; this is commonly referred to as the hybrid
aligned state, which we here call the semi-symmetric sys-
tem. The anchoring strengths are set to A0 = A1 = 5
throughout the section. Inspection of Eqs. (8) reveals
that in this case the horizontal and vertical solutions,
θh = π/2 and θv = 0, are still steady solutions, but now
we anticipate that θh may no longer be stable at small
nonzero fields, since it is favored by just one (not both)
boundaries. Hence, we expect to see only a saturation
threshold as |F| is increased from zero.

Figure 7 shows the bifurcation diagram for this case.
In obtaining the director solutions for each F , we first use
θ = π/2−δ as an initial guess when F = 0, and thereafter
use forward continuation in |F| (reverse continuation was
also carried out with identical results obtained; the sys-
tem is monostable). We observe that, as anticipated, the
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Figure 7. (Color online) Bifurcation diagram showing ||θ(z)||2
vs F with Υ = 1 for A0 = A1 = 5 and α0 = 0, α1 = π/2,
obtained using continuation in F .

horizontal state is never stable. Instead, the system con-
verges to a nontrivial state θn, which is stable for small
values of |F|. For large enough |F|, the vertical state
θv(z) = 0 becomes stable while the nontrivial steady
state is unstable (or ceases to exist). This asymmetry in
the saturation threshold is due to the flexoelectricity.We
conclude that this system does not have a Freedericksz
threshold, only a saturation threshold, which occurs at
F ≈ −12.5 for F < 0 and F ≈ 2.5 for F > 0.

For F > 0, flexoelectricity helps the director fully align
with the electric field at weaker field strength than for
F < 0. This can be explained in terms of the nontrivial
director configuration for asymmetric anchoring condi-
tions α0 = 0 and α1 = π/2. In the absence of an electric
field, the director configuration is linear in z, satisfying
the anchoring conditions Eqs. (8b,8c) at the boundaries.
As an electric field is applied in the positive z direction,
the molecules in the bulk and at the upper boundary
align with the electric field (c.f. Fig. 2(b)). Here, how-
ever, the molecules at the lower boundary are already
aligned with the applied field, hence a fairly low field
strength suffices to make the transition from nontrivial
to vertical state. On the other hand, when F < 0, the
molecules at the upper boundary are dominated by the
planar anchoring (c.f. Fig. 2(c)), and in this case, a much
higher field is needed to effect the transition from non-
trivial to vertical state.

With a clear picture of the system behavior for the
two special cases of (i) equal strength planar anchoring
at both boundaries (α0 = α1 = π/2, symmetric case);
and (ii) equal strength anchoring that is homeotropic
at one boundary and planar at the other (α0 = 0,
α1 = π/2, semi-symmetric case), we now investigate how
small perturbations to such anchoring conditions change
system behavior. We maintain the anchoring strengths
A0 = A1 = 5 at each boundary and introduce a small
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perturbation ψ to the anchoring angles as follows: (i)
α0 = π/2, α1 = π/2 − ψ, (ii) α0 = 0, α1 = π/2 − ψ and
(iii) α0 = ψ, α1 = π/2. We set ψ = 0.1 in all simulations
that follow.
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Figure 8. (Color online) Bifurcation diagram showing ||θ(z)||2
vs F with Υ = 1 for A0 = A1 = 5 and α0 = π/2, α1 =
π/2 − ψ (ψ = 0.1), obtained using forward continuation in
F . Inset located at the upper left corner shows the director
configuration obtained when F = 12.5. Inset located at the
lower right corner shows a zoom of the bifurcation diagram,
to clarify the behavior in the range 12 ≤ F ≤ 13 region.

Figure 8 shows the bifurcation diagram where ||θ(z)||2
is plotted as a function of F for α0 = π/2 and α1 =
π/2− ψ. As in the previous cases, we first use a slightly
perturbed horizontal state, θ = π/2− δ, as initial condi-
tion when F = 0, and thereafter use forward continua-
tion in |F|. Since the system is monostable, reverse con-
tinuation starting from |F| = 20 with initial condition
θ = δ leads to identical results. We note that θh and θv
are no longer steady state solutions that satisfy Eqs. (8)
for the given anchoring angles, hence we do not expect
to observe true Freedericksz and saturation thresholds.
At zero electric field strength, a nontrivial director so-
lution (nearly horizontal) satisfies the anchoring angles
with ||θ(z)||2 = 1.52. As |F| increases, the nontrivial so-
lution evolves, becoming rapidly more vertical. Observe
that, for F ≈ 12, it appears that a saturation threshold
is reached, however closer examination (the inset located
at the lower right corner in Fig. 8) reveals that in fact
the director never fully breaks the surface anchoring to
reach the strictly vertical state θv = 0. A boundary
layer near z = 1 persists (see inset located at the upper
left corner of Fig. 8). Note that the bifurcation diagram
shown in Fig. 8 is far from symmetric in F , being signifi-
cantly altered from its equivalent (shown in Figures 4 and
5, reflected about the vertical axis) when ψ = 0. This
asymmetry is induced purely by the flexoelectric effect.
In the absence of flexoelectricity, Υ = 0, the bifurcation
diagram is symmetric in F .

We now consider perturbations to the system with
homeotropic anchoring at one boundary and planar an-
choring at the other, with (ii) α0 = ψ, α1 = π/2 and (iii)
α0 = 0, α1 = π/2−ψ. Once more, θh and θv are no longer
steady state solutions that satisfy Eqs. (8) for the given
anchoring angles. Hence we do not expect to observe the
Freedericksz or saturation thresholds. In fact, both cases
(ii) and (iii) are bistable [10, 11], admitting two nontriv-
ial director configurations θn,1 and θn,2, hence we must
track both solutions in our bifurcation diagrams.
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Figure 9. (Color online) Bifurcation diagram showing ||θ(z)||2
plotted vs F with Υ = 1 for (a) α0 = ψ and α1 = π/2 and (b)
α0 = 0, α1 = π/2 − ψ (with ψ = 0.1). Anchoring strengths
are set to A0 = A1 = 5. Black solid and red dashed curves
are obtained using forward continuation in |F| while the green
dotted curve is obtained using reverse continuation in |F|.

Figure 9 shows the bifurcation diagrams for cases (ii)
and (iii), where ||θ(z)||2 is plotted as a function of F
for each solution. Since two director configurations exist
in the absence of an electric field, we obtain two direc-
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tor solutions for each F by using θn,1 and θn,2 as initial
conditions, followed by forward continuation in |F|. In
addition, we use a perturbed vertical state θ(z) = δ as
the initial condition for large |F| followed by reverse con-
tinuation.

Figure 9(a) shows the bifurcation diagram for α0 = ψ
and α1 = π/2. We observe that when |F| is small, two
stable director configurations given by θn,1 and θn,2 exist
(solid black line showing the norm of θn,1 and red dashed
line showing the norm of θn,2). As |F| increases, one of
the solutions disappears; both director solutions have the
same norm. Reverse continuation (green dots) converges
to the director configuration given by θn,1 which means
that one can switch from θn,2 → θn,1 by increasing |F|
but not vice versa. This poses an inconvenience from an
applications point of view since, to be useful, a bistable
system must allow two-way switching (see [10, 11] for a
more detailed investigation of bistability and switching).

As already noted, since θh and θv are not solutions to
this perturbed system, there can be no true Freedericksz
or saturation threshold. Similarly to Fig. 8, Fig. 9(a) has
an apparent bifurcation (at F ≈ −12.5) but again the
inset reveals that the solution is never fully vertical.

Figure 9(b) shows the bifurcation diagram for α0 = 0
and α1 = π/2−ψ. As above, we observe that two director
configurations θn,1 and θn,2 exist for small values of |F|,
indicating that the system is bistable. As |F| increases,
the system loses its bistability. Note that for F ≈ −5
the two solutions have the same norm in Fig. 9(b): this
does not, however, imply that the director configurations
are identical. In fact when F ≈ −5, θn,1 and θn,2 are
distinct solutions, which just happen to have the same
||θ(z)||2 norm, so the system is still bistable here. As
F increases further, however, the system can no longer
sustain two stable steady states. Figure 9(b) shows that
the system loses bistability at F ≈ −7.4 for F < 0 and
F ≈ 2 for F > 0. Beyond these two values the system is
monostable. It is curious to note how different the bifur-
cation structures in Figs. 9(a) and (b) are, in particular
at negative F -values, while the underlying models are so
close.

Finally we present an example with fully asymmetric
boundary conditions, α0 = 0 and α1 = π/3. Here, as in
Figs. 4–9, we plot ||θ(z)||2 as a function of F by using
forward and reverse continuation methods. The behavior
of the system is similar to the perturbed semi-symmetric
cases shown in Fig. 9: the system is initially bistable
with two director configurations θn,1 and θn,2 and loses
bistability as |F| increases. Also, θh and θv again do
not exist, hence there are no Freedericksz and saturation
thresholds. As in Fig. 9, we observe that one can switch
only from θn,2 → θn,1 by increasing |F|. Since reverse
continuation favors θn,1, we cannot switch from θn,1 →
θn,2 in the asymmetric cases shown here. This finding
exemplifies some of the difficulties inherent in designing
bistable devices.

Figures 6–10 have shown that changing the anchoring
conditions, even slightly, significantly alters the director
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Figure 10. (Color online) Bifurcation diagram showing
||θ(z)||2 plotted vs F with Υ = 1 for α0 = 0 and α1 = π/3.
Anchoring strengths are set to A0 = A1 = 5 Black solid and
red dashed curves are obtained using forward continuation
in |F| while the green dotted curve is obtained using reverse
continuation in |F|.

configurations present in a Freedericksz transition cell as
well as its bifurcation properties (the Freedericksz and
saturation thresholds). In particular, we observe that
changing the anchoring strength, A, simply increases the
Freedericksz and saturation threshold values. Breaking
the symmetry in the anchoring angles however, changes
the structure of the cell, eliminating the purely horizontal
and vertical states present in a classic Freedericksz transi-
tion cell. In doing so, one can eliminate both Freedericksz
and saturation thresholds.

VI. CONCLUSIONS

We have presented a mathematical model that de-
scribes the evolution of the director field within a con-
fined layer of nematic liquid crystal where an electric
field is applied in the z direction and the anchoring con-
ditions vary. We investigate in detail how an applied
electric field affects the evolution of the director field in
the presence of both dielectric and flexoelectric effects for
strong and weak anchoring. We observe that for strong
planar anchoring the director aligns vertically in the di-
rection of the electric field in the interior of the layer
and aligns nearly parallel to the anchoring angles close
to the interface; flexoelectric effects are not observed. In
the case of weak planar anchoring, flexoelectricity signif-
icantly affects the system’s behavior. We find that, at
intermediate values of the electric field strength, the di-
rector aligns parallel to the electric field in the interior of
the layer and at one of the boundaries (which boundary
depends on the direction of the electric field). The key
characteristics of a weak Freedericksz transition cell per-
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sist, however: three director solutions (which we call θh,
θn and θv for horizontal, nontrivial and vertical states)
exist, only one of which is stable at a given electric field
strength. Solution θh is stable for 0 < F < Ff (the
Freedericksz transition threshold); solution θn is stable
for Ff < F < Fs (the saturation threshold) and solution
θv is stable for F > Fs.

We pay particular attention to the above transition
structure when increasing the effect of flexoelectricity by
varying the material parameter Υ = F2/D (see Eq. (10)).
We observe that both Freedericksz and saturation thresh-
olds increase with flexoelectricity. In addition, we in-
vestigate how the Freedericksz and saturation thresholds
change as anchoring conditions are varied at each bound-
ary. When the anchoring strength parameters (A{0,1})
are varied, we observe that the stability of the director
configurations does not change, but the Freedericksz and
saturation thresholds increase with A. When investigat-
ing a system with planar anchoring angles (α0 = α1 =
π/2) while varying the anchoring strength only at one
boundary, we observe that the structure of the system
and the saturation threshold at positive F , F+

s , remain
unchanged (three director configurations exist: θh, θn
and θv). The Freedericksz threshold for both positive

and negative F , F
{+,−}
f , and the saturation threshold for

negative F , F−
s , increase in magnitude with A1. Finally,

changing the anchoring angles at the boundaries (non-
planar anchoring angles) reveals that the structure and
stability of the possible director configurations changes
fundamentally. Here the horizontal and vertical states
are no longer solutions. In some cases bistability is ob-
served, with more than one nontrivial director solution.
We find that, while bistability is preserved for weak ap-
plied fields, it is typically lost for stronger fields. As the
applied field is increased, the system tends to become
monostable.

Finally in the Appendix, we present two analytical ap-
proaches that help us determine the stability of the di-
rector configurations for the weak Freedericksz transition
cells. We use the calculus of variations to minimize the
total free energy of the system and determine the stabil-
ity of the horizontal and vertical director configurations.
We also carry out Linear Stability Analysis by linearizing
Eqs. (8) around the purely vertical and horizontal solu-
tions and we determine whether perturbations to these
solutions exhibit growth or decay in time. We find that
our numerical results are strongly supported by the ana-
lytical ones.

VII. ACKNOWLEDGMENTS

This work was supported by the NSF under grant
DMS-1211713.

VIII. APPENDIX

We augment our numerical approach in the main paper
by two analytical approaches to determine the stability
of the steady solutions to Eq. (8). The first consists of
using the calculus of variations to calculate the first and
second variation of the total free energy of the system.
In certain cases we can show that the second variation
of a particular solution θ (a zero of the first variation)
is either strictly positive (energy minimum; stable) or
strictly negative (energy maximum; unstable).

We also use linear stability analysis (LSA) as our sec-
ond approach where we linearize Eqs. (8) around the
two solutions that are known explicitly (θv(z, t) = 0,
θh(z, t) = π/2) and seek to determine whether perturba-
tions to these solutions exhibit growth or decay in time.

A. Calculus of Variations

We determine the stability of the steady solutions
θv(z) = 0 and θh(z) = π/2 in the presence of an external
field. Since we will consider only the equilibrium solu-
tions, we omit the t dependence. The total free energy
for our system is given by

J =

∫ 1

0

W (θ, θz) dz + g0(θ)|z=0 + g1(θ)|z=1, (11)

where W , g0 and g1 are the dimensionless bulk and sur-
face energy densities obtained by nondimensionalizing
Eq. (4) using the scales in Eqs. (7):

W =
θ2z
2

−D cos2 θ +
Fθz
2

sin 2θ, (12)

g{0,1} =
A{0,1}

2
sin2(θ − α{0,1}). (13)

We look for equilibrium solutions θ(z) that minimize J
as follows: let θ(z) → θ(z) + ǫη(z) (0 < ǫ ≪ 1): this as-
sumption leads to J → J [θ+ǫη] = J0+ǫJ1+ǫ

2J2+O(ǫ3).
For θ(z) to be a minimizer of J (a stable solution), we
require J1 = 0 and J2 > 0 for all admissible variations η.
If on the other hand J2 < 0 then we have a local max-
imum of the free energy, and hence an unstable steady
solution. After Taylor expansion, the expression for J1
takes the following form:

J1 =
∫ 1

0 η(Wθ − (Wθz )z) dz + η(g1θ +Wθz )|z=1

+ η(g0θ −Wθz)|z=0. (14)

After integration by parts, the second variation J2 can
be expressed as follows:

J2 = 1
2

∫ 1

0
{η2[Wθθ − (Wθθz)z] + ηz

2Wθzθz} dz

+ η2(g1θθ +Wθθz)|z=1 + η2(g1θθ −Wθθz)|z=0.(15)

We check the stability of the director solution θv(z) = 0
and θh(z) = π/2 by evaluating J2 when α{0,1} = π/2 (J1
must always vanish for any steady solution).
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1. Stability of director solution θv(z) = 0

Substituting W and g{0,1} given by Eqs. (12–13) into
J1 and J2 (see Eqs. (14-15)) and manipulating the ex-
pressions, we first verify that J1 = 0 for θ(z) = 0, and
that J2 > 0 for sufficiently large F . The first and second
variations are evaluated as:

J1 =

∫ 1

0

η[D sin 2θ − θzz]dz

+ η

(

A1

2
sin 2(θ − α1) + θz +

F

2
sin 2θ

)

|z=1 (16)

+ η

(

A0

2
sin 2(θ − α0)− θz −

F

2
sin 2θ

)

|z=0,

J2 =
1

2

∫ 1

0

η2[2D cos 2θ − 2Fθz sin 2θ − 2Fθz cos 2θ] dz

+
1

2

∫ 1

0

η2z dz + η2(A1 cos 2(θ − α1) + F cos 2θ)|z=1

(17)

+ η2(A0 cos 2(θ − α0)−F cos 2θ)|z=0.

We assume that the two surface energies are equal,
A0 = A1. Setting θ = θv = 0, J1 = 0 and J2 simplifies
to:

J2 =
1

2

∫ 1

0

{2
F2

Υ
η2 + η2z} dz

−
A

2
(η2|z=1 + η2|z=0) +

F

2
(η2|z=1 − η2|z=0). (18)

Observe that the first term in Eq. (18) dominates for
larger |F| and we conclude the following: when |F| is
sufficiently large and for finite anchoring strength A and
finite values of Υ, J2 > 0. This establishes that θ(z) = 0
is a minimum energy solution and therefore stable.

Similarly we can determine the sign of J2 in the limit-
ing case when F → 0 and anchoring is sufficiently strong.
We obtain:

J2 ≈
1

2

∫ 1

0

η2z dz + η2(−A+ F)|z=1 + η2(−A−F)|z=0

for |F| ≪ A, which leads to the following result: when
|F| is sufficiently small and simultaneously A is suffi-
ciently large, J2 < 0 and θ(z) = 0 is a solution locally
maximizing the free energy and therefore unstable.

2. Stability of director solution θh(z) = π/2

A similar approach is taken to determine the stability
of θh(z) = π/2 for large |F|. We first check that J1 = 0
for θh(z) = π/2, which a glance at Eq. (16) confirms.

Calculating the second variation J2 for θh(z) = π/2 by
letting D = F2/Υ and A0 = A1 in Eq. (17), we obtain:

J2 = 1
2 (
∫ 1

0 −2F2

Υ η2 dz +
∫ 1

0 η
2
z dz + η2(A−F)|z=1(19)

+ η2(A+ F)|z=0).

As before we conclude that when |F| is sufficiently large
and A is finite, J2 < 0, establishing that θh(z) = π/2 is
a local energy maximizer and therefore unstable.

Similarly we can determine the sign of J2 for θ(z) =
π/2 in the limiting case when F → 0. We obtain from
Eq. (19),

J2 ≈
∫ 1

0 η
2
z dz + η2(A−F)|z=1 + η2(A+ F)|z=0

and we conclude: when |F| is sufficiently small and simul-
taneously A is sufficiently large, J2 > 0 and θh(z) = π/2
is a solution locally minimizing the free energy and there-
fore stable.

Together with the numerical results, we can conclude
that in the presence of a strong electric field (|F| suf-
ficiently large), θv(z) = 0 is a stable solution while
θh(z) = π/2 is unstable. If stronger anchoring is imposed
on the boundaries, then a larger value of |F| is needed
for θv(z) = 0 to become stable. In addition, in the pres-
ence of a weak electric field (|F| sufficiently small), and
A sufficiently large, the director solution θv(z) = 0 is
an unstable solution while θh(z) = π/2 is stable. We
observed numerically that in the presence of weak an-
choring, the saturation threshold increased with A and
Υ and although we cannot arrive to the same conclusion
analytically, we observe that the sign of J2 depends heav-
ily on the anchoring and electric field strength indicating
that the stability of the solutions depends strongly on the
parameters A,F .

B. Linear Stability Analysis

We now use LSA to determine if the director solutions
θv(z) = 0 and θh(z) = π/2 pertaining to a system with
weak anchoring (A{0,1} = 5.0) are stable or unstable.
We consider planar anchoring angles α0 = α1 = π/2 and
various electric field strengths, always keeping Υ = 1. We
approach the problem as follows: consider a perturbation
of the steady state solution θ0 of the following form:

θ = θ0 + εω(z, t), (20)

where ε ≪ 1. Substituting Eq. (20) into Eqs. (8) and
retaining only the order ε terms, we obtain the following
linear system:

ν̃ωt(z, t) = ωzz(z, t)− 2D cos 2θ0ω(z, t),

ν̃ωt(0, t) = ωz(0, t)

+ (−A0 cos 2(θ0 − α0) + F cos 2θ0)ω(0, t),
(21)

−ν̃ωt(1, t) = ωz(1, t)

+ (A1 cos 2(θ0 − α1) + F cos 2θ0)ω(1, t).
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We solve the linear boundary value problem given by
Eqs. (21) for θ0 = θv,h(z) = 0, π/2 and determine
whether perturbations to each solution θ0(z) grow or de-
cay in time. Specifically, we look for solutions of the
following form:

ω1(z, t) = e(k
2−2D cos 2θ0)t[A coshkz +B sinh kz], (22)

ω2(z, t) = e(−k2−2D cos 2θ0)t[A cos kz +B sin kz]. (23)

Each solution ωi(z, t), i = 1, 2 satisfies the linear system
given by Eq. (21) provided that the coefficients A and B
are chosen to satisfy the boundary conditions. We now
consider each case in detail.

1. Perturbation of hyperbolic type, Eq. (22)

To obtain a nontrivial solution of type (22), we need
to solve the following expression:

D1 ≡ Det(ω1) = [k2 − 2D cos 2θ0 +A0 cos 2(θ0 − α0)

−F cos 2θ0)]× [(k2 − 2D cos 2θ0) tanh(k)

+ k + (A1 + cos 2(θ0 − α1)

+ F cos 2θ0) tanh(k)]

+ k[(k2 − 2D cos 2θ0 +A1 cos 2(θ0 − α1)

+ F cos 2θ0 + k tanh(k)] = 0 (24)

and find nonzero values of k that correspond to non-
trivial solutions of Eq. (21). We find the values of k
using the bisection method and observe that the evo-
lution of ω1(z, t) in time is driven by the exponential

term e(k
2−2D cos 2θ0)t. Specifically, if k2 − 2D cos 2θ0 < 0

for nonzero values of k that satisfy Eq. (24) then the
perturbation ω1(z, t) → 0 as t → ∞. Similarly, if
k2−2D cos 2θ0 > 0 for nonzero k satisfying Eq. (24) then
ω1(z, t) → ∞ as t→ ∞. Note that when k = 0, the per-
turbation ω1(z, t) = Ae(−2D cos 2θ0)t does not satisfy the
boundary value problem given by Eq. (21) unless the co-
efficient A is zero, giving the zero solution. Before we can
draw any conclusions about the stability of each director
solution, we must also consider perturbations given by
Eq. (23).

2. Perturbation of oscillatory type, Eq. (23)

Similarly, to obtain a nonzero solution for Eq. (23), we
need to solve the following expression:

D2 ≡ Det(ω2) = [k2 + 2D cos 2θ0 −A0 cos 2(θ0 − α0)

+ F cos 2θ0]× [(k2 + 2D cos 2θ0

−A1 cos 2(θ0 − α1) + F cos 2θ0) sin(k)

− k cos(k)]− k[(k2 + 2D cos 2θ0

−A1 cos 2(θ0 − α1) + F cos 2θ0) cos(k)

+ k sin(k)] = 0. (25)

Again, Eq. (25) is solved numerically using the bisec-
tion method to determine the nonzero values of k that
allow for nontrivial solutions for Eq. (21). Now the
evolution of ω2(z, t) in time is driven by the exponen-

tial term e(−k2−2D cos 2θ0)t. If −k2 − 2D cos 2θ0 > 0
for nonzero values of k that satisfy Eq. (25) then the
perturbation ω2(z, t) → ∞ as t → ∞. Similarly, if
−k2 − 2D cos 2θ0 < 0 then the perturbation ω2(z, t) → 0
as t→ ∞.

3. Stability of solutions θv(z) = 0 and θh(z) = π/2 using
Linear Stability Analysis

We determine the stability of the steady solutions
θv(z) = 0 and θh(z) = π/2 by combining the results
obtained for both perturbations ωi(z, t), i = 1, 2 as fol-
lows: if both exponents in ωi(z, t) are negative (i.e.,
k2−2D cos 2θ0 < 0 and −k2−2D cos 2θ0 < 0) for nontriv-
ial values of k that satisfy Eqs. (24) and (25) respectively,
then the perturbations ωi(z, t) decay in time leading to a
stable steady state θ(z). If at least one expression is
positive, then at least one perturbation ωi(z, t) grows
in time leading to an unstable steady state. We now
present two tables that display the values of k that sat-
isfy Eq. (21) for each perturbation ωi(z, t), i = 1, 2. In
addition, we present the evolution of each perturbation
as t → ∞ to determine the stability of each director so-
lutions: θv(z) = 0 and θh(z) = π/2 for different electric
field strengths.

ω1(z, t) = e(k
2−2D cos 2θ0)t[A cosh kz +B sinh kz]

θ0(z) α0, α1 F D k limt→∞ ω1(z, t)

0 π/2, π/2 1 1 ±1.9538, ±2.3815 ∞, ∞

π/2 π/2, π/2 1 1 0 N/A

0 π/2, π/2 5 25 ±6.5887, ±7.2620 0, ∞

π/2 π/2, π/2 5 25 0 N/A

0 π/2, π/2 9 81 ±12.0797, ±12.7759 0, ∞

π/2 π/2, π/2 9 81 0 N/A

0 π/2, π/2 20 400 ±27.5223, ±28.2271 0, 0

π/2 π/2, π/2 20 400 0 N/A

Table I. Evolution of ω1(z, t) = e(k
2−2D cos 2θ0)t[A cosh kz +

B sinh kz] for θ0 = 0 and θ0 = π/2 for weak anchoring A0 =
A1 = 5 and different electric field strengths, always with Υ =
1.

Based on our LSA results shown in Tables (I–II), for
parameter values F = D = 1 and symmetric anchoring
conditions, we conclude that θv(z) = 0 is an unstable
steady state and θh(z, t) = π/2 a stable state. As we
increase the electric field strength to F = 5, D = 25 and
F = 9, D = 81, we observe that neither θv(z) = 0 nor
θh(z) = π/2 are stable. In fact our numerical results show
that θn(z) is the stable solution in this case. Moreover,
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ω2(z, t) = e(−k2−2D cos 2θ0)t[A cos kz +B sin kz]

θ0(z) α0, α1 F D k limt→∞ ω2(z, t)

0 π/2, π/2 1 1
±3.4842 ± 6.5394,

others
0, 0, 0

π/2 π/2, π/2 1 1
±2.0930, ±2.8918,

others
0, 0, 0

0 π/2, π/2 5 25
±3.2333, ±6.4098,

others
0, 0, 0

π/2 π/2, π/2 5 25
±3.0228, ±5.8396,

others
∞, ∞, 0

0 π/2, π/2 9 81
±13.1757, ±6.3418,

others
0, 0, 0

π/2 π/2, π/2 9 81
±3.1704, ±6.1932,

others
∞, ∞, 0

0 π/2, π/2 20 400
±3.1491, ±6.2977,

others
0, 0, 0

π/2 π/2, π/2 20 400
±3.1339, ±6.26723,

others
∞, ∞, 0

Table II. Evolution of ω2(z, t) = e(−k2−2D cos 2θ0)t[A cos kz +
B sin kz] for θ0 = 0 and θ0 = π/2 for weak anchoring A0 =
A = 1 = 5 and different electric field strengths, with Υ = 1.

for a higher electric field strength F = 20 and D = 400,
LSA shows that θv(z) = 0 is a stable state while θh(z)
is unstable. Note that for all choices of F , D used here,
the material parameter Υ = 1.

Although these analytical approaches are very useful
to validate our numerical results, they have their limita-
tions. In the case of the calculus of variations method,
we are able to draw conclusions only in the limiting cases
where |F| is small or large compared to the anchoring
strength A{0,1}. When using LSA, we are able to lin-
earize only around known solutions, namely θ(z) = 0, π/2
and for symmetric anchoring conditions only. We still
rely on our numerical investigation to determine the sta-
bility of the nontrivial steady state as well as asymmetric
boundary conditions.
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