
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Fundamental difference between superblockers and
superspreaders in networks

Filippo Radicchi and Claudio Castellano
Phys. Rev. E 95, 012318 — Published 18 January 2017

DOI: 10.1103/PhysRevE.95.012318

http://dx.doi.org/10.1103/PhysRevE.95.012318


Fundamental difference between superblockers and

superspreaders in networks

Filippo Radicchi

Center for Complex Networks and Systems Research,

School of Informatics and Computing,

Indiana University, Bloomington, USA

Claudio Castellano

Istituto dei Sistemi Complessi (ISC-CNR),

Via dei Taurini 19, 00185 Roma, Italy,

and Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy∗
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Abstract

Two important problems regarding spreading phenomena in complex topologies are the optimal

selection of node sets either to minimize or maximize the extent of outbreaks. Both problems are

nontrivial when a small fraction of the nodes in the network can be used to achieve the desired

goal. The minimization problem is equivalent to a structural optimization. The “superblockers”,

i.e., the nodes that should be removed from the network to minimize the size of outbreaks, are

those nodes that make connected components as small as possible. “Superspreaders” are instead

the nodes such that, if chosen as initiators, they maximize the average size of outbreaks. The

identity of superspreaders is expected to depend not just on the topology, but also on the specific

dynamics considered. Recently, it has been conjectured that the two optimization problems might

be equivalent, in the sense that superblockers act also as superspreaders. In spite of its potential

groundbreaking importance, no empirical study has been performed to validate this conjecture.

In this paper, we perform an extensive analysis over a large set of real-world networks to test the

similarity between sets of superblockers and of superspreaders. We show that the two optimization

problems are not equivalent: superblockers do not act as optimal spreaders.
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I. INTRODUCTION

The interplay between structure and function is at the heart of the interest attracted by

the study of complex networks in recent years. Processes mediated by disordered interaction

patterns are affected by the topological properties of the underlying graph in nontrivial

ways [1–3]. Spreading phenomena are among the most fundamental and studied types of

dynamics occurring on networks [4]. In this context, a natural question, with implications

for practical applications, is the following: given a network and a spreading dynamics on

top of it, how can we identify the set of n “superspreaders,” i.e., the n vertices such that,

if the spreading process is initiated simultaneously by all of them, the average number of

nodes reached by the spreading event is maximal? This problem is often indicated also as

“influence maximization,” in particular in computer science, where fundamental results have

been derived [5, 6].

An equally interesting and important problem is the identification of the set of n “su-

perblockers” i.e., the n vertices such that, if immunized, and thus effectively removed from

the network, lead to the minimal average size of the outbreak. As spreading may occur only

if contacts are present, the identification of superblockers is equivalent to the solution of

the so-called optimal percolation problem [7], i.e., the identification of the minimum set of

nodes to be eliminated in order to destroy the giant component of the network. Superblock-

ers effectively correspond to the nodes that, when removed, minimize the size of the largest

connected component in the network. Solving the optimal percolation problem is nontrivial,

and many interesting results have appeared in the last few months [8–11].

In their seminal work on the problem of optimal percolation [7], Morone and Makse hinted

a strong connection between the identification problems of superspreaders and superblock-

ers. The paper effectively describes the problem of identifying superblockers, but it always

refers to superblockers as they were optimal spreaders, suggesting that essentially the two

sets coincide. The analogy between superblockers and superspreaders may sound plausible

from some point of view: it is natural to expect that both superblockers and superspreaders

will be found among the nodes with largest connectivity. On the other hand, a conspicuous

difference between the two problems is that optimal percolation depends only on the topo-

logical structure, while influence maximization depends (at least in principle) on the type of

spreading process considered and on the detailed value of the parameters describing it. In
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Ref. [7], caveats about the distinction between the two problems are put forward, specifying

that the mapping between influence maximization and optimal percolation is exact only for

the Linear Threshold Model with a very particular choice of the thresholds. A similar ap-

proach, based purely on topological information, has been recently used also for more general

choices of the threshold [12]. For different types of spreading models, such as for example

those belonging to the susceptible-infected-removed (SIR) class, methods relying on the

mapping to the optimal percolation problem are not a priori granted to work. Nonetheless,

the idea that superspreaders and superblockers are equivalent in arbitrary spreading models

has been rapidly adopted without further scrutiny [13–21] (Ref. [8] being an exception); this

calls for a deeper and more careful investigation.

In this paper, we perform a critical analysis of the conjectured coincidence between su-

perblockers and superspreaders when the spreading process is described by the Independent

Cascade Model (ICM), a very simple dynamics belonging to the same class of SIR-like models

for epidemic spreading. By applying algorithms to determine independently sets of optimal

blockers and sets of optimal spreaders for a large collection of real-world topologies, we are

able to show that in general they are very different. Moreover we clarify that the identity of

superspreaders strongly depends on the only parameter of the ICM model: characterizing

optimal spreaders based on purely topological network properties (with no reference to the

specific spreading dynamics) is thus an impossible task.

II. BLOCKERS, SPREADERS AND THE OBSERVABLES CONSIDERED

A. Identification of superblockers

The set of superblockers is defined as the minimal set of vertices such that their removal

leaves no extensive component in the network. The identification of the superblockers is

equivalent to optimizing a percolation process [7]. After its formalization, several different

heuristic strategies have been introduced to perform this optimization task. Morone and

Makse [7] proposed a greedy algorithm based on a quantity, Collective Influence, to rank

vertices according to their blocking power. Later on, Clusella et al. [8] modified the algorithm

for explosive percolation [22, 23] to identify optimal blockers. Other non-greedy approaches

are based on belief-propagation methods [9, 10]. Very recently an iterative method based
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on the exploitation of the 2-core structure of the network has been shown to perform well

while being computationally very efficient [11].

In our work, we use the first two methods (Collective Influence and Clusella et al.)

to identify superblockers. In particular, we apply the CI3 method, where the Collective

Influence (CI) of a node is computed by summing over nodes at the frontier of balls of

radius ` = 3 (see Ref. [7] for details). We use also a simplified version of the algorithm

by Clusella et al., where node scores are not computed iteratively but they are set equal

to their degree. This modification of the algorithm by Clusella et al. reduces slightly its

performance, but it allows us to treat all networks in the same manner, without the need to

determine additional ad-hoc parameter values for every specific network. We remark that

the CI and Clusella et al. algorithms provide only sub-optimal solutions to the problem of

identifying superblockers. However, the solutions they provide are sufficiently close to the

optimum, so that we do not expect substantial variations if other, possibly more effective,

algorithms for the identification of superblockers are used.

To be more specific, all algorithms devised to obtain a solution of the optimal percolation

problem identify the minimal set of superblockers able to destroy the giant component of

the graph. The distinction between the extensive (giant) component of a network and

subextensive components is clear-cut only in the limit of infinite size. For finite networks

such as those we consider here, the distinction is blurred and somehow arbitrary. In practice,

in our study we adopt the same convention put forward by Clusella et al. [8], and consider

a component to be extensive if its size is larger than
√
N , where N is the overall number of

network vertices.

In general, the methods for the optimal percolation problem provide a set of a n(x)
c

vertices, being n(x)
c a specific value depending on the method x considered. However, the

goal of our analysis is to test whether superblockers are also optimal spreaders for a generic

set size n. We will therefore use the methods by Morone and Makse, and by Clusella et al.

to assign nodes with a rank ranging from 1 to N . In one case, the order of the nodes will be

established as the inverse order in which they are added in the algorithm by Clusella et al.

In the other case instead, it will coincide with the order in which nodes are removed from the

network according to the Collective Influence score. We will measure the agreement, as a

function of ρ = n/N , between the set S(x) of best n superblockers found by methods devised

to optimally destroy a network and the set S(C) of the best n superspreaders identified by
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a method specifically deployed for their identification (see below). For reference, we will

consider also two alternative rankings: a completely random one (dubbed “Random” in the

following) and a ranking based on node degrees (with random ordering in the case of tie),

denoted as “Degree.”

B. Spreading dynamics

As spreading dynamics on networks, we consider the Independent Cascade Model

(ICM) [24], in its simplest, unweighted version. This model is commonly considered in

studies of influence maximization by computer scientists. One starts from a set S (of size

n) of initially activated nodes at time t = 0. All other nodes are instead initially set as

inactive. At each discrete time step t, two rules are applied in sequence: (i) Each activated

node i contacts all its neighbors j and, with an independent probability p, tries to activate

each of those nodes that have been never activated during previous stages of the dynamics;

(ii) All nodes that tried to activate their neighbors at step (i) become inactive, and they

cannot be activated again in subsequent stages of the dynamics. The process is iterated

until no more active nodes are present. This dynamics is a parallel version of the common

SIR model [4] for epidemic spreading, with the time to recover fixed deterministically to 1.

C. Identification of superspreaders

The identification of superspreaders (or influence maximization) in networks has attracted

a huge interest in the last 15 years, since its formalization by Domingos and Richardson [5].

In a nutshell, the problem is the following: given a network of size N and a spreading

dynamics on top of it, a set S of initially active nodes generates a cascade (outbreak)

of average size R(S). We will denote R(S) also as “spreading power” of set S. Influence

maximization aims at identifying, among all subsets of size n, the subset S∗ for which R(S) is

maximal. The seminal paper by Kempe et al. [6] has shown that the influence maximization

problem is computationally hard (NP-complete). However the same paper provides, for

the broad class of submodular dynamics (including the ICM), a greedy algorithm able to

find a sub-optimal solution, provably within 63% of the optimum [6]. More precisely, by

adding at each time step to S the node which maximizes the marginal increment of R, one
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is guaranteed that R(S) ≥ (1− 1/e)R(S∗), where e is the base of the natural logarithm.

Many other works have followed, improving the poor computational efficiency of Kempe’s

greedy algorithm, while still preserving the original performance bounds [25, 26]. Nowadays

it is possible to determine influence maximizers for networks with billions of nodes [27].

More recently, the statistical physics community has started to attack the problem with its

tools and concepts [28, 29].

We are not crucially interested in computational efficiency as networks with order 104

nodes are sufficient for our purposes. Therefore to identify superspreaders in the ICM we

use the greedy algorithm version introduced by Chen et. al [26], which is based on the

well-known mapping between SIR dynamics and random percolation [30]. As for the case

of superblockers identification, the algorithm we use for superspreaders identification does

not determine the actual optimum, but just a sub-optimal solution. Also in this case, we

reasonably expect this approximation to have a very limited impact on the results. The

outcome of Chen’s algorithm is a ranking of all network nodes with an associated spreading

power R(S(C), ρ): this value means that the set of superspreaders of size n = ρN is made

by all nodes ranked from 1 to n and that the average number of nodes reached by a cascade

initiated by them is R(S(C), ρ).

Finally, it is important to remark that we are interested here in finding optimal multiple

spreaders, i.e., sets of vertices which maximize the extent of the spreading process when

seeded simultaneously in all of them. A similar but distinct problem is the search for optimal

single spreaders, i.e., the nodes which are most influential when the process is initiated only

in one node [31, 32]. The two problems are somehow related, but in a nontrivial manner:

good single influencers may share large parts of their influence zone, so that seeding the

outbreak in all of them at the same time leads to a cascade only slightly larger than those

started by each of them separately.

D. The observables

Each identification algorithm of superblockers provides a different ranking of all nodes in

the network. For each ranking x, by means of ICM numerical simulations repeated 10, 000

times, we compute the spreading power R(S(x), ρ) for any size ρN of the seed set S(x).

There are two possible ways to compare the sets of superblockers and superspreaders.
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The first possibility is to compare the identity of the individual nodes. Are the vertices

identified as superblockers also those identified by Chen’s algorithm as superspreaders? To

answer this question, we consider the Jaccard index (or similarity) among the two sets S(x)

and S(C). This quantity is defined as

J (x)(ρ) =
|S(x) ∩ S(C)|
|S(x) ∪ S(C)| (1)

where |A| stands for the number of elements in the set A. Clearly, if the two sets S(x) and

S(C) coincide their similarity goes to 1, while it vanishes if they have null intersection.

The second possibility is to compare not the identity but only the spreading power of

the two different sets. Indeed, it is in principle possible that the set of superblockers does

not coincide with the set of the best spreaders, yet it has comparable spreading power. In

such a case one would conclude that the search for the best blockers effectively uncovers a

set of almost optimal spreaders. To compare the spreading power of superblockers and of

superspreaders, we consider the ratio R(S(x), ρ)/R(S(C), ρ). A value of this quantity equal

to 1 indicates that the best blockers are also the best spreaders in the network, while small

values show that blockers are not good spreaders.

In the evaluation of these comparisons, one must always keep in mind that in the limit

ρ→ 1 all sets unavoidably coincide; hence the quantities defined above tend to 1.

E. The networks

As substrate of the optimal percolation and of the ICM spreading process we consider

51 real-world networks of very diverse origin, size and topological features [33]. For each

of them we compute the critical value pc separating the region of the phase-diagram where

outbreaks are subextensive (p < pc) from the supercritical phase (p > pc) where outbreaks

reach a finite fraction of the whole network. The value of pc is determined as the position of

the maximum of the susceptibility 〈s2〉/〈s〉2 (where 〈sn〉 is the n-th moment of the outbreak

size distribution computed for random initial single spreaders) [34]. pc values for each

network are reported in [33].

III. RESULTS

We start by comparing superblockers with superspreaders determined when p = pc.
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Figure 1. (color online) Jaccard similarity J (x) between sets of superblockers and of superspreaders

as a function of the fraction ρ of nodes in the sets. Thin gray lines denote results for each of the 51

real-world networks considered in the analysis. Thick blue lines represent average values of J (x)(ρ)

across all networks. Average lines are calculated dividing the range of possible values of ρ into

50 equally spaced bins in the logarithm scale, and computing the average value of J (x) across all

networks within each of those bins. The set of top ρN spreaders was identified using the method

by Chen et al. for the critical value of the spreading probability p = pc. Superblockers were ranked

using (a) Collective Influence, (b) Clusella et al., and (c) Degree.

In Fig. 1 we plot, as a function of ρ, the value of the Jaccard similarity J (x) between

the set of superspreaders determined by Chen’s greedy algorithm and sets of superblockers

determined using Collective Influence, Clusella et al. method and, as a reference, the Degree

method. It turns immediately clear that there is a huge variability among the different cases.

However, by looking at the average value of J (x) (depicted in blue), two conclusions can be

drawn. First, there are in general rather few superblockers nodes which belong also to the

set of superspreaders; second, spreading power is more correlated to degree than to the

blocking ability.

One may wonder whether the results of Fig. 1 are due to the lack of accuracy of the method

based on Collective Influence and the algorithm by Clusella et al. to establish a precise rank

for superblockers. Both these methods are in fact devised to optimally destroy a network

by finding the minimal set of size n(x)
c = ρ(x)c N whose removal leads to the disappearance

of the giant component in the graph, but these nodes are not chosen in a special order.

We therefore extract from Fig. 1 the values of the Jaccard similarity corresponding to ρ(x)c ,

and plot them in Fig. 2a and b. We note that the similarity between superspreaders and

superblockers is still very low, except for networks with high values of ρ(x)c (for ρ(x)c → 1 the
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two sets obviously tends to coincide).

Figs. 2a and 2b provide strong evidence that sets of superspreaders and superblockers are

very different. Nevertheless, one could hypothesize that, even if superblockers are not the

very best spreaders, they still are very good spreaders. For this reason, in Figs. 2c and 2d we

plot the ratio R(x)/R(C) of the spreading power of blockers to the optimal spreading power

obtained using Chen’s algorithm. It turns out that the sets of blockers identified using

both Clusella and CI methods are far from being optimal spreaders: their performance

is often even worse than the one resulting by randomly selecting the same fraction ρ(x)c

of seeds. Similar results are confirmed in Fig. 3, where we consider the ratio R(x)/R(C)

for arbitrary values of ρ. Superblockers are never good spreaders. Ranking nodes based

on their degree is generally a much better strategy than ranking nodes using Collective

Influence scores or the Clusella et al. algorithm. In addition, for sufficiently large values of

ρ, generally comparable with ρ(x)c , topological methods for the identification of superblockers

never exceed the performance of random selection.

The results displayed above are obtained when the Independent Cascade Model for

spreading is at criticality. We expect the difference between good and bad spreaders to

be maximal for p = pc. We have repeated the same analysis for other values of p, both well

below the critical point (p = pc/2) and well into the supercritical phase (p = 2pc). The

results, reported in [33], confirm that in the whole phase-diagram the nodes that keep the

network together (blockers) have no special spreading capability.

The conjecture that superspreaders and superblockers are essentially the same nodes in

a network rests implicitly on the assumption that the identity of best spreaders does not

depend on the parameter p. We test this hypothesis in Fig. 4, where we plot, as a function of

ρ, the Jaccard distance among sets of optimal spreaders for sub-, super- and critical values of

p. Interestingly, the sets of optimal spreaders for subcritical and critical evolution are quite

similar, while they are very different from the optimal set of spreaders in the supercritical

regime. Whether a set of nodes has large spreading power crucially depends on p. Any

attempt to relate sets of optimal spreaders to sets determined only by topology is ill-fated.
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Figure 2. (color online) (a) Plot of the Jaccard similarity J (x) (see Eq. (1)) for ρ = ρ
(x)
c . We

consider here Collective Influence. Each point represents a single network. (b) Same as in panel (a),

but for the algorithm by Clusella et al. (c) Ratio R(x)/R(C) computed at ρ = ρ
(x)
c for the Collective

Influence algorithm (black squares). As a term of comparison, we consider also results of the same

quantity calculated with a Random placement of the same number of seeds (red circles). (d) Same

as in panel (c), but for the algorithm by Clusella et al.

IV. CONCLUSIONS

In this paper we have shown that, for the Independent Cascade Model in a network, super-

spreaders and superblockers are two distinct concepts, with no direct practical connection.

More in detail, our results indicate that the nodes whose removal leads to the breakdown of

the topology into nonextensive components do not coincide with the best nodes for seeding

a spreading process. Even the plain degree centrality identifies better spreaders than the
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Figure 3. (color online) Ratio R(x)/R(C) between the spreading power R(x) of the top ρN

superblockers identified by criterion x and the spreading power R(C) of the top ρN superspreaders

identified by the algorithm by Chen et al. The ratio R(x)/R(C) is plotted as a function of ρ. Thin

gray lines denote results for each of the 51 real-world networks considered in our analysis. Thick

solid blue lines represent instead average values of R(x)/R(C) across all networks. The dashed solid

purple lines quantify the probability that the actual value of R(x) is better than the one obtained

by placing the same number of seeds at random. Thick solid blue and think dashed purple lines are

calculated dividing the range of possible values of ρ into 50 equally spaced bins in the logarithm

scale, and computing within each of those bins the average value of J (x) across all networks (thick

solid blue lines) or the frequency of networks for which R(x) ≤ R(Random) (thick dashed purple lines).

Superblockers were identified using (a) Collective Influence, (b) Clusella et al., and (c) Degree.

methods aimed at identifying superblockers. In addition, as the identity of the optimal

spreaders is strongly dependent on the parameter that regulates the dynamics, attempts to

identify sets of superspreaders based only on topological properties without reference to the

details of the spreading dynamics are bound to fail.

With the benefit of hindsight these results appear rather easy to be anticipated: the choice

of optimal seeds depends on the spreading dynamics (and its parameters) while optimal

blocking does not. As most recent papers in the field have implicitly assumed the validity of

this conjecture [13–21], we believe that a detailed verification was in order. The minimization

and the maximization of the extent of spreading processes mediated by complex topologies

are both exciting examples of the nontrivial interplay between structure and function. They

are deservedly attracting a huge interest in statistical physics, computer science and other

communities. The interest on these issues is by no means reduced by the awareness that

they are fundamentally different problems.
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Figure 4. (color online) Jaccard similarity index as a function of the fraction ρ of nodes. (a)

Comparison between best spreaders for p = 0.5pc and p = pc; (b) comparison between best

spreaders for p = 2pc and p = pc; (c) comparison between best spreaders for p = 2pc and p = 0.5pc.

Thin gray lines denote results for each of the 51 real-world networks considered in the analysis.

Thick blue lines represent average values of J(ρ) across all networks. Average lines are calculated

dividing the range of possible values of ρ into 50 equally spaced bins in the logarithm scale, and

computing the average value of J across all networks within each of those bins.
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[11] L. Zdeborová, P. Zhang, and H.-J. Zhou, Scientific Reports 6, 37954 (2016).

[12] S. Pei, X. Teng, J. Shaman, F. Morone, and H. A. Makse, ArXiv e-prints (2016),

arXiv:1606.02739 [physics.soc-ph].

[13] Y. Liu, M. Tang, T. Zhou, and Y. Do, Physica A: Statistical Mechanics and its Applications

452, 289 (2016).

[14] A. Szolnoki and M. Perc, EPL (Europhysics Letters) 113, 58004 (2016).

[15] M. Gong, J. Yan, B. Shen, L. Ma, and Q. Cai, Information Sciences 367 - 368, 600 (2016).

[16] Z. Wang, Y. Zhao, J. Xi, and C. Du, Physica A: Statistical Mechanics and its Applications

461, 171 (2016).

[17] A. Y. Lokhov and D. Saad, ArXiv e-prints (2016), arXiv:1608.08278.

[18] Y. Ni, Applied Soft Computing , (2016).

[19] G. Cordasco, L. Gargano, A. A. Rescigno, and U. Vaccaro, ArXiv e-prints (2015),

arXiv:1512.06372 [cs.DS].

[20] L. Guo, J.-H. Lin, Q. Guo, and J.-G. Liu, Physics Letters A 380, 837 (2016).

[21] L. Gao, W. Wang, L. Pan, M. Tang, and H.-F. Zhang, Scientific Reports 6, 38220 (2016),

arXiv:1606.05408 [physics.soc-ph].

[22] D. Achlioptas, R. M. D’Souza, and J. Spencer, Science 323, 1453 (2009).

[23] R. M. D’Souza and J. Nagler, Nature Physics 11, 531 (2015).

[24] J. Goldenberg, B. Libai, and E. Muller, Marketing Letters 12, 211 (2001).

[25] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance, in Proceed-

ings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining , KDD ’07 (ACM, New York, NY, USA, 2007) pp. 420–429.

[26] W. Chen, Y. Wang, and S. Yang, in Proceedings of the 15th ACM SIGKDD International

13

http://dx.doi.org/10.1145/956750.956769
http://dx.doi.org/10.1145/956750.956769
http://dx.doi.org/10.1038/nature14604
http://dx.doi.org/10.1103/PhysRevLett.117.208301
http://dx.doi.org/10.1103/PhysRevLett.117.208301
http://dx.doi.org/10.1073/pnas.1605083113
http://dx.doi.org/10.1073/pnas.1605083113
http://dx.doi.org/10.1103/PhysRevE.94.012305
http://dx.doi.org/10.1038/srep37954
http://arxiv.org/abs/1606.02739
http://dx.doi.org/ http://dx.doi.org/10.1016/j.physa.2016.02.028
http://dx.doi.org/ http://dx.doi.org/10.1016/j.physa.2016.02.028
http://stacks.iop.org/0295-5075/113/i=5/a=58004
http://dx.doi.org/ http://dx.doi.org/10.1016/j.ins.2016.07.012
http://dx.doi.org/ http://dx.doi.org/10.1016/j.physa.2016.05.048
http://dx.doi.org/ http://dx.doi.org/10.1016/j.physa.2016.05.048
http://arxiv.org/abs/1608.08278
http://dx.doi.org/10.1016/j.asoc.2016.04.025
http://arxiv.org/abs/1512.06372
http://dx.doi.org/ http://dx.doi.org/10.1016/j.physleta.2015.12.031
http://dx.doi.org/ 10.1038/srep38220
http://arxiv.org/abs/1606.05408
http://dx.doi.org/10.1126/science.1167782
http://dx.doi.org/10.1038/nphys3378
http://dx.doi.org/10.1023/A:1011122126881
http://dx.doi.org/ 10.1145/1281192.1281239
http://dx.doi.org/ 10.1145/1281192.1281239
http://dx.doi.org/ 10.1145/1281192.1281239
http://dx.doi.org/10.1145/1557019.1557047
http://dx.doi.org/10.1145/1557019.1557047


Conference on Knowledge Discovery and Data Mining , KDD ’09 (ACM, New York, NY, USA,

2009) pp. 199–208.

[27] H. T. Nguyen, M. T. Thai, and T. N. Dinh, ArXiv e-prints (2016), arXiv:1605.07990.

[28] F. Altarelli, A. Braunstein, L. DallAsta, and R. Zecchina, Journal of Statistical Mechanics:

Theory and Experiment 2013, P09011 (2013).

[29] Q. D. Jian-Xiong Zhang, Duan-Bing Chen and Z.-D. Zhao, Scientific Reports 6, 27823 (2016).

[30] M. E. J. Newman, Phys. Rev. E 66, 016128 (2002).

[31] M. Kitsak, L. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. Stanley, and H. Makse, Nature

Physics 6, 888 (2010).

[32] F. Radicchi and C. Castellano, Phys. Rev. E 93, 062314 (2016).

[33] See Supplemental Material at [URL will be inserted by publisher] for results for p 6= pc and

details on the networks considered.

[34] C. Castellano and R. Pastor-Satorras, The European Physical Journal B 89, 243 (2016).

14

http://dx.doi.org/10.1145/1557019.1557047
http://dx.doi.org/10.1145/1557019.1557047
http://arxiv.org/abs/1605.07990
http://stacks.iop.org/1742-5468/2013/i=09/a=P09011
http://stacks.iop.org/1742-5468/2013/i=09/a=P09011
http://dx.doi.org/ 10.1038/srep27823
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1038/nphys1746
http://dx.doi.org/10.1038/nphys1746
http://dx.doi.org/10.1103/PhysRevE.93.062314
http://dx.doi.org/10.1140/epjb/e2016-60953-5

	Fundamental difference between superblockers and superspreaders in networks
	Abstract
	Introduction
	Blockers, spreaders and the observables considered
	Identification of superblockers
	Spreading dynamics
	Identification of superspreaders
	The observables
	The networks

	Results
	Conclusions
	Acknowledgments
	References


