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We study the structure of loops in networks using the notion of modulus of loop families. We
introduce a new measure of network clustering by quantifying the richness of families of (simple)
loops. Modulus tries to minimize the expected overlap among loops by spreading the expected
link-usage optimally. We propose weighting networks using these expected link-usages to improve
classical community detection algorithms. We show that the proposed method enhances the perfor-
mance of certain algorithms, such as spectral partitioning and modularity maximization heuristics,
on standard benchmarks.

I. INTRODUCTION

Real networks contain closely connected subnetworks
with local structural patterns characterized by their rich-
ness of loop [1]. Loops offer more pathways within them
compared to treelike topologies; thus rich loop structures
improve network robustness [2] and impact propagating
and transporting processes in networks [3]. Previous ap-
proaches on analysis of loop structures focus on loops
with lengths of order 3–5 separately [4, 5] and few such
as [6, 7] emphasize the role of higher order loops to char-
acterize their overall structures. We consider assessing
loop structures in the network, with any order and alto-
gether and apply our tool for analyzing network transi-
tivity known as clustering coefficient and providing more
information for community detection algorithms.

Our goal is to study loop structures in the network
using the concept of modulus of loop families developed
in [8], [9], and [10]. Modulus is a way of measuring the
richness of certain families of objects on a network, such
as loops, walks, trees, etc, and is a discrete analog of the
classical theory of modulus of curve families in complex
analysis [11]. Although modulus on networks is not a
new concept (see [12] and [13]), it is not as well devel-
oped as in the continuum setting. In [8], the authors
showed that modulus is a standard convex optimization
problem. Continuity and smoothness properties of mod-
ulus on networks were considered in [9]. A probabilistic
interpretation provided in [10].

Modulus is a versatile tool to analyze networks. Dif-
ferent types of families of walks can be used to learn
about different aspects of the network. In [14], we intro-
duced centrality measures based on various families of
walks that can be computed on directed or undirected,
weighted or unweighted, and even disconnected networks.
These measures do not necessarily have to consider the
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whole network. We applied them to detect influential
sections of the network, ranking the nodes, and we ex-
plored applications to improve vaccination strategies for
reducing the risk of epidemics. The applications to epi-
demic spreading were further studied in [15], where the
authors used modulus to analyze the concept of Epidemic
Hitting Time.

Our main contributions in this paper are introducing a
generic approach to analyze loops structures in the net-
work that consider local loop topologies with an eye on
the entire network. We quantify richness of loops and
introduce a clustering measure based on that. Moreover,
we find the probablity of usage of each link in important
loops and use it as a measure of affinity between nodes
to enhance network partitioning.

This paper is organized as follows. First, we introduce
our notation and the necessary background on modulus
of families of loops. Then, we define our proposed meth-
ods to measure clustering in the network. Next, we show
how to preprocess a network in order to improve parti-
tioning techniques such as Fiedler vector bisection and
the modularity maximization heuristics. Finally, we dis-
cuss other potential applications.

II. NOTATIONS AND DEFINITIONS

Let G = (V,E) be a network with nodes V and links E.
A walk is a string of nodes γ = v0v1 · · · vn on G with the
property that consecutive nodes vi and vi+1 are linked in
the network. A walk γ = v1v2v3 . . . vr, is a simple loop
if the nodes vi are all distinct, except that vr = v1. We
call L the family of all loops in G. Other possible loop
families are loop families rooted at a given node v or link
e; we write Lv or Le in that case.

Given a density ρ : E → [0,∞), interpreted as a
penalty or cost the walker must pay for traversing link e,
we define the ρ-length of a loop γ as

`ρ (γ) :=
∑
e∈γ

ρ (e) . (1)
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When ρ0 (e) ≡ 1, then `ρ0(γ) represents the hop-length
of γ. Likewise, given a family of loops L we set `ρ (L) :=
minγ∈L `ρ (γ). We introduce a |L| × |E| matrix N such
that each row corresponds to a loop γ ∈ L and is the
indicator function 1e∈γ .

Let w : E → (0,∞) be a positive weight function.
Then, for 1 < p <∞, Modp,w (L) is defined as

Modp,w (L) = min
{ρ|`ρ(L)>0}

Ep,w
`ρ(L)p

(2)

where Ep,w(ρ) =
∑
e∈E w (e) ρ (e)

p
is the energy of the

density ρ. In this paper, we work with an equivalent
form of (2) defined as in [8]:

Modp,w (L) = min
{ρ|Nρ≥1}

Ep,w (ρ) = Ep,w (ρ∗) , (3)

We call a density ρ with Nρ ≥ 1 admissible ρ for a
family of loops L.

For example, if G is a tree, Modp (L) = 0 by Property
(d) below; if G is an unweighted complete graph, then
Modp (L) = 1

3p

(
n
2

)
.

For a finite network G, the following properties hold,
see [8, 14]:

(a) p-Monotonicity: The extremal densities satisfy
0 ≤ ρ∗ (e) ≤ 1 for all e ∈ E. Thus, for 1 ≤ p ≤ q,
we have Modq (L) ≤ Modp (L).

(b) L-Monotonicity: If L′ ⊂ L, then Modp (L′) ≤
Modp (L).

(c) w-Monotonicity: If w and w′ are positive
link weights with w ≤ w′ then Modp,w(L) ≤
Modp,w′(L).

(d) Empty Family: If L = ∅, then Modp (L) = 0.

(e) Countable Subadditivity: For any sequence
{Li}∞i=1 of families of loops,

Modp (∪∞i=1Li) ≤
∞∑
i=1

Modp (Li) .

The properties above allow quantification of the rich-
ness of various family of loops, i.e., a family with many
short loops has a larger modulus than a family with fewer
and longer loops. In particular, L-monotonocity and sub-
additivity often define a notion of capacity on the set of
loops in a network. For the rest of this paper, we consider
p = 2 due to its physical and probabilistic interpretations
as well as computational advantages, for instance, in this
case (3) is a quadratic program.

A. Interpreting loop modulus as a measure of the
richness of a family of loops

In order to measure the richness of a family of loops,
we want to balance the number of different loops with

relatively little overlap vs. how many short loops there
are in the family.

We demonstrate this in Figure 1. For the square in
Figure 1(a), the family L consists of a single loop, hence
Mod2 (L) = 0.25. In Figure 1(b), the weight of one link is
doubled and modulus increases to Mod2 (L) = 0.285, as
it must, by w-monotonicity (Property (c)). The network
in Figure 1(c) has more loops than the one in Figure 1(a)
and modulus increases to Mod2 (L) = 0.5, demonstrating
L-monotonicity (Property (b)). Comparing Figure 1(c)
to Figure 1(d), we see that they have the same number
of loops, but in (d) they are longer and thus the modulus
decreases to Mod2 (L) = 0.455.

(a)

2

(b)

(c) (d)

FIG. 1. Loop Modulus for some networks demonstrating how
modulus can quantify the richness of loops, a) Mod2 (L) =
0.25 b) Weight of a link is doubled, modulus increase by
w-monotonicity: Mod2 (L) = 0.285 c) Increasing number
of short loops the modulus increases by L-monotonicity:
Mod2 (L) = 0.5. d) Loops are longer than (c) and modu-
lus decreases: Mod2 (L) = 0.455.

B. Probability interpretation of loop modulus

For p = 2 the modulus problem in (3) is

min
{ρ|Nρ≥1}

ρT ρ. (4)

We consider the Lagrangian for (4):

L(ρ, λ) = ρT ρ− λT
(
N T ρ− 1

)
, (5)

where λ ∈ RL≥0 is the Lagrange multipliers. It is easy to
show that ρ = 1 is an interior point for the feasible region
of (4), thus strong duality holds (Slater’s condition [16]).
Minimizing L in ρ gives

ρ∗(e) =
1

2

∑
γ∈L

λ∗(γ)1e∈γ , (6)
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and the dual problem:

max
λ≥0

(
λT1− 1

4
λTCλ

)
. (7)

where C is the overlap matrix for L. Namely,

C(γi, γj) =
∑
e∈E
N (γi, e)N (γj , e) = |γi ∩ γj |

measures the overlap of two loops.

We define a probability mass function µ ∈ P(L) :=
{µ ∈ RL≥0 : µ1 = 1} that defines a random loop γ ∈ L
with

µ(γ) = Pr(γ = γ). (8)

Writing λ = νµ for a nonnegative scalar ν and a pmf
µ (7) becomes:

max
ν≥0

(
ν − ν2

4
min

µ∈P(L)
µTCµ

)
. (9)

The maximum in (9) occurs when

ν∗ = 2

(
min

µ∈P(L)
µTCµ

)−1
(10)

Substituting (10) in (9), we get that ν∗ = 2 Mod2(L) and

Mod2(L)−1 = min
µ∈P(L)

µTCµ = Eµ∗
∣∣∣γi ∩ γj∣∣∣ ,

for an optimal µ∗, where Eµ∗
∣∣∣γi ∩ γj∣∣∣ is the minimum

expected overlap of two independent, identically dis-
tributed random loops with pmf µ∗ ∈ P(L).

Moreover by (6), the exremal density satisfies

ρ∗(e) = Mod2(L)Eµ∗
[
N (γ, e)

]
where Eµ∗

[
N (γ, e)

]
=
∑
γ∈LN (γ, e)µ∗(γ) is the ex-

pected usage of link e in loop γ. Therefore, the opti-
mal measures µ∗ are related to the optimal density ρ∗ as
follows:

ρ∗(e)

Mod2(L)
= Pµ∗

(
e ∈ γ

)
(11)

We call Pµ∗
(
e ∈ γ

)
the expected usage of link e.

Moreover, one can always find an optimal measure µ∗

that is supported on a minimal set of loops of cardinality
bounded above by |E|, see [10, Theorem 3.5]. We think
of these loops as “important loops” that play a role in
the optimization problems as active constraints.

Algorithm 1 Approximating densities for Mod2(L)
with tolerance 0 < εtol < 1 [8]

1: ρ← 0; ρ0 ← 1
2: L′ ← ∅
3: γ ← ShortestLoop(ρ0)
4: while ∃γ such that `ρ(γ) ≤ 1− εtol do
5: L′ ← L′ ∪ {γ}
6: ρ← argmin{E2(ρ) : Nρ ≥ 1}
7: end while

C. Approximating the modulus

The numerical results in the examples that follow are
produced by a Python implementation of the simple al-
gorithm described in [8]. This algorithm exploits the L-
monotonicity (Property (b)) of the modulus by building a
subset L′ ⊆ L so that Mod2(L′) ≈ Mod2(L) to a desired
accuracy [8, Theorem 9.1]. In short, the algorithm begins
with L′ = ∅, for which the choice ρ ≡ 0 is optimal and
insert a loop with the shortest hop-length then repeat-
edly adds violated constraints to L′ and determines the
optimal ρ each time. The algorithm terminates when all
constraints are satisfied to a given tolerance (Algorithm
1).

The two key ingredients for implementing this algo-
rithm are a solver for the convex optimization prob-
lem (3) and a method for finding violated loops, i.e.,
with ρ-length less than one. In our implementation,
the optimization problem is solved using an active set
quadratic program [17] and the violated constraint search
is performed using a modified version of the breadth-first
search from each node that has a cut-off 1−tol and re-
ports the first backward link that forms a loop less than
the cut-off.

Although simple, this algorithm is adequate for com-
puting the modulus in the examples presented here, on
a Linux operating computer with Intel core i7 (and 2.80
GHz base frequency) processor, for example. More ad-
vanced parallel primal-dual algorithms are currently un-
der development to treat modulus computations on larger
networks.

III. CLUSTERING MEASURE WITH
MODULUS OF FAMILY OF LOOPS

Complex networks exhibit properties such as the small-
world phenomenon [18], scale-free degree distribution
[19], and local clustering of nodes [18]. In social net-
works, when two individuals are acquainted it is proba-
ble that they have another friend in common, resulting in
propeties of homophily for the network. For example, in
friendship networks people introduce their friends to each
other. This transitivity property makes the real world
networks different from synthetic random networks [20].
However, this clustering tendency is difficult to quantify.
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A proposed measure of clustering for a node v [18]
is to compute the fraction of links between neighbors
of v that actually are in the network, over all possible
ones. The authors in [21] pointed out the importance of
closed paths (loops) in the cluster and discussed compu-
tation of the clustering coefficient using the density of
loops with length 3 (triangles). Because this measure
fails to describe the clustering of grid-like parts of the
network, the authors improved the measure by count-
ing quadrilaterals–loops with length 4 or mutuality in
[20]–and proposed a new measure that considers differ-
ent types of quadrilaterals. Similarly, [5] addresses bi-
partite networks, that lack triangles thus the standard
clustering coefficient is not useful. In [5], [22] and [23]
the authors emphasize the importance of longer loops in
the network. The authors in [24], showed that clustering
coefficient measures are highly correlated with degree,
and they proposed a measure that preserves the degree
sequence for the maximum possible links among neigh-
bors of node v, thus avoiding correlation biases. Kim
et al. introduced local cycling coefficient that quantifies
local circle topologies by averaging the inverse length of
loops passing the nodes [7]. They average this coefficient
for all nodes to derive the degree of circulation in the
network.

The authors in [25] introduce a version of clustering
coefficient that considers weighted network, and [26] pro-
pose a way to measure a general clustering coefficient for
weighted and directed networks.

Numerous versions of clustering coefficients for differ-
ent types of networks expose the need for a generalized
measure that works for a wide range of applications. We
apply the concept of modulus of families of loops as a
tool to study structural properties of network clustering.
In this section we show that analysis of loops using mod-
ulus provides a general approach to the study of network
clustering properties. We also propose a new cluster-
ing measure that can explain situations that conventional
methods struggle to handle.

A network has a high clustering measure when most of
the links are included in short loops that also visit nearby
links. The standard method of counting triangles consid-
ers the smallest loops, while other methods consider the
next shortest loops, i.e., quadrilaterals. A method must
be devised to compare these loops and evaluate the com-
bined influence to improve clustering measures [20]. The
previous section introduced a way to evaluate family of
loops using modulus. Therefore, we propose a compre-
hensive modulus-based measure of clustering.

The classical clustering coefficients that measure tri-
angle density, are usually normalized by comparing the
links in the networks (that form triangles) with all possi-
ble links between nodes, i.e., all possible triangles in the
corresponding complete graph. Most real networks are
far from being complete graphs (even locally), therefore,
classical coefficients usually have small values, and they
are correlated to the degree of the node [24].

We normalize our clustering measure using the prob-

(a) (b)

FIG. 2. (a) A grid network with deg = 4 and 100 nodes,
(b) a random regular network with deg = 4 and 100 nodes.
The proposed clustering measure is C (Ggrid) = 56.25%,
C (Greg) = 34%. Classical clustering coefficient gives zero for
the grid and 2.4% for the regular network and average square
clustering coefficient is 14.7% for the grid and 0.4% for the
regular network.

.

abilistic interpretation in (11). Modulus tries to spread
expected usage as much as possible among the links of
the network in order to minimize the expected overlap.
However, the expected link usages are not always uni-
form. Define a uniform density ρu(e) ≡ 1/3 that is al-
ways admissible for loop modulus–because it penalizes all
loops at least 1. So its energy E2(ρu) = |E|/9 gives an
upper bound for Mod2(L).

Therefore, our proposed clustering measure takes the
following form

Cloop(G) :=
9

|E| Mod2(L), (12)

where Cloop is a measure of richness of actual link par-
ticipation in important loops over the ideal case that all
links participate equally in triangles. For example, con-
sider a grid as in Figure 2(a) with 100 nodes and 200
links. We compare its loop modulus with that of a ran-
dom regular network with the same number of nodes and
same degree as shown in Figure 2–these networks behave
similar to the two extremes of small world networks [18].
Since the classical methods use the number of triangles
in a network, they give zero clustering coefficient to the
grid and 2−3% to the random regular network. The grid
has square clustering coefficient 14.7% and the random
regular network square clustering is close to zero (we use
square clustering introduced in [5]). For each network in
Figures 2(a) and 2(b):

Mod2 Lgrid = 10.8 and Mod2 Lreg = 7.8.

Therefore, Cloop (Ggrid) = 54% which means the network
is highly clustered and Cloop (Greg) = 34% is less clustered
than grid.

In some cases, our proposed measure gives different
conclusions than the classical cluster coefficients. For ex-
ample, let us compare the networks (a) and (b) in Figure
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(a) (b)

(c) (d)

FIG. 3. (a) Jazz musicians network [27] with Cloop = 10.0%;
average triangle density C = 52.0% and average square clus-
tering 6.66%. (b) Email communication network in University
Rovira i Virgili in Spain with Cloop = 13.8%; average trian-
gle density C = 16.6% and average square clustering 1.46%
[28]. (c) An excerpt of Facebook network with n = 2888 and
m = 2981. Edges represent friendships between nodes [30]
with Cloop = 3.7%; average triangle density 0.03% and aver-
age square clustering 0.07%. (d) Friendship network of the
website hamsterster.com [31], with n = 1858 and m = 12534.
The clustering in the network is Cloop = 6.22%. The classi-
cal clustering coefficient (transitivity) is 9.04% and average
square clustering coefficient 6.78%.

3. Network (a) is collaboration network between Jazz
musicians [27] and network (b) is an email communica-
tion network at the University Rovira i Virgili in Spain
[28]. In the email communication network a very rich core
is balanced by many stems on the periphery and the loop
clustering measure is slightly higher than for the Jazz net-
work. This goes in the opposite direction than the classi-
cal clustering coefficient result [29]. For the piece of the
Facebook network in Figure 3(c) [30], the loop clustering
value is slightly greater than the classical case, reflecting
a certain amount of tightly knit communities. Finally, in
the friendship network for the website hamsterster [31],
the clustering measure and classical clustering coefficient
give almost similar results.

Furthermore, we can isolate the contribution of tri-
angles, squares, and higher order loops by considering
modulus of subfamilies of L. This can be done assuming
a hop-length cut-off for γ in Algorithm 1. Moreover, the
property of subadditivity (Property (e)) gives an upper-
bound for the aggregate effects.

IV. WEIGHTING TO ENHANCE COMMUNITY
DETECTION ALGORITHMS

Communities in networks are defined as groups of
nodes that are closely knit together relative to the rest
of the network. Real world networks, for example so-
cial networks [32] and biological networks [33], comprise
densely connected parts that are loosely connected with
each other. Finding these communities is crucial in an-
alyzing the collective behavior of the network or in or-
der to be able to make assumptions (meta population).
These communities can be disjoint or overlapping. For
a comprehensive review of the literature on this subject
see [34].

Radicchi et al. count the number of short loops that
pass each link as a local measure for clustering [35]. To
extend the method in [35] for low clustered networks,
Vragovic et al. in [36] consider general loops (with any
length) passing the nodes to detect cluster nodes; al-
though, compared to standard clustering methods, its
results are not satisfying [34].

The authors in [37] define a new weighting for the net-
work to improve modularity maximization methods for
finding communities with sizes smaller than the resolu-
tion limit [38]. The weigthing for a link comes from how
many loops with length 3 and 4 it forms with the adja-
cent links. They show the effectiveness of their method
on Lancichinetti, Fortunato, and Radicchi (LFR) bench-
mark networks. Also the authors in [39] propose weight-
ing the network with a combination of link betweenness
centrality [40] and their other measure common neighbor
ratio to enhance community identification. Community
detection in directed networks is a challenging problem
[41]. [42] improved community detection in directed net-
works by weighting the network. They consider seven
different types of triangles and their respective contribu-
tions to the community structure.

When a pair of nodes are in the same group it is more
likely to have strong flow of communication among each
other together with their groupmates and information
tends to stay within communities. This emphasises the
importance of having many non-overlapping short loops.

Analyzing loops in a network provides information
about the cluster structure and emphasizes the impor-
tance of links in these clusters. By (11) the extremal
density ρ∗(e) measures the amount of important loops
(see Section II B) passing through link e (expected us-
age). Assuming members in the community shares a lot
of cycles between themselves, thus ρ∗(e) serves as a mea-
sure of affinity for the nodes connected by e. In other
words, nodes on important loops are well connected to
the rest of the group. In this section, we show that in-
deed preprocessing the network using ρ∗(e) can improve
network partitioning.

After we compute loop modulus for a network, the ex-
tremal density ρ∗(e) gives generic information about the
structure of communities that contains many short loops
and the importance of links in these clusters that gen-

www.hamsterster.com
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FIG. 4. (a) Zachary’s karate club network [43] with the groups
splitted after conflict. (b)-(c) Fiedler vector values corre-
sponding with the node labels. (b) Spectral partitioning of
Zachary’s karate club network [43], node 3 is wrongly parti-
tioned. (c) spectral partitioning of the same network weighted
by Loop Modulus where nodes are correctly partitioned.

eralize methods in [35] and [36]. We can substantially
improve the performance of some partitioning methods
such as spectral partitioning or modularity maximization
heuristics by preprocessing the network into a weighted
network with link weights ρ∗(e). We can apply our meth-
ods to any weighted and directed network.

As the first example, we consider Zachary’s Karate
Club [43]–a friendships network at a university Karate
club with 34 members, see Figure 4(a). A conflict be-
tween the instructor and the club’s president split the
club into two groups. Finding the communities in this
network is a basic benchmark test for partitioning algo-
rithms [44, Chapter 9].

To bisect this network, we use Fiedler vector bisection
[45] on both weighted and unweighted networks in Fig-
ures 4(b) and (c). In the unweighted case, the bisection
method failed to separate a node correctly and there are
two nodes that are very close to the other cluster. Our
weighting method does this clustering with complete ac-
curacy.
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FIG. 5. (a) A network partitioned by Palla et. al. [47]. Nodes
16, 17 and 18 are shared between C and D groups and Node
2 is shared between D and A groups. (b) Fiedler vector of the
network, (c) Fiedler vector of the weighted network by Loop
Modulus where overlapping groups can be distinguished.

It may be useful to allow for overlapping communities.
For instance, a node can be a member of different com-
munities, such as family, sport club, workplace, etc [46].
Although bisection methods alone are unable to detect
overlapping communities, we see that loop modulus can
augment these methods by distinguishing nested parti-
tions in networks with overlapping communities in the
next example. Figures 5 (a)–(c) show a network that is
partitioned by Palla et al. [47]. We compute the Fiedler
vector in both unweighted and weighted cases. As shown,
the unweighted method failed to separate C and D over-
lapping communities, while the weighted method does
distinguish them with the overlapping part.

To show the effectiveness of the weighting method in a
more standard fashion, we consider two popular heuris-
tics for modularity maximization; greedy modularity op-
timization method by Clauset, Newman, and Moore
(CNM) [48] and the Louvian method [49] on the LFR
benchmarks [50]. The LFR benchmarks allow the user
to specify the community size distribution along with the
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FIG. 6. (a)-(c) Networks are produced by LFR benchmark
with size 400 nodes, mean degree 5, maximum degree 10, and
community sizes ranging from 20 − 40. The mixing rate µ,
for adjusing ratio of intra-communities links over all links are
0.1, 0.2, and 0.3. (d) The plot depicts the normalized mutual
information for community memberships found by Greedy
modularity optimization (CNM) and Louvian method. Both
the CNW and Louvian methods perform a better task on re-
weighted networks.

degree distribution, offering more realistic benchmarks
than the Girvan-Newman benchmarks [51]. We show re-
weighting the network, using ρ∗(e) from loop modulus,
improve both CNM and Louvian substantially.

In Figure 6(a)-(c), three networks are produced by the
LFR benchmark with 400 nodes, mean degree 5, maxi-
mum degree 10, and community sizes ranging from 20−40
nodes. The interconnectedness of various communities is
measured by the mixing rate µ. We plot the mutual
information [52] for both the derived membership from
CNM and Louvian on each network and the weighted ver-
sion and compare them to the ground truth from LFR in
Figure 6. As we observed, both the CNW and Louvian
algorithms perform better on re-weighted networks using
modulus.

V. CONCLUSION

In this paper, we use modulus of family of loops to
analyze loop structures in networks. We showed that
loop modulus quantifies the richness of loops in the net-
work and we used it to measure clustering. The extremal
densities found for loop modulus represent the probabil-
ity of link participation in important loops. We showed
that performance of community detection methods such
as spectral bisection and modularity maximization parti-
tioning can be improved by weighting networks with their
extremal densities derived from loop modulus. Although,
we present some applications of loop modulus, analyzing
loop structures on the network can expose different as-
pects of the network, such as various dynamics on the
network, e.g., synchronization and propagation [53–55]
as well as analyzing complexity of networks [56].
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