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The giant k-core — maximal connected subgraph of a network where each node has at least k
neighbors — is important in the study of phase transitions and in applications of network theory.
Unlike Erdés-Rényi graphs and other random networks where k-cores emerge discontinuously for
k > 3, we show that transitive linking (or triadic closure) leads to 3-cores emerging through single
or double phase transitions of both discontinuous and continuous nature. We also develop a k-core
calculation that includes clustering and provides insights into how high-level connectivity emerges.

I. INTRODUCTION

The emergence of high-level or large-scale connectiv-
ity patterns on a network influences its macroscopic be-
haviour. It is at times essential, as it is for traffic on
transportation networks or communication on the Inter-
net, and at times detrimental, such as epidemics on so-
cial networks or cascades of failure on technological net-
works. One way or the other, identifying when and how
large-scale connectivity appears or disappears is critical.
This explains the explosion of models to produce phase
transitions of rich and diverse nature on networks [1-3].
We here discuss how single or double phase transitions
of both discontinuous and continuous nature can occur
solely due to the structure of a network, without ad hoc
rules or complicated models. To do so, we focus on ran-
dom networks with clustering and investigate the emer-
gence of k-cores.

Giant k-cores are the largest maximal connected sub-
graphs of the network where each node has at least k
neighbors within the subgraph. We use the word ‘giant’
when the largest k-core component scales linearly with
the size of the network. Network k-cores are important
for network analysis [4, 5], diffusion of information [6],
and the spread of diseases [7]. A well-known result is that
the giant k-core of the Erdds-Rényi graphs [8] emerges
discontinuously [9, 10] if & > 3, whereas giant 1-core (the
largest connected component) and 2-core emerge contin-
uously.

However, many empirical studies [11-13] have shown
that most real-world networks are highly clustered, i.e.
they have a large number of triangles and higher order
motifs, which cannot be accounted for by simple ran-
dom network models like Erdés-Rényi (ER) networks
[14], block models [15, 16], or the Configuration Model
[17, 18].We here consider the simplest way in which we
can extend the ER random network model to incorporate
clustering by using transitive linking or triadic closure
[19, 20]. We find that despite its simplicity, this ensemble
of networks shows remarkably rich features in its k-core
structure. In particular, we focus on the emergence of
giant 3-cores (henceforth we omit the word ‘giant’) —
and calculate their sizes in more realistic networks with
clustering.

Our results challenge the typical assumption of simple
and discontinuous emergence of k-core structure. Our
conclusions therefore have important implications on re-
silience [21], outbreaks of diseases [7] or social contagions
[22, 23], jamming [24] and failures of multiple dependent
networks [25]. All of these processes can be interpreted
as generalizations to higher order constraints of classic
bond percolation. They thus all depend, either directly
or indirectly, on the k-core structure and clustering of
connections in a network.

II. MODEL

Our model, which we call the (¢, g)-process, is a one-
step extension to the classic ER random network. It has
two parameters, ¢, the average degree of the ER sub-
strate, and ¢ the probability of transitive links. We gener-
ate an ensemble of random networks with the parameters
c and ¢ as follows. First, draw an ER random network
with average degree c¢. On this network, identify all pairs
of nodes joined by a mutual neighbor (equivalently all
motifs with three nodes and two links). Connect each of

FIG. 1. 1-core, 2-core and 3-cores of an example network
from the (c,q)-process. The solid (dashed) lines represent
ER- (clustered-) links. The motifs around the larger hatched
node are labeled by their probabilities of occurring. Le., u is
the probability that a link not part of a triangle does not lead
to the 3-core; (1 — v) is the probability that both edges of a
triangle lead to the 3-core; while vw is the probability that
neither of the edges of the triangle lead to the 3-core.



these pairs independently with probability q. Note that
q controls the level of clustering in the network. Hence-
forth we call links from the ER substrate as ‘ER-links’
and links from the transitive linking process as ‘cluster-
ing’ links.

A node with ER degree k, has k(k — 1)/2 pairs
of neighbors. Each pair is linked with probability gq.
Hence, the total number of clustering links is given by

>k Ne_c%@q = Nc?q/2 yielding a total average
degree of (k) = ¢+ c?>q. A more careful, but similar cal-
culation gives us the full degree-distribution. Each node
with ER degree k1, has second-neighbors distributed as
the sum of k; poisson random variables with average
excess degree ¢ (average number of links from a node
reached by a random link, not counting the link you came
from) [18]. The sum of k; Poisson random variables with
average c is again a Poisson random variable with aver-
age kic. Each of these second-neighbors is linked to the
node with probability ¢, yielding a Poisson distributed
number of clustering links with average k1cq. Thus the
total degree distribution is given by,

e B (G () o

k1+ko=k
where the individual terms within the summation are
the joint probability distribution of a node having k; ER
links and ko clustering links.

III. RESULTS
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FIG. 2. (top) Plot showing the 3-core for representative values
of q. The values of g from right to left in different regimes are
(i) 0.02, 0.03, 0.04, 0.05, (ii) 0.06, 0.07, 0.08, (iii) 0.09, 0.1,
(iv) 0.15, 0.2, 0.3 and 0.5. On the extreme right we see the
classic discontinuous emergence (regime i), whereas the other
three regimes show very different behavior. The forbidden
region corresponds to impossible 3-core sizes for a given c; its
solid black borders are drawn to highlight this region.

In this paper, we are only interested in the k-core struc-
ture of this model. Note that the transitive linking pro-

cess does not change the size of the 1-core as it only links
nodes that are already in the same component. However,
the (¢, q)-process can upgrade nodes in the 1-core com-
ponent to the 2-core by connecting the nodes of degree-1
to nodes of higher degree, but since in the ER substrate
both the giant 1-core and 2-core emerge at exactly ¢ = 1,
we expect no difference after the transitive linking pro-
cess. The emergence of the 3-core as a function of ¢
exhibits four distinct regimes depending on g,

i. a regime of sudden discontinuous appearance of a
3-core when ¢ is lesser than some bound ¢* = 0.06
(we notate g < 0.06),

ii. a double phase transition regime consisting of a
continuous appearance of a 3-core followed by a dis-
continuous jump in size when 0.06 < ¢ < 0.08.

iii. another double phase transition regime consisting
of two continuous transitions when 0.08 < ¢ < 0.15,

iv. a single sudden but continuous appearance of a 3-
core for ¢ > 0.15.

We gather more evidence for the existence of regime
ii and iii as follows. We first study the susceptibility
(variance over average as defined in [1]) of the giant 3-core
seen in the simulations. We see that the susceptibility
shows two peaks as a function of ¢, for each value of ¢ in
these regimes. The scaling of the first peak with system
size confirms that this is indeed a phase transition and
not a finite size effect.

Let us recall that the height of a susceptibility peak
is expected to diverge with system size for second or-
der transitions, whereas it saturates to some value in the
case of first order transitions. Here, in both regimes, the
height diverges for the first peak, suggesting a second
order transition, but saturates for the second peak, sug-
gesting a first order transition (Fig. 3). Yet, we do not
see a discontinuous gap in the size of the 3-core at the
second transition of regime iii, which we would expect if
it was a first order transition. The fact that the order pa-
rameter is already at a non-zero value might explain the
saturation of susceptibility, and therefore implies that the
scaling of susceptibility peaks with system size can not
be interpreted traditionally for a double phase transition.

We further look at the slopes of the giant 3-core for
values of ¢ in these regimes, and values of ¢ close to the
second peak in Fig. 4. The slopes however, suggest that
the second transition is first order in regime ii since the
slope diverges, but second order in regime iii the slope
exhibits a jump discontinuity, but does not diverge. We
therefore conclude that regime iii is a double phase tran-
sition which undergoes two second order transitions, and
that the scaling of susceptibility peaks does not reflect
the order of a transition when the order parameter is
already non-zero.

We believe the reason for the existence of double transi-
tion is that the 3-core first emerges through the triangles
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FIG. 3. (top) The susceptibility of our simulations for repre-
sentative values of ¢ in regime ii and iii highlighting a double
phase transition. Dashed and solid lines are obtained on net-
works of size 10° (10® realizations) and 107 (10? realizations)
respectively. (bottom) The heights of the peaks of suscepti-
bility for networks of size N = 10%® through N = 107. The
number of realizations = 10°/N. The circles (squares) show
the heights of the left (right) peaks. The fits to the left peaks
show a slope of 0.54 + 0.04 for ¢ = 0.09 and 0.47 £+ 0.04 for
g = 0.08. The fits to the right peaks show slopes that are
statistically indistinguishable from zero.
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FIG. 4. Panel to the left (right) showing the jump (diver-
gence) in the slope of the giant 3-core size as a function of ¢
for ¢ = 0.09 (0.08).

only and then eventually spread through regular links
too.

To understand the effect of ¢ on the size of the 3-core,
we develop the following analytical approximations: We
calculate the 3-core sizes in random networks with the
same degree distribution as our (e,q)-process and in
random networks with the same joint degree-triangle
distribution as our (c,q)-process. These calculations
lead us to conclude that the degree-distribution and
clustering by themselves are not sufficient to explain the
regimes of double transition. This also highlights the
role of higher order motifs in the (¢, ¢)-process.

A. Configuration model
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FIG. 5. Comparison between simulations of the (c, ¢)-process
(solid light markers) and analytical predictions using the con-
figuration model (dashed light lines) and the clustered config-
uration model (solid dark lines). We also compare the clus-
tered configuration model to the rewired (¢, ¢)-networks pre-
serving degree-triangle distributions (open dark symbols)

The Configuration Model defines the ensemble of all
random networks constrained by a given degree distribu-
tion. We can find the size of the 3-core for this ensemble
through a set of self-consistent equations [26, 27]. The
probability u, that a randomly chosen link does not lead
to the 3-core is given by,

“= G(11)(1) az::o . ;1U)a Gt (u) (2)

where () is the generating function for the degree dis-
tribution [18] and GU)(2) is its j-th derivative. From
Eq. (1), we can find that G(z) is given by,

G(z) = exp |e(ze1="Y — 1)] . (3)

Equation (2) means that for the link to not lead to the
3-core (left-hand side), the node it leads to must have at
most one excess neighbor in the 3-core (right-hand side).
We then calculate the fraction S of nodes in the 3-core
by summing the probability that a randomly chosen node
has at least three links leading to the 3-core (or one minus
the probability of having less than three):

2 a
S=1-Y A= oy . (4)
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This approach always leads to discontinuous transi-
tions (Fig. 5), which shows that the degree distribution
alone is not sufficient to explain the existence of the three
other regimes. Hence, we develop the following approach
to incorporate clustering.



B. Clustered configuration model

The Clustered Configuration Model defines the ensem-
ble of all random networks constrained by a given joint
degree-triangle distribution py;. We wish to calculate the
size of the 3-core given this probability px; of a randomly
chosen node having £ links and ¢ triangles. This ensem-
ble of networks was introduced to study the impact of
clustering on bond percolation [28]. In networks with-
out clustering, all links were considered independent (as
they are indeed independent in a fully random network).

J

D, B~

a+c<1

U = E Qkt
Kt

VW = E Tkt E Bk
a+c<1

Z rktuk(wv)t
k.t

where B?(z2) := (7)2H(1—2)"~

wo'Bi(l—w)|  (5)

However, this assumption fails when a network contains
triangles and we must therefore explicitly account for tri-
angles through additional self-consistent equations.

Let qit = kpit/ (k) and iy = tpre/ (t) be the excess
degree-triangle distribution when following a link or a
triangle, respectively [28]. We can write self-consistent
equations for the probability u of following a link to a
node not in the 3-core, the probability v that following a
triangle does not lead to two nodes in the 3-core and the
probability vw that following a triangle leads to exactly
zero node in the 3-core. Figure 1 gives a visual represen-
tation of these probabilities and motifs. Mathematically,
we write

l—v = |1- Zrktuk(wv)t (6)

yolB(1 +Zrkt25 (1—uw'Bi_,(1—w) (7)

a<l

¢, Equation (5) is equivalent to Eq. (2), a regular link will not lead to the 3-core if the

node it reaches has at most one link leading to the 3-core. This potential link can either be a regular link (subscript
a for the binomial term BX(1 — u)) or be one link of a triangle (subscript ¢ for the binomial term B(1 — w)), but no
triangles can contribute more than a single link (the term v?). Equation (6) corresponds to following a triangle from
one node and finding that both links lead to the 3-core, hence both nodes reached must have at least one other link
leading to the 3-core. We thus write 1 — v has the square of one minus the probability of having zero link leading to
the 3-core, since the other links of these two nodes are independent. Equation (7) is more involved but similar. When
following a triangle, if neither of the two links lead to the 3-core, both nodes must have at most one link leading to

the 3-core, but they can not both have one as there is also a link between the two.

The size of the 3-core, S, is then given by,

S=1-S S Y BH1-wB(1—v)B (1 w) (8)

k.t b<1l a<2 c<2—a—2b

We evaluate this formula on our (¢, g)-process as fol-
lows. We numerically obtain pg; from generated networks
and use this in Eq. (5) — (8) to obtain Fig. 5. We com-
pare this to the 3-core sizes obtained from rewired net-
works preserving pg; and from our (¢, ¢)-process simula-
tions. We see that there is remarkable agreement except
at the onset of the transition. It is important to note
that the rewired networks show a systematic quantita-
tive difference as compared to our model. This is due
to the high density of adjacent triangles that share a
link. Under a configuration model rewiring, these ad-
jacent triangles are very unlikely, which means that the
rewired networks have a higher average degree from the
same pg¢ joint distribution. Every triangle contributes
two links in the clustered configuration model whereas,
in the (e, ¢)-process, we see many pairs of adjacent trian-

(

gles that account for only three links as they overlap.

More importantly, the clustered configuration model
captures how the size of the discontinuous jump vanishes
as clustering increases. However, the transition is still
discontinuous and we do not see regimes of double phase
transitions. Surprisingly, we can thus conclude that clus-
tering alone does not explain regimes ii through iv; they
are most likely caused the high number of adjacent tri-
angles in the (¢, ¢)-process which create many non-trivial
motifs.

IV. DISCUSSION

Our model is a simple extension of the classic ER net-
work to include clustering through triadic closure. The



degree distribution still has a Gaussian tail, but remark-
ably we find four distinct regimes shaping how 3-cores
can emerge: through a single discontinuous phase tran-
sition (¢ < 0.06), through a double transition of hybrid
nature (0.06 < ¢ < 0.08), through two consecutive con-
tinuous transitions (0.08 < ¢ < 0.15), or through a single
continuous phase transition (g 2 0.15).

The transition between the first and last regimes were
previously obtained in heterogeneous k-core percolation
where different nodes have different thresholds [29]. Sim-
ilarly, the regime of hybrid phase transitions (0.06 < ¢ <
0.08) was observed in the completely different context of
percolation on interdependent networks [30]. First, it is
fascinating to see similar behaviors all emerge in simple
k-core decomposition when we move away from the ran-
dom graph paradigm. Second, these analogies might also
hold the key to understanding the mechanisms at play
behind these different regimes: they all use a mixture
of nodes with different sensitivity to “criticality”. Crit-
icality here means whether a given node is in the giant
component or not (either a giant percolating component,
or a giant k-core). Interdependent networks use a mix-
ture of nodes that are either independent or dependent
on a given node in a different networks. Heterogeneous
k-core percolation uses a mixture of nodes with different
thresholds; such that the giant component is a mixture
of, for example, the 2-core and the 3-core. However we
show that realistic networks can have very similar prop-

erties even using the simplest definition of k-cores where
all nodes obey the same rules. In this context, these dif-
ferent sensitivities are structural (e.g. is a node part of
an important motif) rather than ad hoc conditions.

Finally, we showed a simple way to extend the con-
figuration model to incorporate clustering in calculations
for the size of the 3-core. This way of evaluating mo-
tifs can be extended straightforwardly to higher k-cores,
and even to higher order motifs by introducing more self-
consistent equations. We believe that this new analytical
k-core calculation will provide useful estimates for the
aforementioned applications as well as for the emergence
and growth of k-core structure in real-world networks.
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