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We present the mathematical analysis of generalized complex contagions in a class of clustered
multiplex networks. The model is intended to understand spread of influence, or any other spread-
ing process implying a threshold dynamics, in setups of interconnected networks with significant
clustering. The contagion is assumed to be general enough to account for a content-dependent
linear threshold model, where each link type has a different weight (for spreading influence) that
may depend on the content (e.g., product, rumor, political view) that is being spread. Using the
generating functions formalism, we determine the conditions, probability, and expected size of the
emergent global cascades. This analysis provides a generalization of previous approaches and is
specially useful in problems related to spreading and percolation. The results present non trivial
dependencies between the clustering coefficient of the networks and its average degree. In particular,
several phase transitions are shown to occur depending on these descriptors. Generally speaking,
our findings reveal that increasing clustering decreases the probability of having global cascades and
their size, however this tendency changes with the average degree. There exists a certain average
degree from which on clustering favors the probability and size of the contagion. By comparing
the dynamics of complex contagions over multiplex networks and their monoplex projections, we
demonstrate that ignoring link types and aggregating network layers may lead to inaccurate con-
clusions about contagion dynamics, particularly when the correlation of degrees between layers is
high.

PACS numbers:

I. INTRODUCTION

The study of dynamical processes on real-world com-
plex networks has been an active research area over the
past decade. Some of the most widely studied problems
include cascading failures in interdependent networks [1–
6], simple contagions (e.g., disease propagation in human
and animal populations [7–25], etc.), and complex con-
tagions (e.g., diffusion of influence, beliefs, norms, and
innovations in social networks [26–29]). Recently, the
attention was shifted from single, isolated networks to
multiplex and multi-layer networks [17, 18, 29–43]. This
shift is primarily driven by the observation that links in
a network might be categorized according to the nature
of the relationship they represent (e.g., friends, family,
office-mates) as well as according to the social network
they belong (e.g., Google+ vs. Facebook links), and each
link type might play a different role in the dynamical pro-
cess.

In this work, we focus on the analysis of complex con-
tagion processes that take place on multiplex (or, multi-
layer) networks. In doing so, we adopt the content-
dependent linear threshold model of social contagions
proposed by Yağan and Gligor [29]. Their framework
is a generalization of the linear threshold model intro-
duced by Watts [28] and is based on individuals adopt-
ing a behavior when their perceived proportion of active
neighbors exceeds a certain threshold; the key to that
modeling framework is that one’s perceived influence de-
pends on the types of the relationships they have and

the context in which diffusion is being considered. More
precisely, each individual in the network can be in one
of the two states, active or inactive. Each link type-i is
associated with a content-dependent weight ci in [0,∞]
that encodes the relative importance of this link type in
spreading the given content. Then, an inactive node with
mi active neighbors and di − mi inactive neighbors via
type-i links turns active only if∑

i cimi∑
i cidi

≥ τ

where τ is the node’s threshold drawn from a distribution
P (τ). It is assumed that nodes update their state syn-
chronously and once active, a node stays active forever.

Yağan and Gligor analyzed [29] the content-dependent
linear threshold model in multiplex networks and derived
the conditions, probability, and expected size of global
cascades, i.e., cases where activating a randomly selected
node leads to activation of a positive fraction of the pop-
ulation in the limit of large system sizes. However, their
multiplex network model was formed by combining in-
dependent layers of networks (one for each link type),
where each layer is generated by the configuration model
[44, 45]. Although a good starting point, configuration
model is known to generate networks that can not ac-
curately capture some important aspects of real-world
social networks, most notably the property of high clus-
tering [46, 47]. Informally known as the phenomenon that
“friends of our friends” are likely to be our friends, clus-
tering has been shown to affect the dynamics of various
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diffusion processes [31, 48–55] significantly.

With this in mind, our main contribution in this pa-
per is to provide a thorough analysis of influence spread
process in a class of clustered multiplex networks. In par-
ticular, we study the content dependent linear threshold
model in a multiplex network model where each link type
(or, network layer) is formed by the clustered random
network model proposed by Newman [48] and Miller [56].
We solve for the critical threshold, probability, and ex-
pected size of global cascades and confirm our analytical
results via extensive simulations. The main observation
from our results is that clustering has a double-faceted
impact on the probability and expected size of global
cascades. Namely, we show that clustering decreases the
probability and size of cascades when average degree in
the network is small, whereas after a certain value of av-
erage degree, clustering is shown to facilitate cascades.

We also compare the dynamics of complex contagions
over multiplex networks and their monoplex projections.
There has been recent interest [30] in understanding
whether monoplex projection of a multiplex network (ob-
tained by ignoring the colors of edges and aggregating
the layers) can still capture the essential properties (e.g.,
cascade threshold and size) of a diffusion process. In
the affirmative, this would eliminate the need for consid-
ering the full multiplex structure of real-world systems
in tackling similar problems. We show that even in the
simplest case where all link types have the same influence
weight (i.e., c1 = c2 = · · · ), monoplex theory may not be
able to capture contagion dynamics accurately, reinforc-
ing the need for studying multiplex networks in its correct
setup. We observe that the accuracy of monoplex theory
in capturing cascade dynamics over multiplex networks
depends tightly on the assortativity (i.e., correlation be-
tween the degrees of connected pairs) of the network. For
instance, when assortativity is negligible, monoplex the-
ory is seen to predict cascade dynamics very well, while
in highly assortative cases its ability to predict contagion
behavior diminishes significantly.

Finally, we proof the possibility of an unforeseen be-
havior in the dynamics of complex contagions in multi-
plex networks, i.e., that of observing more than two phase
transitions in the cascade size as the mean degrees in net-
work layers increase. It has been reported [18, 28] many
times that threshold models of complex contagion exhibit
two phase transitions as the average degree increases; a
second-order transition at low degrees marking the for-
mation of a giant component of vulnerable nodes and a
first-order transition at high degrees due to increased local
stability of nodes. Here, we consider a multiplex where
one layer has degree distribution Poi(λ) while the de-
gree in the second layer follows Poi(λ/α) with probabil-
ity α and is zero with probability 1− α. In this setting,
we observe that in general there exist two intervals of λ
for which cascades are possible, amounting to four phase
transitions as opposed to two; also, it is seen that only
the first transition is second-order while the remaining
ones are first order. However, depending on the value of

α, these regions may overlap (with overlap starting when
α exceeds a critical value) resulting again with only two
phase transitions; see Section VI C for details.

The paper is organized as follows. We give details
of the models applied in this study and the problem
to be considered in Section II. In Sections III and IV
we present the main results of this work, and confirm it
through extensive computer simulations in Section V. In
Section VI, we make a comparison between complex con-
tagions in monoplex networks and multiplex networks,
and also demonstrate the new phenomenon about the
number of phase transitions. Finally, Section VII sum-
marizes our work and gives future directions.

II. MODEL: STRUCTURE AND DYNAMICS

A. Random Graphs with Clustering

Our goal is to study complex contagion processes in
synthetic networks that capture some important aspects
of real-world networks but otherwise are generated ran-
domly. It is known [44, 45] that the widely used configu-
ration model [44] generates tree-like graphs with number
of cycles approaching to zero as the number of nodes gets
large. However, most social networks exhibit high clus-
tering, informally known as the propensity of a “friend
of a friend” to be one’s friend. Put differently, real-world
social networks are usually not tree-like and instead have
considerable number of cycles, particularly of size three;
i.e., triangles. With this in mind, Miller [57] and New-
man [45] proposed a modification on the configuration
model to enable generating random graphs with given
degree distributions and tunable clustering.

The model proposed in [45, 57] is often referred to as
random networks with clustering and is based on the
following algorithm. Given a joint degree distribution
{pst}∞s,t=0 that gives the probability that a node has s
single edges and t triangles, each node will be given s
stubs labeled as single and 2t stubs labeled as trian-
gles with probability pst, for any s, t = 0, 1, . . .. Then,
stubs that are labeled as single are joined randomly to
form single edges that are not part of a triangle, whereas
pairs of triangle stubs from three nodes are randomly
matched to form triangles between the three participat-
ing nodes; the total degree of a node is then distributed
by pk =

∑
s,t:s+2t=k pst. As in the standard configura-

tion model, it can be shown that the number of cycles
formed by single edges goes to zero as n gets large, and
so does the number of cycles of length larger than three
[44].

We quantify the level of clustering using the widely
recognized global clustering coefficient [45], defined via

Cglobal =
3× (number of triangles in network)

number of connected triples
.

Here, “connected triples” means a single vertex con-
nected by edges to two others. It was shown in [44] that
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Cglobal is positive in the random clustered network model,
while it approaches to zero with increasing network size
in the standard configuration model.

B. Multi-layer and Multiplex Network Models

In this paper, we consider a multiplex network where
links are classified into different types, or colors; they are
referred to as edge-colored multi-graphs by some authors.
For ease of exposition, we consider the case with only two
colors, red and blue, but the discussion can easily be ex-
tended to arbitrary number of colors. Let R and B denote
the sub-networks formed by red and blue edges, respec-
tively. A possible motivation is that R models the kinship
contact network among individuals, while the network
B stands for the colleagueship network. Alternatively,
we can think of B modeling the physical (e.g., face-to-
face) relationships among human beings while R models
connections through an online social network (e.g., Face-
book).

In line with the second motivation, we assume that net-
work B is defined on the vertices N = {1, . . . , n}, while
R contains only a subset of the nodes in N to account
for the fact that not every individual participates in on-
line social networks; e.g., we assume that each vertex
in N participates in R independently with probability
α ∈ (0, 1], meaning that the set of vertices of R consti-
tutes α-fraction of the whole population. We illustrate
in Figure 1 two equivalent representations of this model,
first shown as a multi-layer network with overlapping ver-
tex sets, and second as a multiplex network.

We generate both R and B from the generalized con-
figuration model described in Section II A; i.e., both are
random networks with clustering. In particular, we let
{prst, s, t = 0, 1, . . . } and {pbst, s, t = 0, 1, . . . } denote
the joint distributions for single edges and triangles for
R and B, respectively. Then both networks are gener-
ated independently according to the algorithm described
in Section II A, and they are denoted respectively by
R = R(n;α, prst) and B = B(n; pbst). We define the overall
network H over which influence spreads as the disjoint
union H = R

∐
B and represent it by H(n;α, prst, p

b
st).

Here, the disjoint union operation implies that we still
distinguish R-edges from B-edges in H, meaning that it
is a multiplex network.

We denote the colored degree d of a node in H by

d = (drs, 2nrt, dbs, 2nbt) (1)

meaning that it has drs single edges and 2nrt triangle
edges in network R, and dbs single edges and 2nbt triangle
edges in network B; here nrt and nbt are defined as the
number of triangles assigned to this node in R and B,
respectively. The distribution of this colored degree is
denoted by pd and can be computed directly from prst,
pbst and α.

C. Content-dependent Linear Threshold Model for
Social Contagion

The classical linear threshold model by Watts [28] is
based on individuals adopting a behavior when the frac-
tion of their active neighbors exceed a certain thresh-
old. Namely, an inactive node i with mi active neighbors
and di−mi inactive neighbors will become active only if
mi/di exceeds τi drawn from a distribution P (τ). More
precisely, nodes update their states synchronously at dis-
crete time steps t = 0, 1, . . . , and an inactive node will be
activated at time t if the fraction of its active neighbors
exceeds its threshold at time t − 1; once active, a node
can not be deactivated. A major concern with this model
is that it assumes all links in the network have the same
importance, irrespective of the context that the spread-
ing is being considered. However, in real world contagion
processes, each link type (e.g., co-workership vs. family
or physical links vs. online social network links) may play
a different role in different cascade processes. For exam-
ple, in the spread of a new consumer product amongst
the population, a video game would be more likely to
be promoted among high school classmates rather than
among family members; the situation would be exactly
the opposite in the case of a new cleaning product [58].

To address the aforementioned drawbacks, Yağan and
Gligor [29] proposed a content-dependent linear thresh-
old model for social contagion in multiplex networks. In
this model, each link type is associated with a content de-
pendent parameter ci in [0,∞] that measures the relative
bias type-i links have in spreading the content. Then, an
inactive node with mi active neighbors and di −mi in-
active neighbors through link type-i will turn active if∑

i cimi∑
i cidi

≥ τ .

In this work, we will analyze complex contagions in
H under the content-dependent threshold model intro-
duced in [29]. Consider a node with colored degree
d = (drs, 2nrt, dbs, 2nbt) and active-degree

m = (mrs,mrt1,mrt2,mbs,mbt1,mbt2) ,

where mrs (resp. mbs) gives the number of active neigh-
bors connected through red single edges (resp. blue single
edges), and mrt1 and mrt2 (resp. mbt1 and mbt2) give the
number of red (resp. blue) triangles with one and two
active neighbors, respectively; see Figure 2 for demon-
stration of three cases counted as mrs, mrt1, and mrt2,
respectively. Next, for a given content to spread over H,
let cr and cb denote the weight of red- and blue-edges,
respectively, in spreading this content. Without loss of
generality, we set c := cr

cb
. Then, the probability that an

inactive node with degree d and active-degree m turns
active is given by

F (m,d) (2)

= P
[
c (mrs+mrt1+2mrt2)+mbs +mbt1+2mbt2

c (drs + 2nrt) + dbs + 2nbt
≥ τ

]
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(a) (b)

FIG. 1. Illustration of multi-layer and multiplex network representations of our model. In (a), we see a multilayer network (e.g.,
a Physical communication layer and a online social network layer) with overlapping vertex sets; vertical dashed lines represent
nodes corresponding to the same individual. In (b), we see the equivalent representation of this model by a multiplex network,
i.e., an edge-colored multigraph. Edges from online social networks are shown in red and edges from the physical network are
shown in blue; although not shown in this particular example, it is possible for a pair of nodes to be connected by both blue
and red links, rendering the resulting representation a multi-graph.

(a) (b) (c)

FIG. 2. Illustration of three cases that would be counted as mrs, mrt1, and mrt2, respectively for the number of active nodes.
Nodes shown in filled (green) circles are active while those shown in non-filled circles are inactive.

Hereafter, the function F (m,d) will be referred to as the
neighborhood response function [52, 59].

D. The Problem

We consider the diffusion of influence over H that is
initiated by a node selected uniformly at random. Our
main goal is to derive the conditions, probability, and ex-
pected size of global cascades, i.e., cases where influence
starts from a single individual and reaches a positive frac-
tion of the population in the large n limit. Of particular
interest will be to reveal the effect of clustering coefficient
Cglobal and content parameter c on these quantities.

III. CONDITION AND PROBABILITY OF
GLOBAL CASCADES

In this section, we derive the condition and probabil-
ity of global cascades in clustered multiplex networks;
expected size of global cascades is handled separately in
Section IV. As mentioned in Section II B, we restrict our
attention to networks with only two link types, labeled
as blue and red edges, respectively. Distinguishing fur-
ther the edges based on whether or not they are part of
a triangle, we obtain four types of edges in our clustered

multiplex network model, labeled as red single edges, red
triangles edges, blue single edges, and blue triangle edges;
these are denoted by rs−, rt−, bs−, and bt−, respec-
tively.

To analyze the influence diffusion process, we con-
sider a branching process [60] that starts by activating
a node selected uniformly at random from among all
nodes. Starting with the neighbors of the seed node,
we explore and identify all nodes that are reached and
activated, continuing recursively until the branching pro-
cess stops. Since the contagion model considered here is
monotone, i.e., nodes that are activated stay active for-
ever, the branching process is guaranteed to stop, and
the resulting number of nodes reached gives the cascade
size.

Let H(x) denote the generating function [61] for the
“finite number of nodes that are reached and influenced”
by the branching process [60] initiated by a node se-
lected uniformly at random. We will derive an expression
for H(x) using hrs(x), hrt(x), hbs(x), and hbt(x), where
hrs(x) (resp. hbs(x)) stands for the generating function
for the “finite number of nodes reached by following a
randomly selected red single (resp. blue single) edge”;
hrt(x) and hbt(x) are defined similarly for red triangle
and blue triangle edges, respectively. Then, H(x) takes
the form
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H(x) = x
∑
d

pdD(drs, nrt, dws, nwt), (3)

where

D(y, z,m, `) := hrs(x)yhrt(x)zhbs(x)mhbt(x)` (4)

The validity of (3) can be seen as follows. The term x
stands for the node that is selected randomly and set ac-
tive to initiate the cascade. This node has a degree d =
(drs, 2nrt, dbs, 2nbt) with probability pd. The number of
nodes reached by each of its drs (resp. dbs) red single
edges (resp. blue single edges) has a generating function
hrs(x) (resp. hbs(x)). Considering its triangle edges in a
similar manner, we see from the powers property of gener-
ating functions [44] that when the initial node has degree
d the number of nodes influenced in this process has a
generating function hrs(x)drshrt(x)nrthbs(x)dbshbt(x)nbt .
Taking the expectation over the degree d of the initial
node, we get (3).

For (3) to be useful, we shall derive expressions for the
generating functions hrs(x), hrt(x), hbs(x), and hbt(x).
As will become apparent soon, there are no explicit equa-
tions defining these functions. Instead, we should seek to
derive recursive equations to define each generating func-
tion in terms of the others. These steps are taken in the
next sections where we first focus on deriving hrs(x) and
hbs(x) (Section III A) followed by derivations of hrt(x)
and hbt(x) (Section III B).

Given that random networks with clustering are free
of cycles of size larger than three, it is clear that the ini-
tial stages of the branching process will expand largely
because of vulnerable nodes that can get activated ei-
ther by one or two active neighbors. In our formula-
tion, the multiplex nature of the network calls for defin-
ing the notion of the vulnerability with respect to link
types as well [29]. Throughout, we say that a node is
R-vulnerable (resp. B-vulnerable) if it gets activated
by a single active connection through a red link (resp.
blue link). We define ρd,rs and ρd,bs as the probabil-
ity that a node is R-vulnerable and B-vulnerable, re-
spectively. We also define ρd,rt (resp. ρd,bt) as the
probability that a node gets activated by having two
active neighbors via red (resp. blue) edges. In other
words, ρd,rt (resp. ρd,bt) gives the probability that a
node gets activated by having a red (resp. blue) trian-
gle with both neighbors being active; see Figure 2. More
precisely, we set ρd,rs = F [(1, 0, 0, 0, 0, 0) ,d], ρd,rt =
F [(0, 0, 1, 0, 0, 0) ,d], ρd,bs = F [(0, 0, 0, 1, 0, 0) ,d], and
ρd,bt = F [(0, 0, 0, 0, 0, 1) ,d].

A. Influence Propagation via Red Single Edges

We start by deriving recursive equations for hrs(x) and
hbs(x) by focusing on the number of nodes reached and
influenced by following one end of a single edge in R and

B, respectively. In what follows, we only derive hrs(x)
since the computation of hbs(x) follows in a very similar
manner. In order to compute hrs(x), consider picking a
red single edge uniformly at random (among all red sin-
gle edges in H) and assume that it is connected at one
end to an active node. Then, we compute the generating
function for the number of nodes influenced by follow-
ing the other end of the edge, and obtain the following
expression for the generating function hrs(x):

hrs(x) = x
∑
d

drspd
〈drs〉

ρd,rsD(drs − 1, nrt, dbs, nbt)

+ x0
∑
d

drspd
〈drs〉

(1− ρd,rs) (5)

where D is as defined at (4).
We now explain each term appearing at (5) in turn.

The explicit factor x stands for the initial vertex that is
arrived at by following the randomly selected red single-
edge. The term drspd

〈drs〉 gives the normalized probability

that the arrived vertex has colored degree d. Since the
arrived node is reached by a red link, it needs to be red -
vulnerable to be added to the vulnerable component. If
the arrived node is indeed red -vulnerable, which happens
with probability ρd,rs, it can activate other nodes via its
remaining drs − 1 red single edges, dbs blue single edges,
nrt red triangles, and nbt blue triangles. Because the
number of vulnerable nodes reached by each of its red
single edges and triangles (resp. blue single edges and
triangles) are generated in turn by hrs(x) and hrt(x)
(resp. hbs(x) and hbt(x)) respectively, we obtain the
term hrs(x)drs−1hrt(x)nrthbs(x)dbshbt(x)nbt by the pow-
ers property of generating functions. Averaging over all
possible colored degrees d gives the first term in (5). The
second term with the factor x0 accounts for the possibil-
ity that the arrived node is not red-vulnerable and thus
is not included in the cluster. An analogous expression
can be obtained for hbs(x) via similar arguments.

B. Influence Propagation via Red Triangles

We now derive hrt(x), i.e., the generating function for
the number of nodes influenced by following a red trian-
gle selected at random; similar arguments hold for hbt(x).
We consider the situation where nodes u, v, and w form
a triangle and the top vertex u is active, while others
are not. We are interested in computing the generating
function for the total number of nodes that will be influ-
enced by nodes v and w. We will compute the generating
function hrt(x) by conditioning on the following events:

• If neither of nodes v and w is R-vulnerable, then
the number of nodes influenced will be zero. Node
v has degree d with normalized probability nrtpd

〈nrt〉 ,

in which case it is not R-vulnerable with proba-
bility 1 − ρd,rs. Similarly, the probability that
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node w has degree d′ and not R-vulnerable is

(
n′
rtpd′
〈n′

rt〉
)(1 − ρd′,rs). Summing over all possible

cases, we obtain the first term in (7) with x0 (mean-
ing that zero nodes will be influenced by following
the red triangle in this case).

• Consider the case where only one of v and w is
influenced, leading to a term with the factor x1 in
(7). Without loss of generality, consider the case
where v is activated while w is not. If node v has
degree d, then it is R-vulnerable with probability
ρd,rs, and can influence other nodes in the usual
manner. Then, the event that node w, with degree
d′, will not be activated despite having two active
neighbors (nodes u and v) has probability 1−ρd′,rt.
By symmetry and exchangeability of nodes v and
w, an equivalent term will be obtained for the case
where w is activated but v is not. Summing over
all possibilities we obtain the second term in (7).

• Finally, we consider the case where both v and w
become active giving rise to term with factor x2.
There are two possible scenarios:

– Both of v and w are activated by u. The prob-
ability that v is activated by u is ρd,rs as al-
ready discussed during the computation of the
first term. By symmetry, the probability for

w is the same as for v. Multiplying the two
probabilities leads to the third term in (7).

– Only one of v and w is made active imme-
diately by u while the other is not; e.g., say
v is activated but not w. However, w also
gets activated by the joint influence from u
and v. With d and d′ denoting the degree
of v and w, this happens with probability
(ρd,rs)(ρd′,rt − ρd′,rs). Here, the second term
accounts for the fact that w gets activated only
if it has two (or, more) active neighbors. Sum-
ming over all possibilities as before, and mul-
tiplying by two for the case where v and w are
replaced, we obtain the last term in (7).

C. Deriving the Condition for Global Cascades

The discussion given in Section III A and III B leads
to a set of recursive equations for hrs(x), hrt(x), hbs(x),
and hbt(x). Recursions for hrs(x) and hrt(x) are given
in (6) and (7), respectively; the expressions for hbs(x)
and hbt(x) are very similar and omitted here for brevity.
With these four recursive equations in place, it is possible
to determine the characteristic function H(x) of the fi-
nite number of nodes activated in the contagion process.
Namely, for a given x, we shall find a fixed-point of these
recursive equations, and then use the resulting values of
hrs(x), hrt(x), hbs(x), and hbt(x) in (3) to get H(x).

hrs(x) = x
∑
d

drspd
〈drs〉

ρd,rsD(drs − 1, nrt, dbs, nbt) + x0
∑
d

drspd
〈drs〉

(1− ρd,rs) (6)

hrt(x) = x0
∑
d

∑
d′

nrtpd
〈nrt〉

(1− ρd,rs)
n′rtpd′

〈n′rt〉
(1− ρd′,rs) (7)

+ 2x
∑
d

∑
d′

nrtpd
〈nrt〉

ρd,rsD(drs, nrt − 1, dbs, nbt)
n′rtpd′

〈n′rt〉
(1− ρd′,rt)

+ x2
∑
d

∑
d′

(
nrtpd
〈nrt〉

ρd,rsD(drs, nrt − 1, dbs, nbt)

)(
n′rtpd′

〈n′rt〉
ρd′,rsD(d′rs, n

′
rt − 1, d′bs, n

′
bt)

)
+ 2x2

∑
d

∑
d′

(
nrtpd
〈nrt〉

ρd,rsD(drs, nrt − 1, dbs, nbt)

)(
n′rtpd′

〈n′rt〉
(ρd′,rt − ρd′,rs)D(d′rs, n

′
rt − 1, d′bs, n

′
bt)

)

By conservation of probability and the definition of
generating functions, we know that H(1) = 1 only if final
number of activated nodes is finite with probability one.
In other words, global cascades that lead to a positive
fraction of influenced nodes are possible only if H(1) < 1.
This prompts us to seek a fixed point of the recursive
equations when x = 1. For notational convenience, we
define h1 := hrs(1), h2 := hrt(1), h3 := hbs(1), and

h4 := hbt(1). From (3), this gives

H(1) =
∑
d

pdh
drs
1 hnrt

2 hdbs3 hnbt
4 , (8)

while the recursions take the form

hi = gi(h1, h2, h3, h4), i = 1, 2, 3, 4. (9)

Here the functions g1, g2 are easily obtained from (6) and
(7), and similarly g3 and g4 can be obtained from the
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recursions for hbs(x), and hbt(x). To give an example,
we have

g3(h1, h2, h3, h4)

=
∑
d

dbspd
〈dbs〉

(
ρd,bsh

drs
1 hnrt

2 hdbs−13 hnbt
4 + 1− ρd,bs

)

It is clear that the recursions (9) have a trivial fixed
point h1 = h2 = h3 = h4 = 1 which yields H(1) = 1,
meaning that cascades will die out without reaching a
positive fraction of the population with high probability.
To check the stability of the trivial solution, we linearize
the recursive equations (9) around x = 1, and compute
the corresponding Jacobian matrix J via

J(i, j) =
∂gi(h1, h2, h3, h4)

∂hj

∣∣∣∣∣
h1=h2=h3=h4=1

(10)

for each i, j = 1, 2, 3, 4; the exact expression for the four
by four matrix J is not give here in order to save space.
Now, the trivial solution h1 = h2 = h3 = h4 = 1 is lin-
early stable if and only if the largest eigenvalue in abso-
lute value of J, denoted σ(J), is less than one. Otherwise,
if σ(J) > 1, then there exists another fixed point for the
recursion with h1, h2, h3, h4 < 1, leading to H(1) < 1. In
that case, the probability deficit 1 −H(1) > 0 gives the
probability that the contagion process reaches infinitely
many nodes, i.e., a global spreading event takes place.
Collecting, we conclude that the condition of global cas-
cades is given by σ(J) > 1, while the probability of global
cascade equals Ptrig = 1−H(1).

IV. EXPECTED CASCADE SIZE

Next, we are interested in computing the expected size
of global cascades when they take place. Put differently,
we will analyze the expected fraction of nodes that will
eventually become active as we pick a node in the network
uniformly at random and set it active. We follow the
approach used in [29, 52, 62], which has been proven to
be an effective way to analyze expected cascade size in
networks.

First, consider the network H as a tree-structure with
an arbitrary node selected as the root. Then, label the
levels of the tree from ` = 0 at the bottom to ` = +∞
at the top of the tree. Similar to [29, 52], we assume
that nodes begin updating their states starting from the
bottom of the tree and proceeding to the top. In other
words, we assume that a node at level ` updates its state
only after all nodes at the lower levels 0, 1, . . . , `−1 finish
updating. We define qrs,` as the probability that a node
at level ` of a tree, which is connected to its unique parent
by a red single edge, is active given that its parent at
level `+ 1 is inactive. Then, we consider a pair of nodes
at level ` that together with their parent at level ` + 1
form a red triangle. Given that the parent is inactive, we
let qrt1,` (resp. qrt2,`) denote the probability that only
one (resp. both) of the two child nodes of this triangle is
active. We define qbs,`, qbt1,`, and qbt2,` for blue edges in
the same manner.

According to our model, an active node is never deac-
tivated, meaning that qrs,`, qrt1,`, qrt2,`, qbs,`, qbt1,`, qbt2,`
are all non-decreasing. Therefore, they will converge to
qrs,∞, qrt1,∞, qrt2,∞, qbs,∞, qbt1,∞, qbt2,∞. Then, the
expected cascade size (i.e., the fraction of active indi-
viduals) S is given by the probability that the arbitrary
selected node at the top of the tree becomes active. In
order to computer S, we first derive recursive relations
for qrs,`, qrt2,`, qrt2,`, qbs,`, qbt2,`, qbt2,`. We have

qrs,`+1 =
∑
d

drspd
〈drs〉

drs−1∑
i=0

nrt∑
j=0

j∑
x=0

dbs∑
m=0

nbt∑
n=0

n∑
y=0

Q` [(i, j, x,m, y, n) , (drs − 1, nrt, dbs, nbt)]F [(i, x, j − x,m, y, n− y),d]

qrt1,`+1 = 2
∑
d,d′

nrtpd
nrt

n′rtpd′

〈n′rt〉

drs,d
′
rs∑

i,i′=0

nrt−1,n′
rt−1∑

j,j′=0

j,j′∑
x,x′=0

dbs,d
′
bs∑

m,m′=0

nbt,n
′
bt∑

n,n′=0

n,n′∑
y,y′=0

{Q` [(i, j, x,m, y, n) , (drs, nrt − 1, dbs, nbt)]

×Q`
[(
i′, j′, x′,m′, y′, n′

)
, (d′rs, n

′
rt − 1, d′bs, n

′
bt)
]
F [(i, x, j − x,m, y, n− y),d]

×(1− F
[
(i′, x′ + 1, j′ − x′,m′, y′, n′ − y′),d′

]
)
}

qrt2,`+1 =
∑
d,d′

nrtpd
nrt

n′rtpd′

〈n′rt〉

drs,d
′
rs∑

i,i′=0

nrt−1,n′
rt−1∑

j,j′=0

j,j′∑
x,x′=0

dbs,d
′
bs∑

m,m′=0

nbt,n
′
bt∑

n,n′=0

n,n′∑
y,y′=0

{Q` [(i, j, x,m, y, n) , (drs, nrt − 1, dbs, nbt)]

×Q`
[(
i′, j′, x′,m′, y′, n′

)
, (d′rs, n

′
rt − 1, d′bs, n

′
bt)
](

F [(i, x, j − x,m, y, n− y),d]F
[
(i′, x′ + 1, j′ − x′,m′, y′, n′ − y′),d′

]
+
(
F [(i, x+ 1, j − x,m, y, n− y),d]− F [(i, x, j − x,m, y, n− y),d]

)
F
[
(i′, x′, j′ − x′,m′, y′, n′ − y′),d′

])}
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where we define

Q` [(i, j, x,m, n, y) , (d1, d2, d3, d4)] =

(
d1
i

)
qirs,`(1− qrs,`)d1−i

(
d2
j

)(
j

x

)
qxrt1,`q

j−x
rt2,`(1− qrt1,` − qrt2,`)

d2−j

(
d3
m

)
qmbs,`

× (1− qbs,`)d3−m
(
d4
n

)(
n

y

)
qybt1,`q

n−y
bt2,`(1− qbt1,` − qbt2,`)

d4−n (11)

In words, Q` [(i, j, x,m, n, y) , (d1, d2, d3, d4)] gives the
probability that a node at level ` with colored degree
(d1, 2d2, d3, 2d4) has

• i (resp. d1 − i) of the d1 neighbors connected
through red single edges as active (resp. inactive).
Similarly, m (resp. d3−m) of the d3 neighbors con-
nected through blue single edges as active (resp. in-
active)

• of the d2 red-triangles it participates in, x has one
active node, j − x has two active nodes, and d2 −
j has no active node. Similarly, of the d4 blue-
triangles it participates in, y has one active node,
n−y has two active nodes, and d4−n has no active
node

Hence, multiplying Q` [(i, j, x,m, n, y) , (d1, d2, d3, d4)]
with F [(i, x, j − x,m, y, n− y),d] and summing over all
possibilities for d and i, j, x,m, n, y gives the probabil-
ity that the node under consideration turns active. This

confirms the first expression above. Second and third
terms consider simultaneously a pair of nodes that are
part of a red triangle (where the top, i.e., parent, ver-
tex is inactive). Therefore, we first condition on the
degrees of these two nodes being d and d′ respectively,
and consider all possibilities concerning the states (ac-
tive vs. inactive) of these neighbors. Then for qrt1,`+1,
we realize by symmetry that the desired expression is
two times the probability that the node with degree d
turns active, and despite having one extra active neigh-
bor, the node with degree d′ does not turn active. The
fact that first node turns active is incorporated in the ex-
pression (1 − F [(i′, x′ + 1, j′ − x′,m′, y′, n′ − y′),d′]) by
the term x′ + 1. For qrt2,`+1, we proceed similarly and
realize that for both nodes to turn active there are two
possibilities. The node with degree d either turns ac-
tive regardless of the state of the node with degree d′ (in
which case the node with degree d′ will turn active with
probability F [(i′, x′ + 1, j′ − x′,m′, y′, n′ − y′),d′]), or it
turns active only after the node with degree d′ does.

With the above recursion in place, we compute the
final cascade size via

S =
∑
d

pd

drs∑
i=0

nrt∑
j=0

j∑
x=0

dbs∑
m=0

nbt∑
n=0

n∑
y=0

Q∞ [(i, j, x,m, n, y) , (drs, nrt, dbs, nbt)]F [(i, x, j − x,m, y, n− y),d] (12)

Namely, we first solve for the values of qrs,∞, qrt1,∞,
qrt2,∞, qbs,∞, qbt1,∞, qbt2,∞ using the recursive equations,
and then substitute them into (12) to obtain the expected
size of global cascades.

V. NUMERICAL RESULTS

A. Networks with Doubly Poisson Distributions

In our first simulation study, we use doubly Poisson
distribution for the number of single edges and triangles
in both networks. Namely, we set

prst = e−λr,1
(λr,1)s

s!
e−λr,2

(λr,2)t

t!
, s, t = 0, 1, . . . ,

pbst = e−λb,1
(λb,1)s

s!
e−λb,2

(λb,2)t

t!
, s, t = 0, 1, . . . ,

where s and t are the number of single edges and triangles
in the corresponding networks, respectively. Thus, λr,1
and λr,2 (resp. λb,1 and λb,2) denote the mean number of
single edges and triangles, respectively in R (resp. in B).

We consider n = 1 × 105 nodes in the population and
α = 0.5 for the size of network R. We let τ = 0.18
and c = 0.25 for the threshold and content parameters,
respectively. The results are shown in Figure 3 where
the curves stand for the theoretical results of probabil-
ity Ptrig and expected size S of cascades (obtained from
our discussion in Section III and IV), as a function of
λr,1 = λr,2 = λb,1 = λb,2. The markers stand for the em-
pirical results for the same quantities, and are obtained
by averaging over 5,000 independent experiments. We
see a very good agreement between the analytical and
experimental results confirming the validity of our anal-
ysis. The slight discrepancy observed in Ptrig is due to
the limited number of experiments, and can be mitigated
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FIG. 3. Simulations for doubly Poisson degree distributions.
In (a), we set the content parameter c = 0.25, the threshold
as τ = 0.18, and α = 0.5, and vary the degree parameters.
In (b), we fix τ = 0.18, λr,1 = λr,2 = λb,1 = λb,2 = 0.3, and
α = 0.5 while varying content parameter c.

by increasing the number of realizations.

Next, we change our experimental set-up to demon-
strate the effect of content parameter on the probabil-
ity and size of cascades. To that end, we fix all net-
work parameters and observe the quantities of interest
as the content parameter c varies. In particular, we set
λr,1 = λr,2 = λb,1 = λb,2 = 0.3 and τ = 0.18. We see
that the probability and expected size of global cascades
vary greatly as c changes. This can be taken as an in-
dication that our model can capture the real-world phe-
nomenon that over the same population certain contents
can become widespread while others die out quickly. In
the setting used here, we see that global cascades take
place when the content parameter c is not too small or
large. The reason is that with a too small or large content
parameter, the connectivity of the conjoined network is
dominated by only one of the two networks. So, if neither
of them has enough connectivity to trigger a global cas-
cade by their own, then there will be no global cascades in
the conjoined network. When the c is neither too large
nor too small (e.g., close to unity), both networks will
contribute to the connectivity together and it becomes
possible to trigger a global cascade. For other values of
λr and λb a completely different situation might occur,
e.g., with very small or very large c promoting cascades;
e.g., see [29, Fig. 2] for a few such examples.

B. How does Clustering Affect the Cascade Size?

Our next goal is to reveal the impact of clustering on
the influence propagation process in the models consid-
ered here. To do so, we should be able to vary the level of
clustering while keeping the first and second moment of
the total degree distribution fixed, as they are known to
affect the contagion behavior significantly [29]. In order
to satisfy this constraint, we use Poisson distributions for
the number of single edges and triangle in two networks
with parameters given in Table I.

With the setting given in Table I, the clustering co-
efficient in R will be fixed for any η ∈ [0, 4], while the
clustering of B varies between the two extremes: i) when
η = 4, B will have no single-edges and consist only of
triangles resulting with a clustering coefficient close to
one; and ii) with η = 0, there will be no triangles in B
and hence its clustering coefficient will be close to zero.
Collecting, we see that the clustering coefficient of B and
thus of H increases with increasing η in this setting.

Network R Network B
Distribution of single-edges Poi(2λ) 2 Poi( 4−η

2
λ)

Distribution of triangles Poi(λ) Poi
(
η
2
λ
)

TABLE I. Parameters of the doubly Poisson distribution.
This choice ensures that the mean and variance of the total
degree distribution (single plus triangle edges) in B are inde-
pendent of η, while its clustering varies greatly as η varies in
(0, 4). In Figure 3 we set λ = 0.5.

With these in mind, we first demonstrate the impact
of clustering on the probability of triggering a global cas-
cade. Figure 4(a) shows the probability of triggering a
global cascade as a function of λ for three different η val-
ues. The resulting clustering coefficients are plotted in
Figure 4(b) where we clearly see that clustering increases
with increasing η. The main observation from Figure 4(a)
is that increasing the clustering (i.e., increasing η), shifts
the interval of λ for which global cascades are possible
to the right. This leads to a double-faceted conclusion
that clustering decreases the probability of global cas-
cades when average degrees are small, whereas after a
certain value of average degree, clustering increases the
probability of cascades.

The double-faceted impact of clustering on cascade
probability can be explained as follows. It is known
[18, 28] that threshold models of complex contagion ex-
hibit two phase transitions as the average degree in-
creases, a second-order transition at low degrees that
marks the formation of a giant vulnerable component and
a first-order transition at high degrees due to increased
local stability of nodes; namely, due to the increased diffi-
culty of activating high-degree nodes. Given that cluster-
ing is known to decrease the size of giant component [31],
we expect that it will be more difficult for a clustered net-
work to contain a giant vulnerable cluster. This is why
the lower phase transition in complex contagions appear
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FIG. 4. Illustration of the effect of clustering coefficient on the expected cascade and probability of global cascades. We fix
τ = 0.18, c = 0.25, and α = 0.5, then vary the degree parameter λ defined in Table I. We see (a) the probability to trigger a
global cascade; (b) the global clustering coefficient described in Section II A; and (c) the expected cascade size.

later (i.e., at larger degrees) as clustering increases. On
the other hand, the cycles of size three (i.e., triangles)
that are common in clustered networks can help trigger
cascades when average degree is higher. For instance,
in a tree-like network a single active node can only acti-
vate its vulnerable connections. However, in a triangle,
an active node may first activate one of its vulnerable
connections, making it possible for the third node to be
activated (which now has two active neighbors) even if it
is not vulnerable. This is what pushes the second phase
transition to higher degrees.

Next, we explore the impact of clustering (in the set-
ting considered here) on the expected cascade size in
Figure 3(c). Here again, we see the double-faceted im-
pact of clustering with small average degrees favoring low
clustering, while high degrees favoring high clustering in
terms of having a larger cascade size. In fact, we see the
existence of a critical average degree (around λ = 0.6 in
Figure 3(c)) such that when λ is smaller (resp. larger)
than the critical value, expected cascade size decreases
(resp. increases) with increasing clustering. This extends
the observation that Hackett et al. [52] made for single-
layer networks to multi-layer networks.

Finally, we consider the impact of clustering on the
average degree-cascade threshold plane. For each pa-
rameter pair (λ, τ), the curves in Figure 5 separate the
region where global cascade can take place (areas inside
the boundaries) from the region where they cannot (areas
outside the boundaries). Once again, we confirm that in-
creasing the clustering coefficient shifts the interval where
cascades are possible up (i.e., to higher degrees) for any
threshold τ .

VI. COMPARISON BETWEEN MONOPLEX
AND MULTIPLEX NETWORKS

In what follows, we will compare the dynamics of com-
plex contagions over a monoplex network with that over
a multiplex network. Of particular interest will be to find
out whether the projection of a multiplex network into a
monoplex network leads to any significant differences in
the dynamics that would warrant the separate analyses
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FIG. 5. We show the cascade regions in the Degree
Parameter-Threshold plane when α = 0.5, τ = 0.18, and both
networks follow doubly Poisson distributions as described in
Table I. Clustering increases as η increases.

of multiplex networks as conducted here.
To identify the factors affecting complex contagions,

we consider two different degree distributions to generate
the networks. In Section VI A, we use a setting similar to
previous sections, with the resulting networks having al-
most no degree-degree correlations; e.g., assortativity de-
fined as the Pearson correlation coefficient between the
degrees of pairs of linked nodes [63]. In Section VI B
and VI C, we use a different setting that leads to (tun-
able) assortativity for multiplex networks. In order to
keep the focus on the comparison between monoplex and
multiplex networks, we shall consider only non-clustered
networks in the following discussion.

A. Multiplex Networks with Limited Assortativity

First we consider the limited assortativity case and use
the following degree distribution to assign blue and red
stubs to each node:

pbk = e−λb
λkb
k!
, k = 0, . . . , (13)

prk = αe−λr
λkr
k!

+ (1− α)δk,0, k = 0, . . . .
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where δ denotes the Kronecker delta. In other words,
each nodes receives Poi(λb) blue edges, and an α-fraction
of nodes receive an additional Poi(λr) edges of color red.
A multiplex network is generated using the colored config-
uration model [64, 65] where stubs that are of the same
color are matched randomly. The monoplex projected
theory ignores the color of the edges and matches all
stubs randomly with each other. An important question
is whether we lose any significant information about con-
tagion dynamics when the monoplex projected theory is
used instead of the multiplex theory developed here and
in [29]. For convenience, we set λb = λr and use c = 1 as
the content parameter.

In Figure 6(a), we set α = 0.99. We see nearly no
difference between the theoretical cascade sizes obtained
from monoplex and multiplex theories, and they both
match the simulation results well. However, when α is
reduced to 0.1 in Figure 6(b), we clearly see a differ-
ence between the two theories and only multiplex theory
matches the simulation results. This shows that even in
the simplest case where both link types have the same
influence factor (i.e., c = 1), monoplex theory may be
unable to capture certain properties of cascade dynam-
ics, reinforcing the need for studying cascades using the
multiplex theory.

We now explain why the two cases, α = 0.1 and
α = 0.99, lead to different conclusions regarding the ac-
curacy of the monoplex theory in capturing contagion
dynamics over multiplex networks. One of the key dif-
ferences between the two cases is the resulting assorta-
tivity. When α = 0.1, only 10% of the nodes has red
stubs, each of which can only be connected with other
red stubs in the multiplex network case. Put differently,
in this setting a small fraction of the population will have
statistically higher degrees than the rest, and the addi-
tional links they have can only connect nodes with high
degrees together. This leads to a positive correlation (i.e.,
assortativity) between the degrees of pairs of connected
nodes. However, in the monoplex projection, the addi-
tional edges can be used to connect any two nodes, re-
sulting with very little to no assortativity in the network.
Obviously, when α is close to one, almost every node will
have the additional edges and the above phenomenon will
not be observed. Our simulation results confirm this in-
tuition as we see that assortativity is negligible (∼ 10−4)
in both monoplex and multiplex cases when α = 0.99,
while with α = 0.1, assortativity varies (as λr = λb in-
creases) from 0.05 to 0.2 in the multiplex case while still
being negligible in the monoplex case.

The impact of assortativity on the comparison between
monoplex and multiplex theories is investigated further
in the forthcoming discussion.

B. Multiplex Networks with Assortativity

In this section, we change the setting slightly to gener-
ate multiplex networks with high assortativity. To that
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FIG. 6. Comparison between monoplex networks and mul-
tiplex networks with limited assortativity. In (a) and (b),
we fix the threshold τ = 0.15, the content parameter c = 1,
then vary the degree parameters in (13). For the networks
obtained by projected theory and the networks in multiplex
theory with α = 0.99, assortativity is negligible. However,
when α = 0.1, the assortativity coefficient of the networks in
the multiplex theory become significant; e.g., it can be up to
0.21.

end, we use the degree distributions given at (13), but
instead of setting λr = λb, we enforce

αλr = λb (14)

for any α ∈ (0, 1). This setting allows us to tune assorta-
tivity without changing the mean degree in the network.
In particular, assortativity will increase as α decreases
(by virtue of a small fraction of nodes forming a highly-
connected cluster) [31]. In addition, this setting allows
us to compare the contagion dynamics in multi-layer net-
works when the upper layer is i) small but densely con-
nected (small α) versus ii) large but loosely connected
(large α); see [31] for relevant results for bond percola-
tion processes.

Using the above degree distributions, we generate
monoplex and multiplex networks as in Section VI A and
analyze the complex contagion process. In Figure 7(a),
we see that when α = 0.99, which leads to very limited
assortativity, the difference between monoplex and mul-
tiplex networks is negligible. This is in parallel with what
we observed in Section VI A. However, decreasing α to
0.1 leads to two interesting observations in Figure 7(b).
First, instead of the commonly reported two phase tran-
sitions [18, 28], we observe four phase transitions in the
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FIG. 7. Comparison between monoplex networks and multi-
plex networks with assortativity. Similar with the observation
in Figure 6, networks in the projected theory and in the mul-
tiplex theory with α = 0.99 have negligible assortativity coef-
ficients. However, for the networks of multiplex theory with
α = 0.1, assortativity coefficient ranges from 0.19 to 0.79. In
general, assortativity increases with increasing λr and λb in
the multiplex theory.

cascade size as αλr = λb increases. Secondly we see a sig-
nificant difference between the monoplex projected the-
ory and multiplex theory, with only the multiplex theory
matching the simulations well. Once again, this shows
that monoplex theory is unable to capture the cascade
dynamics under certain settings.

The emergence of four phase transitions in Figure 7(b),
which to the best of our knowledge was not reported
before, can be explained as follows 1. When α = 0.1,
only ten percent of the nodes have red edges, but the
the mean number of red edges for those nodes equals
10λb (see (14)). Therefore, the first couple of phase tran-
sitions taking place at very small λb values can be at-
tributed mainly to red-edges. First, λb becomes large
enough (e.g., gets to around 0.1) that the sub-network

1 From a practical point of view, observing four phase transitions
rather than two signals a more chaotic system behavior (in terms
of contagion dynamics) with respect to changes in the degree pa-
rameter λb. In turn, this would make the prediction of cascade
region more difficult in the cases where system parameters are
not known exactly but estimated; e.g., social network applica-
tions.

induced only on the red-edges contains a giant vulnera-
ble cluster, giving rise to global cascades; note that at
this point λb is so small that blue edges do not create
enough local stability to prevent cascades from happen-
ing. However, after λb reaches a certain level (around
0.65), the subgraph on red-edges, having average degree
of 10λb, reaches the second phase transition point where
cascades stop due to the increased local connectivity of
nodes. These first two transitions being second- and first-
order, respectively, also confirms that they are primarily
due to the red-edges.

As λb increases further we observe an interval where
there are no global cascades due to either colors of edges;
nodes with red and blue-edges are highly stubborn while
nodes with only blue edges are not connected enough to
trigger a cascade. This interval is then followed by a re-
gion where λb is large enough that the sub-graph on blue
edges has a giant vulnerable cluster. However, the emer-
gence of a second-order transition in the whole network is
prevented here due to some of these nodes turning stub-
born as a result of their red-edges. Eventually, however,
λb becomes large enough that even with occasional stub-
born nodes present, a giant vulnerable cluster emerges.
This point is reached much later in monoplex networks
as compared to the multiplex networks. This is because
in the former case stubborn nodes (with red edges) are
equally likely to be connected with any other node, while
in the latter case they are mostly connected with each
other; thus in the latter case they are less likely to in-
hibit the emergence of a giant vulnerable cluster on blue
edges.

Finally, the system goes through a fourth transition
when λb becomes large enough that even nodes with
only blue edges become highly connected and hence stub-
born. We see that this final transition point is reached
much later in multiplex networks than monoplex net-
works meaning that cascades take place over a broader
range of λb values in the former case. Again, this can be
attributed to the high assortativity seen in multiplex net-
works that leads to extremely stubborn nodes (that have
both blue and red edges) being isolated from those that
are mildly stubborn (that have only blue edges). On the
other hand, in monoplex networks, every node is able to
connect with the extremely stubborn nodes, and thus the
critical value of λb at which cascades become impossible
due to high local stability is reached much earlier than
that in multiplex networks.

C. Two vs. Four Phase Transitions

In Section VI B, we have observed the possibility of
having more than two phase transitions in the cascade
size. As discussed there, multiple phase transitions oc-
cur mainly due to the setting (14) that, with small α, en-
sures a small fraction of nodes having significantly higher
connectivity than the rest, while also being mostly con-
nected with each other. Since the existence of more than
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FIG. 8. Demonstration of multiple phase transitions.

two transitions has not been reported in previous studies,
we are interested in exploring it further. In particular, we
now investigate the impact of α on the number of phase
transitions as well as transition points. Of particular in-
terest will be to find the critical α value that separates
the cases where four phase transitions occur from those
with only two transitions; e.g., the α value for which the
two cascade regions overlap. For simplicity we only con-
sider multiplex networks in this section.

Figure 8 shows the expected size of global cascades
under (13)-(14) for three different values of α. We see
that global cascades take place over a single interval of
αλr = λb when α is large (e.g., α = 0.99) while over
two disjoint intervals when α is small (e.g., α = 0.1).
When α is somewhere in between (e.g., case α = 0.166 )
it is possible to have the cascade intervals partially over-
lap. In such cases, we only see a single interval where
global cascades take place. However, an additional tran-
sition point appears, manifested by a shift of slope in
cascade size, marking possibly the overlapping point of
(what would be) the two cascade intervals.

Figure 8 allows us to comment also on the impact of
the size and density of the online social network layer in
facilitating influence propagation. With (14) in effect,
a small α corresponds to a social network with few but
densely connected individuals, while large α corresponds
to a social network with many subscribers, each with few
connections on average. In all cases, the total number
of edges in the social network is fixed by virtue of (14).
We see from Figure 8 that the comparison between the
three cases leads to a multi-faceted picture as the mean
number of links αλr varies. For instance, the large but
loosely connected case of α = 0.99 leads to the largest
expected global cascade size over a certain interval, but
it has the smallest cascade interval among all three. The
intermediate case of α = 0.166 seems like a stretched
version (over the x-axis) of the case with α = 0.99. In
particular, this case leads to the largest interval where
global cascades are possible, though the expected cascade
size is smaller than that obtained with α = 0.99 (and also
with α = 0.1) over certain intervals. Finally, the case
of a small but densely connected extra layer (i.e., with

α = 0.1), falls right under the case with α = 0.166 for
most values of αλr, though it gives the largest size of all
three in small intervals where αλr is very small or very
large.

VII. CONCLUSION AND FUTURE WORK

We studied the diffusion of influence in a class of clus-
tered multiplex networks. We solved analytically for the
condition, probability, and expected size of global cas-
cades, and confirmed our results via extensive computer
simulations. One of our key findings is to show how clus-
tering affects the probability and expected size of global
cascades. We also compared several interesting proper-
ties of complex contagions on a multiplex network and
its monoplex projection. We demonstrate that ignoring
link types and aggregating network layers may lead to in-
accurate conclusions about contagion dynamics, particu-
larly when assortativity is high. Finally, we show for the
first time that linear threshold models do not necessarily
exhibit two phase transitions as previously reported. De-
pending on assortativity, we show that both in monoplex
and multiplex cases (with two link types) it is possible to
observe four phase transitions.

Our analysis and modeling framework subsumes some
previous studies. For instance, by setting hrt(x) =
hbt(x) = 1 in the recursive relations, we ensure that R
and B are non-clustered random networks. So, our anal-
ysis corresponds to complex contagions in non-clustered
networks, which was studied in [29]. Similarly, if we let
hrs(x) = hrt(x) = 1 in the recursions and set the content
parameter c = 1, then our analysis corresponds to com-
plex contagions in clustered monoplex networks, which
was studied in [52].

Future work may consider in more details the impact of
assortativity or other topological features on the cascade
dynamics. It would also be interesting to compare mul-
tiplex networks and their monoplex projections in terms
of other dynamical processes; e.g., site percolation, trans-
port processes, etc. Another interesting direction would
be to consider networks that exhibit clustering not only
through triangles, but also through larger cliques [66]. Fi-
nally, it would be interesting to study multiplex threshold
dynamics that implement nonlinear rules as well; e.g., see
[32, 67].
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Gleeson, Physical Review X 6, 021002 (2016).
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of Physics 17, 053033 (2015).

[38] C. Granell, S. Gómez, and A. Arenas, Physical Review
Letters 111, 128701 (2013).

[39] G. J. Baxter, S. N. Dorogovtsev, J. F. F. Mendes, and
D. Cellai, Physical Review E 89, 042801 (2014).

[40] M. De Domenico, C. Granell, M. A. Porter, and A. Are-
nas, arXiv preprint arXiv:1604.02021 (2016).

[41] H. Wu, A. Arenas, and S. Gómez, arXiv preprint
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