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Abstract

Hybrid dynamical systems characterized by discrete switching of smooth dynamics have been

used to model various rhythmic phenomena. However, the phase reduction theory, a fundamen-

tal framework for analyzing the synchronization of limit-cycle oscillations in rhythmic systems,

has mostly been restricted to smooth dynamical systems. Here, we develop a general phase re-

duction theory for weakly perturbed limit cycles in hybrid dynamical systems, which facilitates

analysis, control, and optimization of nonlinear oscillators whose smooth models are unavailable

or intractable. On the basis of the generalized theory, we analyze injection locking of hybrid limit-

cycle oscillators by periodic forcing and reveal their characteristic synchronization properties, such

as ultrafast and robust entrainment to the periodic forcing and logarithmic scaling at the synchro-

nization transition. We also illustrate the theory by analyzing the synchronization dynamics of a

simple physical model of biped locomotion.
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I. INTRODUCTION

Hybrid dynamical systems have been used to describe physical processes that exhibit

sudden qualitative changes or abrupt jumps during otherwise continuous evolution. Some

examples are the collision of particles, refraction and reflection of waves, spiking of neurons,

switching of gene expression, limb-substrate impacts in legged robots and animals, human-

structure interaction, switching of elements in electric circuits, and breakdown of nodes or

links in networked systems [1–7]. Because such discontinuous events are found in many

areas of science and engineering [8, 9], it is important to develop theoretical frameworks to

analyze hybrid dynamical systems.

Many hybrid dynamical systems exhibit stable rhythmic activities, for example, periodic

spiking of neurons, rhythmic locomotion of robots, oscillations in power electric circuits, and

business cycles in economic models [10–13], which are typically modeled as nonlinear limit-

cycle oscillations. Synchronization of such rhythmic activities may play important functional

roles in biological and engineered systems, e.g., in locomotor rhythms, vibro-impact energy

harvesters, and wireless sensor networks [14–16].

One of the fundamental mathematical frameworks for analyzing limit-cycle oscillations

is the phase reduction theory [17–19], which gives approximate reduced description of the

dynamics of a weakly perturbed limit-cycle oscillator using a simple one-dimensional phase

equation. The phase reduction theory is well established for stable limit-cycle oscillations

of smooth dynamical systems and has successfully been applied to the analysis of rhythmic

spatiotemporal dynamics in chemical and biological systems [17, 18]. Methods for optimizing

and controlling synchronization of limit-cycle oscillators have also been developed on the

basis of the phase reduction theory [20].

In phase reduction theory for smooth dynamical systems, a weakly perturbed limit-cycle

oscillator described by Ẋ(t) = F (X(t))+ εp(X(t), t) is considered, where X(t) ∈ RN is the

oscillator state, F (X) : RN → RN is a continuously differentiable vector field representing

the dynamics of the oscillator, p(X, t) : RN × R → RN denotes external perturbation

applied to the oscillator, and ε ∈ R is a small parameter representing the intensity of the

perturbation. A system without perturbation (ε = 0) is assumed to possess a stable limit-

cycle solution χ : X0(t) = X0(t + T ) of period T ∈ R, and a phase θ of the oscillator state

is introduced, which increases with a constant frequency and takes the same value on the
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isochron [17, 21, 22], i.e., a codimension-one manifold of the oscillator states that share the

same asymptotic behavior.

When the perturbation is sufficiently small, phase reduction theory enables us to system-

atically approximate the original multidimensional system using a simple one-dimensional

reduced phase equation of the form θ̇(t) = 1 + εZ(θ) · p(θ, t), where θ(t) = Θ(X(t)) is

the oscillator phase and Θ(X) : RN → [0, T ) gives the phase of the oscillator state X.

The range [0, T ) of the phase is identified with a one-dimensional torus T1. The function

Z(θ) : T1 → Rn, which is the gradient of the isochron and is called the phase sensitivity

function in this study, quantifies the linear response of the oscillator phase to perturbations

given at phase θ on χ. It is known that Z(θ) can be obtained as a T -periodic solution to

the adjoint linear problem of the system, Ż(t) = − (DF (X0(t)))
† · Z(t) with a normaliza-

tion condition Z(0) · F (X0(0)) = 1, where DF denotes the Jacobi matrix of F and † its

transpose [19, 23, 24].

Recently, the phase reduction theory has been extended to non-conventional cases such

as stochastic [25], delay-induced [26], collective [27], spatially extended [28], and strongly

modulated [29] oscillations. Similar reduction methods that rely on sets of initial conditions

characterized by the same long-term behavior have also been developed for heteroclinic

orbits [30], limit tori [31] and stable fixed points [32]. However, application of the phase

reduction theory to oscillatory hybrid dynamical systems has so far been limited to low-

dimensional systems, or to a specific class of systems whose phase sensitivity function is

obtained from adiabatic approximation [10, 33, 34]. To the best of our knowledge, no

systematic phase reduction theory for oscillators of high-dimensional (N ≥ 3) systems with

discontinuity in χ has been developed. This is mainly because the non-smoothness of the

vector fields at the jumps prevents straightforward utilization of the adjoint equation.

In this study, we develop a systematic phase reduction theory for a general class of

autonomous limit-cycle oscillators in hybrid dynamical systems. This paper is organized

as follows: in Sec. II, limit-cycle oscillations in hybrid dynamical systems are introduced.

In Sec. III, the phase reduction theory for hybrid limit cycles is developed. In Sec. IV,

the theory is illustrated by analyzing synchronization dynamics of two examples of hybrid

limit-cycle oscillators, that is, an analytically tractable Stuart-Landau-type oscillator and a

physical model of biped locomotion. Section V summarizes the results, and Appendices A-I

provide mathematical details of the main results presented in Sec. II-IV.
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II. HYBRID LIMIT CYCLES

The state of a hybrid dynamical system that we consider in this study is represented by

a pair s = (I,X) of the discrete state I ∈ {1, 2, · · · ,m} =M for some m ∈ N (m = +∞ is

allowed) and the continuous state X ∈ RN . We denote the set of pairs (i, j) as G ⊂M×M,

which is a collection of all possible transitions from discrete state i to j. As in Ref. [35], we

describe a hybrid dynamical system by the following hybrid automaton:

Ẋ(t) = F (I(t),X(t)), if I(t) = i and X(t) /∈ Πij for any j, (1)

X(t+ 0) = Φ((i, j),X(t)), I(t+ 0) = j, if I(t) = i and X(t) ∈ Πij for some j, (2)

Πij =

{X | L((i, j),X) = 0}, if (i, j) ∈ G.

empty set, otherwise.
(3)

Here, Eq. (1) describes the smooth dynamics of the continuous state X(t) when the discrete

state is I(t) = i, Eq. (2) the jump of X(t) when the discrete state switches from i to j, and

Eq. (3) represents a plane in the space of continuous state on which the switching from i

to j takes place. In Eq. (1), F (I,X) : M× RN → RN is the vector field of the system.

In Eq. (2), “t + 0” indicates the moment just after the switching of the discrete state at t,

the transition function Φ((i, j),X) : G × RN → RN gives the new continuous state after

the switching of the discrete state from i to j, and Πij is an (N − 1) dimensional zero-level

surface of the function L((i, j),X) : G × RN → R on which the switching takes place.

It is assumed that the functions F (I,X), Φ((i, j),X), and L ((i, j),X) are continuously

differentiable with respect to X ∈ RN and do not depend explicitly on time.

Suppose there exists a periodic solution χ : s0(t) = (I0(t),X0(t)) of period T of Eqs. (1-

3). As in Ref. [36], we make several assumptions on the system (see Appendix A for details)

so that the continuous part of the solution X0(t) is piecewise continuously differentiable

with respect to the initial continuous state X0(0) on χ and linear stability analysis of the

solution can be performed. Let s∗ = (I(0),X(0)) be an initial condition of Eqs. (1-3) and

t = τk(s
∗), k ∈ N be the moments of switching of the discrete state, where 0 ≤ τ1(s

∗) <

τ2(s
∗) < · · · < τk(s

∗) < · · · < +∞. For convenience of notation, we also define τ0(s
∗) = 0.

To simplify the expression of the periodic orbit χ, we hereafter use the following nota-

tion. By distinguishing the discrete states visited more than once in one period, and by
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FIG. 1. Schematic representation of the dynamics of the hybrid limit cycles.

renumbering the state indices, we introduce a set of discrete states M0 = {1, 2, · · · ,m0}

where m0 < +∞, such that the discrete state I0(t) is switched in numerical order as

1 → 2 → · · · → m0 → m0 + 1 = 1 at t = τ1(s
∗), τ2(s

∗), · · · , τm0(s
∗) (see Fig. 1). Here, m0

is finite because the period T is finite and the assumption (C2) in Appendix A assures that

the system stays in each discrete state for some nonzero duration. We also introduce the

following simplified notations for the discrete state transitions on the periodic orbit χ:

Lk(X0(t)) = L((k, k + 1),X0(t)),

Φk(X0(t)) = Φ((k, k + 1),X0(t)). (4)

We call the periodic solution χ a hybrid limit cycle if it is linearly stable (see Appendix B

for the linear stability analysis of the periodic solution).

III. PHASE REDUCTION

The aim of phase reduction is to describe the dynamics of the system state around

the hybrid limit cycle χ by using a scalar phase θ. We first introduce the phase function

Θ : M0 × RN → T1(= [0, T )) on χ, which gives the phase value of the state s0 = (I0,X0)
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on χ as

Θ(s0(t+ nT )) = Θ(I0(t+ nT ),X0(t+ nT )) = t (mod T ), (5)

where n ∈ Z≥0 is an arbitrary positive integer. Namely, we identify the time t (mod T ) as

the oscillator phase θ, which increases with a constant frequency 1 on χ, i.e.,

θ̇(t) = Θ̇(I0(t),X0(t)) ≡ 1. (6)

In the following, we will denote a system state with phase θ on χ also as s0(θ) =

(I0(θ),X0(θ)) as a function of θ.

Phase θ can also be introduced in a neighborhood U containing χ within its basin of

attraction by introducing an equivalence relation to initial conditions in U whose asymptotic

behaviors are the same. Namely, we introduce the isochron of χ by assigning the same phase

value to the set of states in U that eventually converge to the same state on χ. Suppose

that s1 and s2 are taken from U , where s2 is on χ at phase θ, i.e., s2 = s0(θ). If s1 and s2

are asymptotically equivalent, we define the phase of s1 as

Θ(s1) = Θ(s2) = θ. (7)

Note that the convergence concept of the solutions in hybrid dynamical systems demands

somewhat careful attention (see Appendix C for details). Some properties of the isochron

and the phase function on U are discussed in Appendix D.

The above definition of the phase guarantees that the following relation holds for al-

most all t (excluding the Lebesgue measure zero set of the moments of switching) for an

unperturbed oscillator:

θ̇(t) = Θ̇(I(t),X(t)) = ∇Θ(I(t),X(t)) · F (I(t),X(t)) = 1, (8)

where ∇Θ represents the gradient of Θ with respect to X. Namely, the phase θ rotates on

a circle T1 at a constant frequency 1.

When a sufficiently small perturbation εp(I(t),X(t), t) with |ε| � 1 is introduced to the

oscillator as

Ẋ(t) =F (I(t),X(t)) + εp(I(t),X(t), t), (9)
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we can obtain the following approximate phase equation closed in θ at the lowest order:

θ̇(t) = Θ̇(I(t),X(t))

= 1+ε∇Θ(I0(θ),X0(θ))·p(I0(θ),X0(θ), t)+O(ε2)

= 1 + εZ(θ) · p(I0(θ),X0(θ), t) +O(ε2), (10)

where we defined the phase sensitivity function

Z(θ) = ∇Θ(I0(θ),X0(θ)) (11)

characterizing the linear response property of the oscillator phase to perturbations. We

consider that the phase evolves as a solution of a suitably regularized, multivalued system of

Eq. (10), such as the Filippov system [37, 38]. (We do not consider impulsive perturbation

at the moment of switching in this study, which requires special treatment.) The ideas

underlying the phase approximation Eq. (10) and some notes on the notion of the solution

of it are given in Appendix E.

Thus, once we obtain the phase sensitivity function Z(θ), the dynamics of a weakly per-

turbed hybrid limit cycle described by Eq. (9) can be reduced to a single phase equation (10).

Using the reduced phase equation, we can analyze various synchronization dynamics of hy-

brid limit cycles in detail. As we derive in Appendix F, Z(θ) is given by a periodic solution

to the following adjoint system:

Ż(t) = −A†(k, t)Z(t) for t (mod T ) ∈ (τk−1(s
∗), τk(s

∗)), (12)

Z(t) = (Ck)
†Z(t+ 0) at t (mod T ) = τk(s

∗), (13)

which is normalized to satisfy Eq. (8) on χ, that is,

Z(t) · F (I0(t),X0(t)) = 1. (14)

Here, A(k, t) = DF (k,X0(t)) is the Jacobi matrix of F (k,X) estimated on χ, and Ck is a

“saltation matrix” [9] given by

Ck = DΦk(X0(τk(s
∗)))

−
[
DΦk(X0(τk(s

∗)))Ẋ0(τk(s
∗))−Ẋ0(τk(s

∗)+0)
]
⊗
(

∇Lk(X0(τk(s
∗)))

∇Lk(X0(τk(s∗))) · Ẋ0(τk(s∗))

)
,

(15)
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where DΦk is the Jacobi matrix of Φk and ⊗ represents a tensor product of two vectors.

Ck represents expansion or contraction of small deviations from χ by the mapping Φk at

the switching t = τk(s
∗), where the second term on the right-hand side takes into account

the shift in the switching time caused by the perturbation. In general, the above adjoint

system can be integrated only backward in time because Ck can be singular.

In numerical calculations, we integrate these adjoint equations backward in time with

occasional renormalization of Z(t) so that Eq. (14) is satisfied. Then, reflecting the linear

stability of χ, all modes except the neutrally stable periodic solution decay and Z(θ) is

eventually obtained. This is a standard procedure for calculating Z(θ) of ordinary limit

cycles and is called the adjoint method after Ermentrout [24].

IV. EXAMPLES

As an application of the phase reduction theory for hybrid limit cycles that we developed,

we analyze injection locking of hybrid limit-cycle oscillators, i.e., synchronization of the

oscillator to a periodic external signal [18]. We apply a weak periodic signal p(t) = p(t+Text)

to the hybrid limit cycle described by Eqs. (1) and (2). Using the phase reduction theory,

the state of the perturbed oscillator, described by Eq. (9), can be approximately represented

by its phase θ, which obeys the reduced phase equation (10).

To analyze the synchronization dynamics, we consider the phase difference ψ between the

oscillator and the periodic signal,

ψ = θ − T

Text
t, (16)

where θ is the phase of the hybrid limit cycle, T is the natural period of the hybrid limit

cycle, and Text is the period of the external periodic signal. The frequency mismatch between

the oscillator and the signal is given by ε∆ = 1−T/Text. As shown in Appendix G, using the

standard averaging approximation for weakly perturbed oscillators [18, 19, 24], the dynamics

of ψ can be derived from the reduced phase equation (10) as

ψ̇ = ε[∆ + Γ(ψ)] (17)

where the T -periodic phase coupling function Γ(ψ) is given by

Γ(ψ) =
1

Text

∫ Text

0

Z

(
T

Text
t+ ψ

)
· p(t)dt. (18)
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As mentioned previously for the phase equation, we consider that the phase difference evolves

as a solution of Eq. (17) in a regularized sense, if necessary. See [39] for the averaging

approximation in non-autonomous systems with jumps and multivalued righthand sides.

Synchronization dynamics of the oscillator can easily be understood from the phase cou-

pling function Γ(ψ). If Eq. (17) has a stable fixed point, the phase difference ψ converges

to this point and the oscillator is phase-locked to the periodic signal. If there exist multiple

stable fixed points, the oscillator can be phase-locked to the periodic signal at multiple phase

differences depending on the initial condition. If Eq. (17) does not have a fixed point, ψ

continues to increase or decrease and phase locking does not occur.

A. Glued Stuart-Landau oscillator

As the first example, we introduce an analytically tractable model of a hybrid limit-cycle

oscillator, which is constructed by gluing two Stuart-Landau oscillators (normal forms of

the supercritical Hopf bifurcation [40]) of different amplitudes. The glued Stuart-Landau

oscillator has two discrete states I ∈ {1, 2} and a two-dimensional continuous state variable

X(t) = (x(t), y(t))†, where † denotes the transpose of a matrix. The dynamics is described

by

F (1,X) =

 x− ay − (x2 + y2)(x− by)

ax+ y − (x2 + y2)(bx+ y)

 ,

(19)

F (2,X) =

 x− ay − α2(x2 + y2)(x− by)

ax+ y − α2(x2 + y2)(bx+ y)

 ,

(20)

Φ1(X) =

 x

α
y

 , Φ2(X) =

 αx

y

 ,

(21)

Π1,2 = {X | (L1(X) = 0) ∩ (x ≤ 0)}, Π2,1 = {X | (L2(X) = 0) ∩ (x ≥ 0)},

L1(X) = y, L2(X) = −y, (22)
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and the parameters are set as a = 2π + 1, b = 1 and α = 2. With these parameter values,

this system has a stable limit cycle of period T = 1. We take the origin of the phase θ = 0

at I = 1 and X = (0, 1)†, i.e., Θ(1, (0, 1)†) = 0.

The periodic orbit χ is depicted on R2 (Fig. 2(a)), which satisfies

(I0(θ),X0(θ)) = (1, (− sin(2πθ), cos(2πθ))) (23)

for θ ∈ D1, and

(I0(θ),X0(θ)) = (2, (−0.5 sin(2πθ), 0.5 cos(2πθ))) (24)

for θ ∈ D2, where D1 = [0, 0.25) ∪ [0.75, 1) and D2 = [0.25, 0.75) are domains of the phase.

The phase sensitivity function can be obtained by solving the adjoint linear problem

analytically and is given by

Z(θ) = − 1

2π
(cos 2πθ − sin 2πθ, sin 2πθ + cos 2πθ)† (25)

for θ ∈ D1, and

Z(θ) = − 1

π
(cos 2πθ − sin 2πθ, sin 2πθ + cos 2πθ)† (26)

for θ ∈ D2.

For the waveform of the periodic injection signal p(t) = (p1(t), p2(t))
†, we consider rect-

angular waves:

p1(t) = −c (if t mod Text ∈ D), 0 (otherwise), (27)

and

p2(t) = 0 for all t, (28)

where the constant c > 0 is set so that the squared mean of the injection signal becomes

unity, i.e., 〈p2〉 ≡ 1
Text

∫ Text
0

p2(t)dt = 1 unless otherwise specified, and D is the time domain

where the forcing takes place.

In Figs. 2(b) and 2(c), the phase sensitivity function Z(θ) obtained by analytically solving

the proposed adjoint systems is compared with the result of the direct numerical simulation

(see Appendix H for details). The results are in good agreement and show the validity of
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FIG. 2. (color online) The glued Stuart-Landau oscillator. (a) The periodic orbit of a glued Stuart-

Landau oscillator. The phase of the oscillator is shown in color code. The arrows represent the

direction of the time evolution of the continuous state. The broken arrows indicate jumps. (b),(c)

The x and y components of the phase sensitivity function Z(θ) obtained by the direct method

(circles) and by the proposed adjoint method (lines).

the proposed adjoint method. The discontinuities in Z(θ) are characteristic of a hybrid

limit-cycle oscillator.

Figure 3(a) displays the averaged dynamics of the phase difference ψ for several initial

values, where the result of phase reduction is compared with direct numerical simulations. It

can be seen that the asymptotic phase differences and their dependence on initial conditions

are well predicted from the phase coupling function Γ(ψ). Figure 3(b) shows the boundaries

of the region where the injection locking takes place, called the Arnold tongue [19]. Results of

the numerical simulation also agree well with the analytical prediction by the phase reduction

theory. Thus, the injection locking of hybrid limit-cycle oscillators by weak periodic input

can be theoretically predicted by using Z(θ) obtained by the adjoint method.

Here, we emphasize one peculiar property of the hybrid oscillator. For smooth oscillators,

the period of the phase slipping near the critical point generally obeys the inverse square-root

scaling law, εTslip ∼ |∆ −∆c|−1/2, where ∆c is the critical value of ∆ [18, 41], because the

phase coupling function Γ(ψ) generally has quadratic maximum and minimum. In contrast,

as shown in Fig. 3(c), the hybrid oscillator with discontinuous Z(θ) can possess non-smooth

Γ(ψ) with sharp non-quadratic maximum or minimum when subjected to impulsive signals.

For such Γ(ψ), we can show that the period of phase slipping Tslip obeys

εTslip ∼ − ln |∆−∆c| (29)
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FIG. 3. (color online). Phase reduction analysis of the injection locking of a glued Stuart-Landau

oscillator. (a) Dynamics of the phase difference ψ. Time derivative ψ̇ plotted as a function of ψ,

where three stable fixed points (circles) coexist (top panel). Trajectories of ψ from 50 different

initial states obtained by direct numerical simulation of the original model, converging to the stable

fixed points (bottom panel). The parameters are set as ε = 0.1, Text/T = 1.002, and the domain

where p1(t) takes a non-zero value is D = {t | 0 ≤ t ≤ Text/64 ∪ 3Text/8 ≤ t ≤ 25Text/64}. (b) The

Arnold tongue showing the region where phase locking takes place. Here D = {t | 0 ≤ t ≤ Text/2}.

(c) The phase coupling function with sharp corners (top panel) and the period of the phase slipping

plotted in log-linear scales (bottom panel). Here ε = 0.01 and D = {t | 0 ≤ t ≤ Text/128}. (d)

Dynamics of the phase difference ψ for the mild, non-impulsive (yellow line) and impulsive (black

line) signals. Time derivative ψ̇ vs. ψ with stable fixed points (circles) for the different frequencies of

the input for each case (top panel). Trajectories of ψ from 10 different initial states for Text/T = 1.0

(middle panel) and for Text/T = 1.005 (bottom panel). The parameters are set as follows: ε = 0.01,

and D = {t | |t− Text/4| ≤ τText/2 ∪ |t− 3Text/4| ≤ τText/2}.

12



at the leading order in the vicinity of the critical value ∆c, where ∆c + Γ(ψ∗) = 0 and Γ(ψ∗)

is the extremum at the corner of Γ(ψ), and the semiderivatives Γ′(ψ∗−0) and Γ′(ψ∗+0) are

nonzero (see Appendix I for the derivation). Since non-smooth corners in Γ(ψ) cannot exist

in smooth systems, singular scaling law of this kind is characteristic of hybrid oscillators.

In Fig. 3(d), the transient dynamics of ψ for two different types of rectangular wave

input, one with a low-duty ratio (impulsive) τ = 1/128 and the other with a mediate one

(mild, non-impulsive) τ = 1/8, is compared. Here the magnitude c of the input signal is

normalized so that the uniform norm of Γ becomes unity, i.e., maxψ |Γ(ψ)| = 1, for each

case. For the impulsive case, ψ approaches the stable phase difference ψ0 with a nonzero

angle, while in the non-impulsive case, the approach is tangential. This implies that the

decay of the deviation from ψ0 is faster than exponential in the impulsive case and the time

required to establish entrainment is drastically shorter. Moreover, variations in the input

period only slightly changes ψ0 for the impulsive input, while ψ0 shows significant change

for the non-impulsive input. This ultrafast entrainment and robustness of the stable phase

difference can be attributed to the existence of the region Ds where Γ(ψ) is extremely steep.

Note that the discontinuity in Z(θ) is necessary for the existence of such a region Ds,

because Γ(ψ) is given by the convolution (18) of Z(θ) and p(t); when the input is an ideal

impulse, the slope of Γ(ψ) in Ds can be infinite. Therefore, these interesting synchronization

properties are distinctive feature of the hybrid oscillators driven by impulsive periodic input.

Such a type of very fast (or finite-time) synchronization has been studied for simple neuron

models with discontinuity whose Z(θ) can be obtained analytically, as well as in some fast-

slow models in the fast-relaxation limit [33, 42, 43]. Our argument based on the phase

reduction theory for hybrid limit cycles is general and can be applied to high-dimensional

systems where the non-smoothness is not the result of adiabatic approximation.

B. Passive bipedal walker

Next, we analyze a physical example of hybrid limit-cycle oscillator, namely, a two-link

model of a passive walker walking down a slope [44], proposed as a simple model of biped

locomotion. Figure 4(a) shows a schematic diagram of the model, where g is the gravitational

acceleration, l is the length of the legs, M and m are the masses of the hip and the foot,

respectively, φ1 and φ2 specify the angles of the swing and support legs, γ is the angle of
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the slope, and τ is a periodic torque applied to the ankle of the support leg. It is assumed

that m/M = 0, i.e., the hip mass is much larger than the foot mass, the tip of the support

leg does not slip along the ground, and the collision of the foot with the ground is perfectly

inelastic (no slip and no bounce). This model exhibits a stable limit-cycle oscillation for

appropriate parameter values that corresponds to periodic movements of the legs. This is a

four dimensional hybrid dynamical system with impacts, hence it cannot be dealt with by

the conventional methods [10, 33, 34] mentioned above.

The model has a one discrete state I ∈ {1} and a continuous state variable X(t) =

(φ1(t), φ̇1(t), φ2(t), φ̇2(t))
†. The dynamics is described by

F (1,X) =


φ̇1

sin (φ1 − γ)

φ̇2

sin (φ1 − γ) + φ̇2
1 sinφ2 − cos (φ1 − γ) sinφ2

 ,

(30)

Φ1(X) =


−φ1

φ̇1 cos 2φ1

−2φ1

φ̇1 cos 2φ1(1− cos 2φ1)

 ,

(31)

Π1,1 = {X | (L((1, 1),X) = 0) ∩ (φ2 < −δ)},

L1(X) = 2φ1 − φ2, (32)

where we have rescaled time by
√
l/g, and δ > 0 is a small positive constant (we set δ = 0.1),

which is introduced to avoid foot scuffing (contact of the swing leg with the ground in the

middle of the swing). The parameter γ is set as γ = 0.009. Note that Eq. (30) is an

equation of motion representing continuous dynamics of the walker during the single-leg

support phase, in which the walker stands on the support leg and moves the swing leg,

where φ1 and φ2 are the angular coordinates of the swing and support legs. See Ref. [45] for

a detailed derivation of the above type of equations in nearly the same setting. Note also

that the main effect of the inclined ground to the walking dynamics, i.e., the ground reaction

force, is already included in the dynamical model. This effect is not considered a perturbation
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and therefore need not be weak, as long as the model exhibits stable rhythmic walking. If

there exist additional small effects from the flat inclined ground, such as slight up and down,

they can be incorporated into the reduced phase model perturbatively. Finally, although

the motion of Eq. (30) during the single-leg support phase appears to be conservative, the

collision of the leg with the ground, described Eq. (31) and Eq. (32), is perfectly inelastic

(plastic), so that the impact of the leg with nonzero velocity relative to the ground causes

energy dissipation. This energy loss is compensated by the gravitational potential energy,

which is supplied to the system at each moment of the collision of the leg with the ground.

Thus, a stable limit cycle can arise in this hybrid dynamical system.

Figure 4(b) shows the stable periodic orbit of the model. Using the shooting method

developed in [35], a point on χ, which we define as the origin of the phase, and the period

T of the orbit can be obtained as

s∗ = (1, (0.009000,−0.05869,−0.0009629,−0.3432)†), T = 3.882. (33)

Figure 4(c) shows the phase sensitivity function Z(θ) = (Zφ1(θ), Zφ̇1(θ), Zφ2(θ), Zφ̇2(θ))
†

with discontinuity in the middle, which is obtained numerically by the proposed adjoint

method. The result agrees well with the one obtained by the direct method, thus the

proposed adjoint method also works nicely for this model.

Using the reduced phase equation, we study the injection locking of the passive walker to

the periodic ankle torque actuation. That is, we apply a weak periodic torque to the walker,

where the frequency of the torque is close to that of the natural frequency of the walker,

and analyze whether the walker synchronizes with the applied weak torque. We introduce

periodic actuation of the ankle torque as the injection signal p(t) = (0, τ(t), 0, 0)†, where

τ(t) = ce−0.5[t (mod Text)]/Text sin (4πt/Text). (34)

The magnitude c of the waveform is determined to satisfy the normalization condition 〈p2〉 =

1. As in the case of the glued Stuart-Landau oscillator, we can obtain the phase coupling

function Γ(ψ) from the phase sensitivity function Z(θ) and the injected periodic signal p(t),

and predict the dynamics of the phase difference ψ between the oscillator and the signal.

Figure 5(a) shows the dynamics of ψ. The reduced phase equation predicts that there

are two stable fixed points of ψ, and direct numerical simulations of the original model from

different initial conditions confirm that the phase difference of the passive walker is actually
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FIG. 4. (color online). Two-link model of a passive walker walking down a slope. (a) Schematic of

the model. (b) The periodic orbit of the model. The orbit discontinuously jumps when the swing

and support leg alternate with each other. The arrows represent the direction of the time evolution

of the continuous state. The broken arrows indicate jumps. The phase is shown in color code. (c)

Four components of the phase sensitivity functionZ(θ) = (Zφ1(θ), Zφ̇1(θ), Zφ2(θ), Zφ̇2(θ))† obtained

by the direct method (circles) and by the proposed adjoint method (lines).

attracted to either of the stable fixed points. Figure 5(b) plots the Arnold tongue showing

the region where the phase locking of the passive walker to the injected signal takes place.

The results obtained by the phase reduction theory agree well with the results obtained by

direct numerical simulations of the original model.

Thus, the proposed phase reduction theory is also useful in analyzing realistic physical

systems, even when the hybrid limit-cycle oscillator has a high-dimensional continuous state.
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FIG. 5. (color online). Phase reduction analysis of the injection locking of the two-link model of the

passive walker. (a) Dynamics of the phase difference ψ (line). ψ̇ vs. ψ, where stable fixed points

are represented by circles (top panel). Trajectories of ψ from 50 different initial states obtained

by direct numerical simulation of the original model (bottom panel). The parameters are set as

ε = 0.00253 and Text/T = 1.0005. (b) The Arnold tongue obtained by the phase reduction and by

direct numerical simulation of the original model.

V. SUMMARY

We formulated a phase reduction theory for a general class of hybrid limit-cycle oscillators

and derived the adjoint equation for the phase sensitivity function. The proposed theory

provides precise phase sensitivity functions and the derived phase equation accurately pre-

dicts the injection locking properties of hybrid oscillators. We illustrated synchronization

properties characteristic to hybrid oscillators, such as ultrafast entrainment to periodic sig-

nal and negative logarithmic scaling at the synchronization transition, and explained them

by using the reduced phase equation with discontinuous phase sensitivity functions.

The phase reduction theory developed in this study would serve as a powerful tool for

investigating synchronization phenomena in complex non-smooth systems and for finding

various applications in controlling distributed interacting nonlinear oscillators [14–16].
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Appendix A: Assumptions for the periodic solution

In this section, we introduce the assumptions that are necessary for the periodic solution

to be piecewise continuously differentiable with respect to the initial condition [36]. Hy-

brid dynamical systems can exhibit pathological behaviors, which do not occur in smooth

dynamical systems, such as the grazing, livelock, sliding, and Zeno phenomena owing to

the effect of discrete switching [9, 46]. The grazing phenomenon [9] occurs when the orbit

becomes tangent to the switching surface. This condition can be written as

∇L((i, j),X0(t))|L=0 · Ẋ0(t) = 0, (A1)

where ∇L : G × RN → RN is the gradient of L with respect to X and · denotes inner

product of vectors. The livelock, sliding, and Zeno phenomena [46] can arise when the

points X0(τk(s
∗) + 0), k ∈ Z≥0 are allowed to be accumulation points of the switching

surfaces. These conditions can lead to infinite sensitivity to the initial conditions [47]. In

this study, we do not consider such pathological situations, namely, we assume that (C1) the

orbit is always transversal to the switching plane and that (C2) each continuous state right

after the discrete state transition has a neighborhood that is disjoint from the switching

surfaces.

Appendix B: Linear stability of the hybrid limit cycle

In this section, we formalize the linear stability of the periodic solution. Let ξα (α =

1, ..., N) be the αth initial-condition sensitivity vector [35] with respect to an initial state

s∗ = (I0(0),X0(0)) on χ at t = 0, defined as

ξα(t)=lim
ε→0

(
X(t; (I0(0),X0(0) + εeα))−X0(t)

ε

)
. (B1)
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Here, the second argument of X(t; ·) represents an initial state that is slightly perturbed

in the αth direction (eα is the αth unit vector) from (I0(0),X0(0)) on χ. We introduce a

sensitivity matrix Ξ = (ξ1, ξ2, · · · , ξN) ∈ RN×N as the collection of sensitivity vectors in all

directions. Note that

Ξ(0) = (e1, ..., eN) = I (B2)

where I is the identity matrix, because X(0; (I0(0),X0(0) + εeα)) = X0(0) + εeα.

In Refs. [35, 36], the linear variational system for Ξ has been derived as

Ξ̇(t) = A(k, t)Ξ(t) for t (mod T ) ∈ (τk−1(s
∗), τk(s

∗)), (B3)

Ξ(t+ 0) = CkΞ(t) at t (mod T ) = τk(s
∗), (B4)

where A(k, t) = DF (k,X0(t)) is the Jacobi matrix of F (k,X) estimated on χ, and Ck is

the so-called saltation matrix [9] (Eq. (15) in the main article).

We define a monodromy matrix M from the sensitivity matrix Ξ(t) as M = Ξ(T ). If

this M has one simple eigenvalue equal to 1 and all other eigenvalues lie strictly inside the

unit circle on the complex plane, the periodic solution is linearly stable [35]. We call such a

stable isolated periodic solution a hybrid limit cycle. It can be shown that the eigenvalues

and their algebraic multiplicities of monodromy matrices do not depend on the choice of the

initial state. We can also consider initial-condition sensitivity vectors with respect to the

state s0(θ) = (I0(θ),X0(θ)) on the limit cycle χ, instead of s∗ = (I0(0),X0(0)), as

ξα(t; θ) = lim
ε→0

(
X(t; (I0(θ),X0(θ)+εeα))−X0(t+θ)

ε

)
. (B5)

We denote by a matrix Ξ(t; θ) = (ξ1(t; θ), ξ2(t; θ), · · · , ξN(t; θ)) ∈ RN×N the collection of

the sensitivity vectors in all directions, and introduce a monodromy matrix M(θ) = Ξ(T ; θ)

of the linear variational system, which satisfies

Ξ̇(t; θ) = A(k, t+ θ)Ξ(t; θ) for t+ θ (mod T ) ∈ (τk−1(s
∗), τk(s

∗)), (B6)

Ξ(t+0; θ)=CkΞ(t; θ) at t+θ (mod T )=τk(s
∗), (B7)

Ξ(0; θ) = I. (B8)
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There exist a unique state transition matrix Hk(t, s) of the linear variational system (I1.3)

satisfying

Ξ(t; θ) = Hk(t+ θ, s+ θ) Ξ(s; θ) for t+ θ, s+ θ ∈ [τk−1(s
∗) + nT, τk(s

∗) + nT ),

(B9)

which is a solution to

Ḣk(t, s) = A(k, t) Hk(t, s) for t, s ∈ [τk−1(s
∗) + nT, τk(s

∗) + nT ], (B10)

with the initial condition Hk(s, s) = I.

Suppose that θ is in the interval [τm∗−1(s
∗), τm∗(s∗)), where m∗ ∈M0 ∪ {m0 + 1}. Using

Hk(t, s), the monodromy matrix can be expressed as M(0) = M1M2, where

M1 = H1(T, τm0(s
∗))

( m0∏+

l=m∗

Hl+1(τl+1(s
∗), τl(s

∗))Cl

)
·Hm∗(τm∗(s∗), θ), (B11)

and

M2 = Hm∗(θ, τm∗−1(s
∗)) ·

m∗−1∏+

k=1

CkHk(τk(s
∗), τk−1(s

∗)). (B12)

Here, we denote by
∏+n

i=1
Yi = YnYn−1 · · ·Y2Y1 the ordered product of matrices. With

these matrices M1 and M2, one can also show that M(θ) = M2M1, where Hk(t, s) =

Hk(t + nT, s + nT ), which follows from A(k, t) = A(k, t + nT ), is used. Therefore, M(0)

and M(θ) has the same set of eigenvalues with the same algebraic multiplicities, because

the Jordan blocks with nonzero eigenvalues of the products of the matrices AB and BA are

identical [48, Th. 3.2.11.1.].

Appendix C: Asymptotic equivalence of initial conditions in hybrid dynamical sys-

tems

In this section, we introduce an asymptotic equivalence of the initial conditions that

we use for defining the isochrons, which is different from the one used in smooth systems.

Suppose X1(t) and X2(t) are the continuous parts of the solutions to a system with initial

conditions s1 and s2, respectively. In smooth systems, the asymptotic equivalence relation of

the initial conditions s1 and s2 is defined as the convergence of the errorX1(t)−X2(t) in the

20



Euclidean topology. That is, if limt→+∞ |X1(t)−X2(t)| = 0 where |·| is the Euclidean norm,

then s1 and s2 are asymptotically equivalent. In hybrid dynamical systems, the moments

of switching of the two solutions for these initial conditions generally do not coincide in a

finite time. Hence, the Euclidean norm of the error of the continuous part |X1(t)−X2(t)|

causes some kind of “peaking behavior” [49]; |X1(t)−X2(t)| can be larger than a constant

c > 0 (of order |Φk(X)−X|) for some t ∈ [t∗,∞] for an arbitrarily large t∗ > 0 owing to the

continuous state jumps. This violates the definition of convergence in Euclidean topology.

Therefore, we need to consider convergence in some other suitable topology to define the

asymptotic equivalence notion in hybrid dynamical systems.

Various topologies suitable for hybrid dynamical systems have been proposed in the liter-

ature, such as the Skorohod topology [50] originally designed as a tool to analyze stochastic

processes, the topology of graphical convergence that is based on set-valued analysis [51], and

the quotient topology generated on the hybrifold [52], which is, roughly speaking, the mani-

fold constructed by identifying the switching surface Πk,k+1 with its image of the transition

function Φk.

In this study, we adopt an asymptotic equivalence that is based on convergence in B-

topology [36], which is defined as follows: if for any ε > 0, there exist T ∗ = T ∗(ε) > 0

such that, in the time domain [T ∗,+∞), every moment of switching of the solution X2(t)

lies in some ε-neighborhood of the moment of switching of the solution X1(t), and for all

t ∈ [T ∗,+∞), which are outside the ε-neighborhoods of the moments of switching of X1(t),

|X1(t) − X2(t)| < ε holds, then we call the initial conditions s1 and s2 asymptotically

equivalent. The benefit of this definition is intuitively clear; the error |X1(t) −X2(t)| is

evaluated outside of the neighborhoods of the points of discontinuity, and thus we can avoid

the effect of the peaking behavior, and the error that occurs at the moment of switching is

guaranteed to disappear.

Appendix D: Some properties of the isochron and the phase function

Using the following equivalence relation (Eq. (6) in the main article)

Θ(s1) = Θ(s2) = θ, (D1)
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we can introduce the “conditional” isochron Wk(θ) = {X | Θ(k,X) = θ}, i.e., the set of

continuous states sharing the same phase value θ for each discrete state k ∈ M0. We can

then define the isochron of χ with phase θ as the union W (θ) =
⋃m0

k=1 (k,Wk(θ)). We note

that the notion of the isochron in hybrid dynamical systems has been proposed in [53], but

the phase dynamics of weakly perturbed hybrid oscillators has not been discussed so far.

We can show that, in a domain Ũ ≡ A\
⋃m0

k=1 (k,Πk,k+1), where A ⊂ U is a neighborhood

of χ such that the solution starting from the point in A is piecewise continuously diffentiable

with respect to the initial condition, the phase function Θ is totally differentiable with respect

to the continuous state and that it is one-sided differentiable on the switching surfaces as

follows.

We consider two slightly different initial conditions, s1 and s2 = s1 + (0, εh), where

s1, s2 ∈ A, 0 < ε � 1 and h ∈ RN . Note that, when s1 ∈
⋃m0

k=1 (k,Πk,k+1), h should be

taken from the subset of RN whose elements point in the opposite direction as F (s1) in

the tangent space [57] of the switching boundary. From the differentiability with respect to

initial conditions, the following relation holds for all t outside the ε-neighborhoods of the

moments of switching,

X2(t) = X1(t) + εΞs1(t)h+O(ε2), (D2)

where X1(t) and X2(t) are the continuous part of the solutions with the initial conditions

s1 and s2, respectively, and Ξs1(t) ∈ RN×N denotes the initial condition sensitivity matrix

with the initial state s1. Since s1 and s2 are taken from A, which is a subset of the basin of

attraction U of the hybrid limit cycle χ, the solutions X1,X2 relax to χ, which we denote

as X0,1,X0,2 in this section. One can easily see that the following relation holds:

X0,2(t)=X0,1(t)+

∫ θ(s2)−θ(s1)

0

F (k,X0,1(t+t
′))dt′. (D3)

Since X0,1(t) is not an equilibrium, we can assume that the first entry F1(k,X0,1(t))

of F (k,X0,1(t)) is nonzero without loss of generality and denote its absolute value as

|F1(k,X0,1(t))| = d. Considering the continuity of the continuous part of the solution with

respect to the initial condition and the continuity of the vector field F (k,X) with respect

to the continuous variable X, there exists ε′ > 0 such that for any ε < ε′, the inequality

|F1(k,X0,1(t+ t′))| ≥ d/2 holds for t′ ∈ [0, θ(s2)− θ(s1)]. Hence we can obtain the following
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inequality for ε < ε′:

|X0,2(t)−X0,1(t)| =

∣∣∣∣∣
∫ θ(s2)−θ(s1)

0

F (k,X0,1(t+ t′))dt′

∣∣∣∣∣
= |d||θ(s2)− θ(s1)| ≥

d

2
|θ(s2)− θ(s1)| (D4)

where d is a constant vector obtained by applying the mean value theorem to each entry of

F (k,X). From Eqs. (D2) and (D4), we can show the continuity of θ as follows:

lim
s2→s1

|θ(s2)−θ(s1)|≤ lim
ε→0

(∣∣∣∣2εd Ξs1(t)h

∣∣∣∣+O(ε2)

)
=0. (D5)

The continuity assures that θ(s2)− θ(s1) is O(ε). Therefore, we can restate Eq. (D3) as

X0,2(t) = X0,1(t) + (θ(s2)− θ(s1))F (k,X0,1(t)) +O(ε2). (D6)

From Eqs. (D2) and (D6), we can obtain

θ(s2)−θ(s1)=
εF †(k,X0,1(t))Ξs1(t)h

F †(k,X0,1(t))F (k,X0,1(t))
+O(ε2). (D7)

Now we consider the asymptotic property of Ξs1(t). The assumption (C2) in Appendix A

assures that for sufficiently small ε, there exists t∗ such that the discrete states of s1(t∗+nT )

and s2(t∗ + nT ) are the same and invariant for all n ∈ Z≥0 for any h. We define a time-T

map P : RN → RN as

P (X(t)) = X(t+ T ), (D8)

and its n-fold composition as P n. By a similar argument to the proof of the Lemma in

Appendix A in [22], we can show that the sequences {P n(X1(t∗))} and {DP n(X1(t∗))} are

convergent and that limn→∞P
n(X1(t∗)) = X0(θ∗) and limn→∞ (DP ) ◦ (P n−1(X1(t∗)) =

M(θ∗). Here, θ∗ is a unique phase value that depends on X1(t∗), and the monodromy

matrix M(θ∗) is defined in Appendix B.

Let us define Q(t∗) ≡ limn→∞DP
n(X1(t∗)). One can easily see that M(θ∗)Q(t∗) =

Q(t∗). Using this relation and the fact shown in [35],

lim
n→∞

Mn(θ∗) = F (I0(θ∗),X0(θ∗))⊗ v(θ∗), (D9)
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where v(θ∗) ∈ RN is a left eigenvector of M(θ∗) corresponding to the eigenvalue unity, one

can obtain

lim
n→∞

Ξs1(t∗ + nT ) = Q(t∗)Ξs1(t∗)

= lim
n→∞

Mn(θ∗)Q(t∗)Ξs1(t∗)

= F (I0(θ∗),X0(θ∗))⊗ v(θ∗)Q(t∗)Ξs1(t∗). (D10)

Note that v(θ∗) also satisfies the condition v(θ∗) ·F (I0(θ∗),X0(θ∗)) = 1, hence, in fact, it is

the phase sensitivity function evaluated at θ = θ∗ as shown in Appendix F.

Using v(θ∗), Q(θ∗) and Ξs1(θ∗), we can rewrite Eq. (D7) as

θ(s2)− θ(s1) = εv†(θ∗)Q(t∗)Ξs1(t∗)h+O(ε2) = εv†(θ∗)R(θ∗; s1)h+O(ε2), (D11)

where R(θ∗; s1) ≡ Q(t∗)Ξs1(t∗) is introduced to emphasize that it depends only on θ∗ and

s1. As shown below, v†(θ∗)R(θ∗; s1) on the right-hand side does not depend on the choice of

θ∗. One can see that R(θ+θ′; s1) = Ξ(θ′; θ)R(θ; s1) and that v(θ) = Ψ(−θ′; θ+θ′)v(θ+θ′),

where Ξ(·; θ) and Ψ(·; θ) are defined in Appendix B and F, respectively. The latter equality

follows from the fact shown in Appendix F that v(θ) is a periodic solution of the adjoint

linear system Eq. (F13, F14). Similarly to Eq. (F7), we can show Ξ(θ′; θ) = Ψ†(−θ′; θ+ θ′).

Thus,

v†(θ+θ′)R(θ+θ′; s1)=v†(θ+θ′)Ξ(θ′; θ)R(θ; s1)

= (Ψ(−θ′; θ + θ′)v(θ + θ′))
†
R(θ; s1)

= v†(θ)R(θ; s1), (D12)

and we finally obtain

lim
s2→s1

|θ(s2)− θ(s1)− S†(s1)(X2(0)−X1(0))|
|X2(0)−X1(0)|

= lim
ε→0

O(ε) = 0, (D13)

where we defined S†(s1) ≡ v†(θ∗)R(θ∗; s1). This concludes the proof of the total differen-

tiability (and one-sided differentiability at switching boundaries) of the phase.

The definition of the phase guarantees that the relation (Eq. (7) in the main article)

θ̇(t) = Θ̇(I(t),X(t)) = ∇Θ(I(t),X(t)) · F (I(t),X(t)) = 1 (D14)

holds for an unperturbed oscillator for almost all t (excluding the set of the moments of

switching, which has zero Lebesgue measure) and for X(t) ∈ Ũ . From this relation, ∇Θ is
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nonzero everywhere on in Ũ . Therefore, by using the implicit function theorem, we can show

that each connected component of the subset of the conditional isochron W̃k(θ) = {X |X ∈

Wk(θ) ∩ (k,X) ∈ Ũ} is an (N − 1)-dimensional smooth submanifold embedded in RN .

Appendix E: Approximation of the phase dynamics

Using the chain rule, the phase dynamics of the weakly perturbed hybrid oscillator de-

scribed by Eq. (8) in the main article is given by

θ̇(t) = Θ̇(I(t),X(t)) = 1 + ε∇Θ(I(t),X(t)) · p(I(t),X(t), t). (E1)

This is still not a closed equation in the phase θ because the map Θ : U → T1 is not

injective. To obtain a closed equation, we assume the magnitude ε of the perturbation to

be sufficiently small and approximate ∇Θ(I(t),X(t)) and p(I(t),X(t), t) by replacing I(t)

with I0(θ(t)) and X(t) with X0(θ(t)) [18]. We can then obtain the following approximate

phase equation closed in θ at the lowest order:

θ̇(t) = Θ̇(I(t),X(t))

= 1+ε∇Θ(I0(θ),X0(θ)) · p(I0(θ),X0(θ), t)+O(ε2)

= 1 + εZ(θ) · p(I0(θ),X0(θ), t) +O(ε2), (E2)

where we defined the phase sensitivity function Z(θ) = ∇Θ(I0(θ),X0(θ)) characterizing the

linear response property of the oscillator phase to weak external perturbations.

We interpret Eq. (E2) as a suitably regularized, multivalued system, such as the Filip-

pov system [37, 38], since some important solutions can not be obtained in the classical

Carathéodory sense [37]. For example, a stable stationary solution at the point of discon-

tinuity of the RHS of Eq. (E2) is, in general, not a Carathéodory solution, because it is

required to satisfy Eq. (E2) for almost all t by definition, but the desired stationary solution

may not satisfy Eq. (E2) for all t.

When the perturbation p is locally bounded, we can introduce the Filippov solution to

Eq. (E2) as an absolutely continuous map θ(t) : R → T1, which satisfies the following

differential inclusion:

θ̇(t) ∈ 1 + εG(θ, t) (E3)
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for almost all t, where G(θ, t) is a set of closed convex combinations of Z(θ − 0) · p(I0(θ −

0),X0(θ − 0), t) and Z(θ + 0) · p(I0(θ + 0),X0(θ + 0), t). Obviously, the Filippov system

Eq. (E3) allows stationary solutions at the point of discontinuity described above. Note

that the above Filippov regularization of the system can also produce physically meaning-

less solutions. For example, the Filippov system admits an evidently unfeasible, unstable

stationary solution staying at the point of discontinuity of the RHS of Eq. (E2). This kind

of solution, called a parasite solution [54], should be carefully omitted. See [37, 38] for

sufficient conditions for the existence and uniqueness of solution to the Filippov system.

When the perturbation is not locally bounded, for instance, when it includes the Dirac

delta function, we need to consider a physically relevant solution, which is generally not

absolutely continuous, by employing suitable formulations such as impulse differential inclu-

sions [55] or measure driven differential inclusions [56]. Though we do not consider such a

special situation in this study, if an impulsive input is applied at the moment of switching

of the discrete states, it requires a special attention because the choice of the value of the

integrand at the atom of the driving measure crucially affects the solution.

Consider the case where an impulsive input p(·, ·, t) = cδ(t − τ), where δ(·) is Dirac’s

delta function, is applied at the moment of switching t = τ . If the impulsive input is applied

when the state (I0(θ(τ)),X0(θ(τ))) is on the switching plane, there are two possible cases:

(a) (∇LI0(θ(τ))(X0(θ(τ))) · c)(∇LI0(θ(τ))(X0(θ(τ))) · Ẋ0(θ(τ))) > 0, i.e., the perturbation

and the vector field point in the same direction in the tangent space [57] of the switching

boundary or (b) otherwise. In the case (a), the one-sided derivative of the phase function

Θ in the direction of c is undefined. If we redefine the hybrid automaton Eq. (1-3) in

the main article, for example, by replacing the switching surface with the switching region

Πij = {X | L((i, j),X) ≤ 0}, we can introduce a one-sided derivative of Θ in the direction

of c. However, in general, it does not coincide with the phase sensitivity function obtained

from the proposed adjoint method. Hence, this situation requires special treatments beyond

the scope of this study. In the case (b), we can adopt Z(θ(τ) − 0) as the phase sensitivity

function. When the input is added immediately after the reset of the discrete state, which

can also be interpreted as a perturbation to the transition function as ΦI0(θ(τ))(X0(θ(τ)))+c,

we can adopt Z(θ(τ) + 0) as the phase sensitivity function.

26



Appendix F: Adjoint equation for the phase sensitivity function

An adjoint linear system to Eqs. (B3) and (B4) can also be introduced as

Ψ̇(t) = −A†(k, t) Ψ(t) for t (mod T ) ∈ (τk−1(s
∗), τk(s

∗)), (F1)

Ψ(t) = C†k Ψ(t+ 0) at t (mod T ) = τk(s
∗), (F2)

with the initial condition

Ψ(0) = I. (F3)

Note that the above adjoint system can be integrated only backward in time because Ck can

be singular. The state transition matrix Hk(t, s) of the variational equation (see Eqs. (B9)

and (B10) for the definition) can always be inverted when t, s ∈ [τk−1(s
∗) +nT, τk(s

∗) +nT ]

for each k = 1, ...,m0. In each time domain, we can obtain

(Ḣ−1k )†(t, s) = −A†(k, t) (H−1k )†(t, s) for t, s ∈ [τk−1(s
∗) + nT, τk(s

∗) + nT ] (F4)

by differentiating the identity

H−1k (t, s) ·Hk(t, s) = I (F5)

with t. Using the periodicity Hk(t, s) = Hk(t + nT, s + nT ), we can formally consider that

Eq. (F4) holds in the negative time domain. Thus, the matrix (H−1k )†(t, s) satisfies the

adjoint system (F1) within each time interval with the initial condition (H−1k )†(s, s) = I.

Thus, (H−1k )†(t, s) is a state transition matrix of the adjoint Eqs. (F1) satisfying

Ψ(t) = (H−1k )†(t, s)Ψ(s)

for t, s∈(τk−1(s
∗)−(n+1)T, τk(s

∗)−(n+1)T ], k∈M0

and for t, s ∈ (τm0(s
∗)− (n+ 1)T,−nT ] (F6)

We define a monodromy matrix of the adjoint system as Madj = Ψ(−T ). It is easy to see

that Madj can be expressed as

Madj =

( m0∏+

k=1

(H−1m0+1−k)
†(τm0−k(s

∗), τm0+1−k(s
∗))C†m0+1−k

)
(H−11 )†(τm0(s

∗), T )

=

( m0∏+

k=1

H†m0+1−k(τm0+1−k(s
∗), τm0−k(s

∗))C†m0+1−k

)
H†1(T, τm0(s

∗)) = M†.

(F7)
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In the second equality, we used the relation Hk(t, s) = H−1k (s, t). Similarly, we consider

adjoint linear systems corresponding to the systems with initial variations Eq. (B1), whose

solutions are Ψ(· ; θ), which satisfies

Ψ̇(t; θ) = −A†(k, t+ θ) Ψ(t; θ) for t+ θ (mod T ) ∈ (τk−1(s
∗), τk(s

∗)), (F8)

Ψ(t) = C†k Ψ(t+ 0) at t+ θ (mod T ) = τk(s
∗), (F9)

Ψ(0; θ) = I. (F10)

It can be easily shown that Madj(θ) = M†(θ), where Madj(θ) ≡ Ψ(−T ; θ).

Since we assume that the hybrid limit cycle χ is linearly stable, the monodromy matrix

M(θ) has a single eigenvalue 1 and all other eigenvalues are strictly inside the unit circle on

the complex plane. We denote the eigenvalues as λi (i = 1, 2, ..., N) and the corresponding

right eigenvectors as ui(θ), where λ1 = 1 and |λi| < 1 (i = 2, ..., N). For simplicity,

we hereafter consider the case where all eigenvalues are real and semisimple. A similar

argument holds for the case of complex conjugates and eigenvalues with the generalized

eigenspaces. It can be shown that ui(θ) corresponding to the eigenvalue λi with |λi| < 1

(i = 2, ..., N) is tangent to the conditional isochron WI0(θ)(θ) at X0(θ), and that the right

eigenvector corresponding to λ1 = 1 is tangent to the limit cycle χ at s0(θ).

Let η(t) be a variation vector from the unperturbed limit-cycle orbit X0(t + θ). If the

initial value η(0) = εh, where |ε| � 1, given to the initial state X0(θ) is parallel to the

eigenvector ui(θ) corresponding to |λi| < 1(i = 2, · · · , N), i.e., η(0) ∝ ui(θ), the linear

response to the initial perturbation η(0) eventually vanishes, i.e.,

lim
n→∞

η(nT ) = lim
n→∞

εΞ(nT ; θ)h

= lim
n→∞

εM(θ)nh = lim
n→∞

ελni h = 0, (F11)

as the system state revolves around χ. Hence, the state limn→∞[X0(nT + θ) + η(nT )] can

be approximated by X0(θ) +O(ε2), and it shares the same phase with X0(θ) + η(0). Using

the total differentiability of the phase function Θ with respect to the continuous state, the
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directional derivative of the phase in the direction h is obtained as

∇Θ(I0(θ),X0(θ)) · h

= lim
ε→0

Θ(I0(θ),X0(θ) + η(0))−Θ(I0(θ),X0(θ))

ε

= lim
ε→0

Θ(I0(θ),X0(θ) +O(ε2))−Θ(I0(θ),X0(θ))

ε

= lim
ε→0

O(ε) = 0. (F12)

Therefore, ui(θ)(i = 2, · · · , N) is tangent to WI0(θ)(θ) at X0(θ). In contrast, if η(0) is

parallel to u1, η(t) does not decay since M(θ)nη(0) = η(0). In Ref. [35, Th. 4.2.], it is

shown that F (I0(θ),X0(θ)) is a right eigenvector of M(θ) associated with the eigenvalue of

unity. Hence u1(θ) is parallel to F (I0(θ),X0(θ)), which means that it is tangent to the limit

cycle χ at s0(θ).

We denote the left eigenvector corresponding to eigenvalue λ1 = 1 of M(θ) as Z(θ). Then,

Z(θ) is orthogonal to all right eigenvectors ui(θ) (i = 2, ..., n) with eigenvalues |λi| < 1,

namely, Z(θ) is normal to the submanifold WI0(θ)(θ) at s0(θ) and is parallel to the gradient

vector ∇Θ|s0(θ). Thus, when Z(θ) is normalized so that Z(θ) = ∇Θ|s0(θ) holds, it gives the

linear response of the phase variable to an applied perturbation, hence we call it a phase

sensitivity function.

In the following, we describe why one can obtain the phase sensitivity function from the

adjoint equation. Since the system given by (F1) and (F2) is linear, the solution of the

adjoint linear system

ψ̇(t) = −A†(k, t)ψ(t) for t (mod T ) ∈ (τk−1(s
∗), τk(s

∗)), (F13)

ψ(t) = C†kψ(t+ 0) at t (mod T ) = τk(s
∗), (F14)

where ψ(t) ∈ Rn, is given as ψ(t) = Ψ(t)ψ(0). If we write ψ(0) as Z1 + Z2, where Z1

is the projection of ψ(0) onto the space spanned by Z(0) and Z2 is the remainder, the

backward-in-time asymptotic solution is

lim
n→∞

ψ(−nT ) = lim
n→∞

Madj(0)n(Z1 +Z2) = lim
n→∞

M†(0)n(Z1 +Z2) = Z1, (F15)

because Z(0) is a right eigenvector of M†(0) corresponding to the eigenvalue λ1 = 1. From

Eq. (F15), one can see that the backward-in-time asymptotic solution is periodic, hence we

write it as ψ0(θ) with the initial value ψ0(0) = Z1. The vector ψ0(θ) is parallel to Z(θ)
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because the equalities Madj(θ)ψ0(θ) = M†(θ)ψ0(θ) = ψ0(θ) hold, where the last equality

means that ψ0(θ) is a left eigenvector of M(θ) with a corresponding eigenvalue of unity. We

normalize ψ(0) as follows:

ψ(0) · F (I0(0),X0(0)) = 1. (F16)

Since F (I0(0),X0(0)) is a right eigenvector of M(0) corresponding to the eigenvalue λ1 = 1,

Z2·F (I0(0),X0(0)) = 0 holds, and we obtainψ0(0)·F (I0(0),X0(0)) = Z1·F (I0(0),X0(0)) =

1. Therefore, under the condition (F16), ψ0(0) is equal to the phase sensitivity function Z(0)

at θ = 0 because it satisfies the relation (8).

It can be shown that the normalization condition is satisfied for all θ, i.e, ψ0(θ) ·

F (I0(θ),X0(θ)) = 1, if ψ(0) satisfies the above normalization condition at t = 0, as fol-

lows. Hereafter, we formally define F (I0(t − nT ),X0(t − nT )) = F (I0(t),X0(t)), because

(I0(t),X0(t)) is a periodic solution. By differentiating dX0(t)/dt = F (I0(t),X0(t)) by t

within the smooth interval, we obtain

d

dt

(
dX0(t)

dt

)
=

d

dt
F (I0(t),X0(t)) = A(I0(t), t)

(
dX0(t)

dt

)
= A(I0(t), t)F (I0(t),X0(t)). (F17)

Thus, ξ(t) = F (I0(t),X0(t)) is a solution to the vector-valued version of the linearized

system (B3,B4),

d

dt
F (I0(t),X0(t))=A(I0(t), t)F (I0(t),X0(t)), (F18)

from which we can derive

d

dt
(ψ(t) · F (I0(t),X0(t)))

=
d

dt
ψ(t) · F (I0(t),X0(t)) +ψ(t) · d

dt
F (I0(t),X0(t))

= −A(I0(t), t)
†ψ(t) · F (I0(t),X0(t))) +ψ(t) ·A(I0(t), t)F (I0(t),X0(t))) = 0. (F19)

At the moment of switching (t (mod T ) = τk(s
∗)), the variation ξ(t) = F (I0(t),X0(t))

changes as

F (k + 1,X0(t)) = CkF (k,X0(t)). (F20)
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Thus,

ψ(t+ 0) · F (k + 1,X0(t))

=ψ(t+ 0) ·CkF (k,X0(t))=C†kψ(t+ 0) · F (k,X0(t))

= ψ(t) · F (k,X0(t)). (F21)

Therefore, the quantity ψ(t) ·F (I0(t),X0(t)) is invariant under the backward time evolution

of the system given by (F13) and (F14).

Summarizing, we can obtain Z(θ) by integrating the adjoint system (F13,F14) backward

in time from a initial condition that satisfies the normalization condition (F16) until a

periodic solution is obtained. In conventional smooth systems, this procedure is called the

adjoint method [24].

Appendix G: Averaging approximation and analysis of the synchronization dynam-

ics

By differentiating both sides of Eq. (13) in the main article with respect to time and

substituting the phase equation Eq. (E2), we obtain a non-autonomous system

ψ̇ = ε[∆ +Z((T/Text)t+ ψ) · p(t)]. (G1)

The averaging approximation for weakly perturbed oscillators [18, 19, 24] provides the fol-

lowing autonomous system:

ψ̇ = ε[∆ + Γ(ψ)] ≡ J(ψ), (G2)

where

Γ(ψ) =
1

Text

∫ Text

0

Z((T/Text)t+ ψ) · p(t)dt. (G3)

We here summarize some useful theorems for the analysis of the synchronization dynam-

ics. Bogolyubov’s second theorem [21, 40, 58] affirms that the existence of a hyperbolic fixed

point ψ∗, i.e., J(ψ∗) = 0 and J ′(ψ∗) 6= 0, of the averaged system Eq. (G2) assures its cor-

responding unique hyperbolic periodic solution of the original system Eq. (G1) evolving in

the neighborhood of ψ∗ whose radius tends to zero together with ε. The Eckhaus/Sanchez-

Palencia theorem [59] says that if ψ∗ is a stable hyperbolic fixed point of the averaged
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system, the solution of the non-averaged system starting from the basin of attraction is

estimated up to O(ε) by the averaged one with the same initial condition, which is uni-

formly valid over a semi-infinite time interval. Samoilenko and Stanzhitskii [60] have given

similar results under a less restrictive condition, where the hyperbolicity assumption in the

Eckhaus/Sanchez-Palencia theorem is replaced by the asymptotic stability. These theorems

mean that in each basin of attraction, the precise behavior of the original system can be

captured by the averaged system. Moreover, if the averaged system undergoes a saddle-

node bifurcation at ∆ = ∆c and |ε| is sufficiently small, the original system (in fact, its

Poincaré map) also undergoes a saddle-node bifurcation at ∆̃c near ∆c [40]. Finally, from

Bogolyubov’s first theorem [21, 40, 58], even when the averaged system has no asymptoti-

cally stable fixed points, the solution of the non-averaged system is estimated up to O(ε) on

a time scale of order O(1/ε).

Using the above theorems, synchronization dynamics of the oscillator can be easily under-

stood from the T -periodic function Γ(ψ) as follows: if the condition ∆ ∈ [−max Γ(ψ),−min Γ(ψ)]

is satisfied, Eq. (G2) has at least one fixed point ψ∗ that satisfies ∆ + Γ(ψ∗) = 0. When

it is asymptotically stable, the oscillator is locked to the external forcing and the stable

phase difference between the oscillator and the forcing is approximated by ψ∗. If there are

two or more stable fixed points, the oscillator can synchronize with the periodic forcing at

multiple phase differences depending on the initial condition. Each basin of attraction and

convergence rate toward the stable phase differences can be estimated. Appearances and

disappearances of stable phase differences, depending on the parameter of the frequency

mismatch ∆, can also be predicted from Γ(ψ). When there are no stable phase differences,

the phase slipping behavior occurs. The mean period of the phase slipping can also be

estimated from Γ(ψ).

When one considers Eq. (G1) as a regularized multivalued system as explained in Ap-

pendix E, the integral in Eq. (G3) should be interpreted in a suitable sense such as Au-

mann’s [61], and the differential equation Eq. (G2) should be replaced by a differential

inclusion. See [39] for the theories including analogues of the theorems mentioned above on

the averaging approximation in systems with jumps and multivalued righthand sides. Note

that the jumps in the solution in [39] are assumed to occur when the solution collides with

a switching surface described by t = τ(ψ) in the extended phase space, which is suitable to

the case where one considers the injection locking to a periodic impulsive signal.
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Finally, when the mutual entrainment of pulse-coupled oscillators is analyzed [42], which

we do not consider in this study, averaging approaches of the above kind should be general-

ized to the autonomous case. The averaging theory for autonomous systems with jumps has

so far been limited to a specific cases [62], and establishment of a general theory is desirable.

Appendix H: Direct method for measuring the phase sensitivity function

In the direct method, the βth element Zβ(θ) of Z(θ) is computed as follows: first, we kick

the system state (I0(θ),X0(θ)) on the limit cycle χ by applying a weak impulsive pertur-

bation (0, εeβ). We then evolve the orbit (I(t),X(t)) from the perturbed initial condition

(I0(θ),X0(θ) + εeβ). After a long time, the perturbed orbit (I(t),X(t)) returns sufficiently

close to the limit cycle χ and the phase θ(I(t),X(t)) can be measured. Because the phase

difference between two unperturbed systems is time-invariant, θ(I(t),X(t)) − tr, where

tr = t mod T , is equal to the initial phase difference θ(I0(θ),X0(θ) + εeβ) − θ. Thus, for

sufficiently small ε, we can calculate Zβ(θ) according to:

Zβ(θ) = Z(θ) · eβ ≈ [θ(I0(θ),X0(θ) + εeβ)− θ]
ε

=
[θ(I(t),X(t))− tr]

ε
. (H1)

In the direct method, the perturbation needs to be sufficiently small, as strong perturbations

induce nonlinearity in the phase response. However, too weak perturbations result in tiny

phase responses, which are difficult to measure accurately. Thus, the direct method is vul-

nerable to incorrect estimation of the phase response. Moreover, the direct method requires

much longer computation times than those for the adjoint method. To calculate Z(θ) at

m points on the limit cycle in hybrid dynamical systems with N -dimensional continuous

states, it is necessary to repeat the above long-time evolution m × N times if we use the

direct method. In contrast, we need only a single long-time evolution in the adjoint method.

Therefore, the adjoint method has a significant advantage in computing Z(θ).

Appendix I: Derivation of the negative logarithmic scaling law

From Eq. (G2), the period of phase slipping is estimated as

Tslip =

∣∣∣∣∫ T

0

dψ

ε[∆ + Γ(ψ)]

∣∣∣∣ . (I1)
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We suppose Γ(ψ) has a maximum −∆c (the argument of the same kind holds for the min-

imum) at ψ = ψ∗, and suppose the semiderivatives Γ′(ψ∗ − 0) = β1,Γ
′(ψ∗ + 0) = β2 are

nonzero. When ∆ is sufficiently close to the critical value ∆c, Tslip is evaluated as

Tslip ' −
1

ε

(∫ ψ∗

0

dψ

∆−∆c + β1(ψ − ψ∗)
+

∫ T

ψ∗

dψ

∆−∆c + β2(ψ − ψ∗)

)
' −1

ε

(∫ ψ∗

−∞

dψ

∆−∆c + β1(ψ − ψ∗)
+

∫ ∞
ψ∗

dψ

∆−∆c + β2(ψ − ψ∗)

)
= −1

ε

(
1

β1
− 1

β2

)
ln |∆−∆c|. (I2)

Hence, Tslip increases as − ln |∆−∆c| when ∆→ ∆c.
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