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How to best exploit patchy resources? We introduce a minimal exploitation/migration model
that incorporates the coupling between a searcher’s trajectory, modeled by a random walk, and
ensuing depletion of the environment by the searcher’s consumption of resources. The searcher also
migrates to a new patch when it takes S consecutive steps without finding resources. We compute
the distribution of consumed resources Ft at time t for this non-Markovian searcher and show that
consumption is maximized by exploring multiple patches. In one dimension, we derive the optimal
strategy to maximize Ft. This strategy is robust with respect to the distribution of resources within
patches and the criterion for leaving the current patch. We also show that Ft has an optimum in
the ecologically-relevant case of two-dimensional patchy environments.

I. INTRODUCTION

Optimizing the exploitation of patchy resources is
a long-standing dilemma in a variety of search prob-
lems, including robotic exploration [1], human decision
processes [2], and especially in animal foraging [3–6].
In foraging, continuous patch-use [6, 7] and random
search [5, 8] represent two paradigmatic exploitation
mechanisms. In the former (Fig. 1(a)), a forager con-
sumes resources within a patch until a specified depletion
level, and concomitant decrease in resource intake rate, is
reached before the forager moves to another virgin patch.

In his pioneering work [6], Charnov predicted the
optimal strategy to maximize resource consumption.
This approach specifies how fitness-maximizing foragers
should use environmental information to determine how
completely a food patch should be exploited before mov-
ing to new foraging territory. The nature of foraging
in an environment with resources that are distributed
in patches has been the focus of considerable research
in the ecology literature (see e.g., [6, 9–20]); theoretical
developments are relatively mature and many empirical
verifications of the theory have been found. However,
continuous patch use models typically do not account for
the motion of the searcher within a patch, and the food
intake rate within a patch is given a priori [9, 20, 21],
so that depletion is deterministic and spatially homoge-
neous.

Random search represents a complementary perspec-
tive in which the searcher typically moves by a simple or
a generalized random walk. The search efficiency is quan-
tified by the time to reach targets (Fig. 1(b)). Various
algorithms, including Lévy strategies [22], intermittent
strategies [23–26] and persistent random walks [27], have
been shown to minimize this search time under general
conditions. However, these models do not consider de-
pletion of the targets.

Issues that have been addressed to some extent in the
above scenarios include the overall influence of resource
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FIG. 1: (a) Continuous patch use: a searcher uniformly de-
pletes patch i at a fixed rate for a deterministic time T and
moves to a patch i + 1 when patch i is sufficiently depleted.
(b) Random search: a searcher seeks one or a few fixed tar-
gets (circles) via a random walk. (c) Our model: a searcher
depletes resources within a patch for a random time Ti. (d)
Model time history. Phase i, of duration τi, is composed
of patch exploitation (duration Ti, shadowed) and migration
(duration Z). The last phase is interrupted at time t, either
during exploitation (shown here) or migration, and lasts τ∗.

patchiness (but see [11, 13, 18, 19, 28, 29] for relevant
work), as well as the coupling between searcher motion
within patches and resource depletion; the latter is dis-
cussed in a different context than that given here in
Ref. [30]. In this work, we introduce a minimal patch
exploitation/inter-patch migration model that accounts
for the interplay between mobility and depletion from
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which we are able to explicitly derive the amount of con-
sumed food Ft up to time t, determine the optimal search
strategy, and test its robustness.

II. THE MODEL

Each patch is modeled as an infinite lattice, with each
site initially containing one unit of resource, or food. A
searcher undergoes a discrete-time random walk within a
patch and food at a site is completely consumed whenever
the site is first visited. The searcher thus sporadically but
methodically depletes the resource landscape.

Resources within a patch become scarcer and eventu-
ally it becomes advantageous for the searcher to move to
a new virgin patch. We implement the scarcity criterion
that the searcher leaves its current patch upon wander-
ing for a time S without encountering food. Through-
out this work, all times are rescaled by the (fixed) dura-
tion of a random-walk step. Thus S also represents the
number of random-walk steps that the walker can take
without finding food. This notion of a specified “give-
up time” has been validated by many ecological obser-
vations [20, 21, 31, 32]. The searcher therefore spends a
random time Ti and consumes fi food units in patch i,
before leaving (Fig. 1(d)). We assume, for simplicity, a
deterministic migration time Z to go from one patch to
the next. We define ti as the time when the searcher ar-
rives at patch i+ 1 and τi = ti− ti−1 as the time interval
between successive patch visits. The duration of phase i,
which starts at ti−1 and consists of exploitation in patch
i and migration to patch i+ 1, is τi ≡ Ti + Z.

Our model belongs to a class of composite search
strategies that incorporate: (i) intensive search (patch
exploitation) and (ii) fast displacement (migration) [33–
35]; here we extend these approaches to account for re-
source depletion. In addition to its ecological relevance,
this exploit/explore duality underlies a wide range of phe-
nomena, such as portfolio optimization in finance [36],
knowledge management and transfer [37], research and
development strategies [2], and also everyday life deci-
sion making [38].

We quantify the exploitation efficiency by the amount
of consumed food Ft up to time t. Note that Ft is also the
number of distinct sites that the searcher visits by time
t, which is known for Markovian random walks [39, 40].
In our model, we need to track all previously visited sites
in the current patch to implement the scarcity criterion,
which renders the dynamics non-Markovian.

We first argue that Ft admits a non-trivial optimiza-
tion in spatial dimensions d ≤ 2. If a random-walk
searcher remains in a single patch forever (pure exploita-
tion; equivalently, S → ∞), then Ft, which coincides
with the number of distinct sites visited in the patch,
grows sublinearly in time, as

√
t in d = 1 and as t/ ln t

in d = 2 [39]. On the other hand, if the searcher leaves
a patch as soon as it fails to find food (pure exploration,
S = 1), Ft clearly grows linearly in time, albeit with a

small amplitude that scales as 1/Z. Thus Ft must be
optimized at some intermediate value of S, leading to
substantial exploitation of the current patch before mi-
gration occurs.

III. THE AMOUNT OF FOOD CONSUMED

A. Formalism

To compute the amount of food consumed, let m be the
(random) number of phases completed by time t, while
the (m+1)st phase is interrupted at time t. Then Ft can
be written as

Ft = f1 + . . .+ fm + f∗, (1a)

where f∗ denotes the food consumed in this last incom-
plete phase. Similarly, the phase durations {τi} satisfy
the sum rule (Fig. 1(d))

t = τ1 + . . .+ τm + τ∗, (1b)

where again τ∗ denotes the duration of the last phase.
Since the food consumed and the duration of the ith

phase, fi and τi respectively, are correlated, the sum
rule (1b) couples the fi’s and the number m of patches
visited. The distinct variables fi and τi are correlated
and pairwise identically distributed, except for the last
pair (f∗, τ∗) for the incomplete phase. We will ignore
this last pair in evaluating Ft, and approximation is in-
creasingly accurate for large S.

We now express the distribution of Ft in terms of the
joint distribution of the food consumed in any phase
and the duration of any phase, which we compute in
d = 1. For this purpose, we extend the approach de-
veloped in [41] for standard renewal processes to our sit-
uation where f and τ are coupled. To obtain of Ft, it is
convenient to work with the generating function 〈e−pFt〉,
where the angle brackets denote the average over all pos-
sible searcher trajectories. This includes integrating over
each phase duration, as well as summing over the num-
ber of phases and the food consumed in each patch. The
generating function can therefore be written as

〈
e−pFt

〉
=

∞∑
m=0

∫
Rm

dy1 . . . dym
∑

n1,...,nm

e−p(n1+....+nm)

× Pr
(
{ni}, {yi},m

)
, (2)

where we now treat the time as a continuous variable in
the long-time limit. The second line is the joint proba-
bility that the food consumed in each patch is {ni}, that
each phase duration is {yi}, and that m phases have oc-
curred; we also ignore the last incomplete phase. From
Fig. 1(d), the final time t occurs sometime during the
(m+ 1)st phase, so that tm < t < tm+1.

We rewrite the joint probability as the ensemble av-
erage of the following expression that equals 1 when the
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process contains exactly m complete phases of durations
{yi}, with ni units of food consumed in the ith phase,
and equals 0 otherwise:

Pr
(
{ni}, {yi},m

)
=
〈 m∏
i=1

δfi,ni
δ(τi − yi)I(tm<t<tm+1)

〉
,

(3)

with the indicator function I(z) = 1 if the logical variable
z is true, and I(z) = 0 otherwise. We can compute the
Laplace transform with respect to the time t of this joint
probability (see Appendix A) from which the temporal
Laplace transform of the generating function 〈e−pFt〉 is∫ ∞

0

dt e−st
〈
e−pFt

〉
=

1− 〈e−sτ 〉1
s (1− 〈e−pf−sτ 〉1)

. (4)

Here
〈
e−pf−sτ

〉
1

is an ensemble average over the values

(f, τ) for the amount of food consumed in a single phase
and the duration of this phase; we use the subscript 1
to indicate such an average over a single phase. Equa-
tion (4) applies for any distribution of the pair (f, τ); in
particular for any spatial dimension, search process, and
distribution of food within patches.

B. Detailed Results

We now make Eq. (4) explicit in d = 1 by calculat-
ing

〈
e−sτ−pf

〉
1
. For this purpose, we make use of the

equivalence between exploitation of a single patch and
the survival of a starving random walk [42, 43]. In this
latter model, a random walk is endowed with a metabolic
capacity S, defined as the number of steps the walker
can take without encountering food before starving. The
walker moves on an infinite d-dimensional lattice, with
one unit of food initially at each site. Upon encoun-
tering a food-containing site, the walker instantaneously
and completely consumes the food and can again travel
S additional steps without eating before starving. Upon
encountering an empty site, the walker comes one time
unit closer to starvation.

In our exploitation/migration model, the statistics of
(f, τ) for a searcher that leaves its current patch after
S steps coincides with the known number of distinct
sites visited and lifetime of a starving random walk with
metabolic capacity S at the instant of starvation [42, 43].
In Appendix B, we determine the full distribution of the
pair (f, τ), from which we finally extract the quantity〈
e−pf−sτ

〉
1

in Eq. (4), where τ = T + Z, with T the

(random) time spent in a patch and Z the fixed migra-
tion time. The final result is

〈e−pf−sτ 〉1 =

∫ ∞
0

dθ P (θ) e [−pπθ
√
S/2−s(Z+S)+Q(θ)] ,

(5a)

where

Q(θ) = exp

[
4

∫ θ

0

du

u

∞∑
j=0

qj

]
,

qj =
1− e−[sS+(2j+1)2/u2]

1 + su2S/(2j+1)2
−
(

1− e−(2j+1)2/u2
)
,

P (θ) =
4

θ

∞∑
j=0

e−(2j+1)2/θ2 exp

[
− 2

∞∑
k=0

E1

(
(2k + 1)2/θ2

)]
,

(5b)

and E1(x) =
∫∞
1

dt e−xt/t is the exponential integral.
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FIG. 2: Scaled mean (a) and variance (b) of the food con-
sumed Ft at t = 5 × 105 steps. Points give numerical results
and the curves are the asymptotic predictions in (7). The
migration time Z between patches is 500 steps.

We now focus on the first two moments of Ft, whose
Laplace transforms are obtained from the small-p expan-
sion of Eq. (4). By analyzing this expansion in the small-s
limit, the long-time behavior of these moments are (with
all details given in Appendix C):

〈Ft〉
t
∼ 〈f〉
〈T 〉+ Z

,

Var(Ft)

t
∼ 〈f〉

2Var(T )

(〈T 〉+Z)3
+

Var(f)

〈T 〉+Z
− 2
〈f〉Cov(f, T )

(〈T 〉+Z)2
,

(6)

where Var(X) ≡ 〈X2〉 − 〈X〉2 and Cov(X,Y ) ≡ 〈XY 〉 −
〈X〉〈Y 〉 and for simplicity, we now drop the subscript 1.
From the small-p and small-s limits of Eqs. (5a) and (5b),
the limiting behavior of the moments for S � 1 are:

〈Ft〉
t
' K1

√
S

K2S + Z
,

Var(Ft)

t
'
[

K3S3

(K2S+Z)3
+

K4S
K2S+Z

− K5S2

(K2S+Z)2

]
,

(7)

where the Ki are constants that are derived in Ap-
pendix D. The dependences 〈f〉 = K1

√
S and 〈T 〉 = K2S

have simple heuristic explanations (see also [43]): sup-
pose that the length of the interval where resources have
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been consumed reaches a length
√
S. When this critical

level of consumption is reached, the forager will typically
migrate to a new patch because the time to traverse the
resource-free interval will be of the order of S. Thus the
resources consumed in the current patch will be of the
order of the length of the resource-free region, namely√
S, while the time 〈T 〉 spent in this patch will be of the

order of the time S to traverse this region of length
√
S.

The salient feature from Eq. (7) is that 〈Ft〉 has a max-
imum, which occurs when S = Z/K2, corresponding to
〈T 〉 = Z (Fig. 2). That is, the optimal strategy to max-
imize food consumption is to spend the same time ex-
ploiting each patch and migrating between patches.

It is worth mentioning that we can reproduce the first
of Eqs. (6) by neglecting correlations between f and T .
In this case 〈Ft〉 is simply the average amount of food
〈f〉 consumed in a single patch multiplied by the mean
number t/(〈T 〉 + Z) of patches explored at large time
t. However, this simple calculational approach fails to
account for the role of fluctuations, specifically the co-
variance between f and T , in the variance of Ft. In fact,
the covariance term (last term in Eq. (6)) reduces fluctu-
ations in food consumption by a factor three compared
to the case where correlations are neglected.

IV. EXTENSIONS

The optimal strategy outlined above is robust and
holds under quite general conditions, including, for ex-
ample: (i) randomly distributed food within a patch, and
(ii) searcher volatility. For (i), suppose that each lattice
site initially contains food with probability ρ. To show
that the optimal search strategy is independent of ρ, we
again exploit the mapping onto starving random walks
in the limit S � 1/ρ. A density of food ρ corresponds to
an effective lattice spacing that is proportional to ρ−1/d,
with d the spatial dimension. For large S, this effective
lattice spacing has a negligible effect on the statistics of
the starving random walk. Both the mean lifetime and
mean number of distinct sites visited are the same as in
the case where the density of food equals 1. However,
because the probability to find food at a given site is ρ,
the amount of food consumed differs from the number
of distinct sites visited by an overall factor ρ. Thus the
food consumed at time t (the first of Eqs. (7)) is simply

〈Ft〉
t
' ρ K1

√
S

K2S + Z
. (8)

Consequently, the optimal search strategy occurs for the
same conditions as the case where each site initially con-
tains food (Fig. 3(a)).

For the second attribute, suppose that the searcher has
a fixed probability λ to leave the patch at each step, inde-
pendent of the current resource density, rather than mi-
grating after taking S steps without encountering food.
The residence time of the searcher on a single patch thus

follows an exponential distribution with mean λ−1. The
exploitation of a single patch can now be mapped onto
the evanescent random walk model, in which a random
walk dies with probability λ at each step [44], and for
which the mean number of distinct sites visited has re-
cently been obtained in one dimension. Since Eq. (4),
and thus Eqs. (6), still hold for any distribution of times
spent in each patch, we can merely transcribe the results
of [44] (in particular their Eq. (7) and the following text)
to immediately find that the average food consumed at
time t is

〈Ft〉
t
∼
√

cothλ/2

Z + λ−1
. (9)

Now 〈Ft〉 is maximized for 1/λ ' Z in the Z � 1 limit.
Again, the optimal strategy is to spend the same amount
of time on average in exploiting a patch and in migrating
between patches (Fig. 3(a)).

For the ecologically-relevant case of two-dimensional
resource patches, the average amount of food consumed is
governed by a similar optimization as in d = 1 (Fig. 3(b)).
While the description of the two-dimensional case does
not appear to be analytically tractable, we numerically
find that the optimal strategy consists in spending some-
what more time exploiting a single patch rather than
migrating between patches. This inclination arises be-
cause patch exploitation—whose efficiency is quantified
by the average number of distinct sites visited by a given
time—is relatively more rewarding in two than in one
dimension [39, 40].

(a) (b)
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FIG. 3: Average food consumed in d = 1 when: (a) the
distribution of food is Poisson distributed with density ρ = 0.1
(×) and ρ = 1 (•), as well as when the searcher has a constant
probability at each step to leave the patch (H); (b) Average
food consumed in d = 2 for food density ρ = 1. The inter-
patch travel time Z = 50 for all cases.

V. SUMMARY

To summarize, we introduced a minimal patch
exploitation/inter-patch migration model that quantifies
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the couplings between searcher motion within patches,
resource depletion, and migration to new patches. Our
model may provide a first step to understand more realis-
tic ecological foraging, where effects such as predation of
the forager [45, 46], heterogeneous travel times between
patches [47], and more complex motions than pure ran-
dom walks [48, 49] are surely relevant. On the theoretical
side, our model can also be viewed as a resetting process,
in which a random walker stochastically resets to a new
position inside a virgin patch. In contrast to existing

studies [50–54], the times between resets are not given a
priori but determined by the walk itself. This modifica-
tion may open a new perspective in the burgeoning area
of resetting processes.
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by starting grant FPTOpt-277998 (OB), by grants DMR-
1608211 and DMR-1623243 from the National Science
Foundation and from the John Templeton Foundation
(SR), and by the Investissement d’Avenir LabEx PALM
program Grant No. ANR-10-LABX-0039-PALM (MC).

Appendix A: Derivation of Eq. (4)

We first provide the details to relate the distribution of the amount of food Ft consumed by time t to the statistics
of the amount of food f consumed in a single patch and the associated phase duration τ and thereby obtain Eq. (4).
Next, in Appendix B, we determine the joint statistics of the time T spent in a patch and the quantity f of food
consumed in this patch for the case of one-dimensional patches (Eqs. (5a) and (5b)). For this calculation, we use the
scarcity criterion that the searcher migrates to a new patch when it takes S steps without encountering food. This
criterion maps the multipatch foraging problem onto the starving random walk model. In Appendix C, we extract
the moments of Ft from Eq. (4) in the long-time limit to obtain Eq. (6). Combining all these elements ultimately
gives Eqs. (7), as shown in Appendix D.

We first need to compute the quantity 〈e−pf−sτ 〉1 that appears as Eq. (4), as well as the moments of τ = T + Z
and f that appear as Eqs. (6). Note that all the times in the problem—t, S, Z, Ti, τi and ti—are rescaled by the
duration of a random-walk step. We start with the amount of food Ft consumed by time t, which is the sum of the
amounts of food consumed during each of the m complete phases and the last incomplete phase

Ft = f1 + . . .+ fm + f∗. (A1)

Since t occurs anytime during the last phase (either during the exploitation of the (m+1)st patch or during migration
to the next patch), the statistics of the food consumed during the last incomplete phase, f∗, is different from those
of all the other fi’s. In the long-time limit, f∗ is negligible compared to the total amount of food consumed Ft, so we
ignore f∗ in (A1) henceforth.

As defined in Eq. (2), the generating function of Ft is

〈
e−pFt

〉
=

∞∑
m=0

∫
Rm

dy1 . . . dym
∑

n1,...,nm

e−p(n1+....+nm) Pr
(
{ni}, {yi},m

)
. (A2)

Here, the joint probability for the amount of food {ni} consumed in the ith patch, the times {yi} for the phase
durations, and the number m of complete phases is

Pr
(
{ni}, {yi},m

)
=
〈 m∏
i=1

δfi,niδ(τi − yi)I(tm<t<tm+1

〉
, (A3)

where the indicator function I(z) = 1 if the logical variable z is true, and I(z) = 0 otherwise. Following [55], we
compute the multiple Laplace transform of this joint probability with respect to the time t and the {yi}. This Laplace
transform is

Lt,y1,...,ymPr({ni}, {yi},m) ≡
∫
(R+)m+1

dtdy1...dym e
−(st+u1y1+...+umym) Pr

(
{ni}, {yi},m

)
, (A4a)

where s is the variable conjugate to t, and each ui is conjugate to the corresponding yi. Substituting in the definition
(A3) for the joint probability, we obtain

Lt,y1,...,ymPr({ni}, {yi},m) =

〈∫ ∞
0

dt e−st I(tm < t < tm+1)

m∏
i=1

δfi,nie
−uiτi

〉

=

〈
e−stm − e−stm+1

s

m∏
i=1

δfi,ni
e−uiτi

〉
. (A4b)
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We now write tm and tm+1 (the latter defines the end of the phase m+1, which happens after time t), as a function
of the τi’s:

tm+1 = tm + τm+1 = τ1 + ...+ τm+1. (A5)

Here τm is the duration of the mth complete phase (which is longer than the duration of the interrupted phase τ∗).
Using these relations in (A4b) yields

Lt,y1,...,ym Pr({ni}, {yi},m) =

〈
1− e−sτm+1

s

m∏
i=1

δfi,ni
e−(ui+s)τi

〉
,

=
1− 〈e−sτ 〉1

s

m∏
i=1

〈
δfi,ni

e−(ui+s)τi
〉
, (A6)

where we use the independence of the phase durations in the second line. We now denote by g(n, y) the joint
probability that the searcher consumes an amount of food n during this phase and that this phase lasts a time y. We
also define the Laplace transform of this joint probability with respect to y as ĝ(n, s). We then rewrite the ensemble
average in Eq. (A6) as a sum over the amount of food consumed in phase i and over all possible phase durations:〈

δfi,ni e
−(ui+s)τi

〉
1

=

∫ ∞
0

dy′i

∞∑
n′
i=0

g(n′i, y
′
i) e
−(ui+s)y

′
i δn′

i,ni
= ĝ(ni, s+ ui). (A7)

Substituting Eq. (A7) into (A6) gives

Lt,y1,...,ym Pr({ni}, {yi},m) =
1− 〈e−sτ 〉1

s

m∏
i=1

ĝ(ni, s+ ui). (A8)

We now use the feature that shifting the Laplace variable corresponds to multiplication by an exponential factor in
the time domain

Lt
(
e−ath(t)

)
≡
∫ ∞
0

dt e−ste−ath(t) = ĥ(s+ a) , (A9)

to obtain the inverse Laplace transform (with respect to the variables ui) of Eq. (A8):

Lt Pr({ni}, {yi},m) =
1− 〈e−sτ 〉1

s

m∏
i=1

e−syi g(ni, yi). (A10)

We can now express simply the Laplace transform of Ft with respect to t using Eqs. (A2) and (A10)

Lt
〈
e−pFt

〉
=

1− 〈e−sτ 〉1
s

∞∑
m=0

(
m∏
i=1

∫ ∞
0

dyi

∞∑
ni=0

e−pni−syig(ni, yi)

)

=
1− 〈e−sτ 〉1

s

∞∑
m=0

(∫ ∞
0

dy

∞∑
n=0

e−pn−syg(n, y)

)m
. (A11)

The expression inside the parentheses is exactly the single-patch ensemble average 〈e−pf−sτ 〉1. Thus after performing
the geometrical sum over m, we obtain Eq. (4):

Lt
〈
e−pFt

〉
=

1− 〈e−sτ 〉1
s (1− 〈e−pf−sτ 〉1)

. (A12)

Appendix B: Derivation of Eqs. (5a) and (5b)

Having derived the generating function of Ft in the Laplace domain (Eq. (4)), we now focus on the specific case of
one dimension, in which the searcher uses the give-up criterion that it migrates to another patch when upon taking
S steps without encountering food. We first derive 〈e−pf−sT 〉1, in the limit of large S, that we trivially relate to
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〈e−pf−sτ 〉1 using τ = T + Z. Following [42], we treat the time T spent in a patch, which is normally an (integer)
number of steps, as a continuous variable. We write the ensemble average 〈e−pf−sT 〉1 as〈

e−pf−sT
〉
1

=

∫ ∞
0

dy

∞∑
n=0

e−pn−sy h(y, n) =

∞∑
n=0

P (n)e−pn
∫ ∞
0

dy e−sy h(y|n) (B1)

where h(y, n) is the joint probability for the searcher to spend a time y in a patch and consume n units of food.
Additionally, P (n) is the marginal probability that n units of food are consumed in a single patch when the searcher
leaves the patch, integrated over all exploitation durations, and h(y|n) is the conditional probability to spend a time
y in the patch, given that n units of food have been consumed.

As discussed in Sec. III A, to evaluate 〈e−pf−sT 〉1 , we need to characterize the trajectory of a one-dimensional
starving random walk that has visited n distinct sites at the instant of starvation (see [42]). This trajectory consists
of n−1 successful returns to food at either end of a growing food-free interval and a final lethal excursion. A return to
food is successful if it takes less than S steps, so the duration Rk of the kth return satisfies Rk < S for k ∈ [2, n] and
Rn+1 > S, corresponding to the walker dying before reaching one end of the interval. Each time the walker returns
to one end of the interval, it eats the food there, so that the interval length grows by one lattice spacing to (k + 1)a
after k returns (with a the lattice spacing). The lifetime of this walk is therefore T = R2 + . . .+Rn +S. The integral
in Eq. (B1) can thus be written as

〈e−sT |n〉1 ≡
∫ ∞
0

dy e−syh(y|n)

=

∫ ∞
0

dy

∫ ∞
0

dr2 . . .

∫ ∞
0

drne
−syδ(y − r2 − . . .− rn − S)

n∏
k=2

Pr(rk)

= e−sS
n∏
k=2

〈e−sRk〉1 ≡ e−sS Un . (B2)

where Pr(rk) denotes the probability that the kth return to food lasts rk steps. The average 〈e−sRk〉1 is conditioned
on the walker surviving until the kth return and can be expressed as

〈e−sRk〉1 =

∫ S
0

dt e−stFk(t)∫ S
0

dtFk(t)
→
∫ S
0

dt e−stFk(t) S → ∞ . (B3)

Here Fk(t) is the first-passage probability that the walker first exits an interval of length ka at time t when starting a
distance a from one end. The denominator is thus the probability that the walker survives until the kth return, i.e.,
it reaches either end of a food-free interval of length ka within S steps. For large S, this survival probability equals
1 up to an exponentially small correction.

To complete the calculation of 〈e−pf−sT 〉1 , we need to evaluate the terms 〈e−sRk〉1 that comprise Un in Eq. (B2).
In the long-time limit, corresponding to s→ 0 and specifically to sRk � 1, each such term in Un is close to 1. Thus
it is convenient to first compute lnUn and then re-exponentiate:

lnUn =

n∑
k=2

ln〈e−sRk〉 =

n∑
k=2

ln
(
1 + 〈e−sRk − 1〉

)
. (B4)

We now substitute the explicit expression for the first-passage probability [56]

Fk(t) =
4πD(

(k − 1)a
)2 ∞∑

j=0

(2j+1) sin
(2j+1)π

k − 1
exp

{
−
[

(2j+1)π

(k − 1)a

]2
Dt

}
, (B5)

with the diffusion constant D = a2/2 for a one-dimensional lattice random walk, in Eq. (B3) to recast (B4) as

lnUn =

n∑
k=2

ln

1 +
4

ku2S

∞∑
j=0

(2j + 1)2

(
1− e−(sS+(2j+1)2/u2)

s+ (2j + 1)2/(u2S)
− 1− e−(2j+1)2/u2

(2j + 1)2/(u2S)

) , (B6)

where u ≡
√

2 k/(π
√
S). Since the argument of the logarithm is close to 1 for S → ∞, we expand to lowest order to

give

lnUn '
n∑
k=2

4

ku2S

∞∑
j=0

(2j + 1)2

(
1− e−[sS+(2j+1)2/u2]

s+ (2j + 1)2/(u2S)
− 1− e−(2j+1)2/u2

(2j + 1)2/(u2S)

)
. (B7)
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We now introduce θ ≡
√

2n/(π
√
S) and take the continuum limit of Eq. (B7), using again u =

√
2 k/(π

√
S), to give

lnU(θ) ' 4

∫ θ

0

du

u

∞∑
j=0

{
1− e−[sS+(2j+1)2/u2]

1 + su2S/(2j + 1)2
−
[
1− e−(2j+1)2/u2

]}
. (B8)

Furthermore, the distribution P (n) that appears in Eq. (B1) was determined in the continuum limit in Ref. [42] in
terms of the rescaled variable θ

P (θ) =
4

θ

∞∑
j=0

e−(2j+1)2/θ2 exp

{
−2

∞∑
k=0

E1

[
(2k + 1)2/θ2

]}
, (B9)

where E1(x) ≡
∫∞
1
dt e−xt/t is the exponential integral function. We finally obtain

〈e−sT−pf 〉1 =

∫ ∞
0

dθ P (θ) e−pπθ
√
S/2−sS exp

4

∫ θ

0

du

u

∞∑
j=0

[
1− e−[sS+(2j+1)2/u2]

1 + sSu2/(2j + 1)2
−
(

1− e−(2j+1)2/u2
)] , (B10)

and using the relation τ = T + Z, we obtain Eqs. (5a) and (5b).

Appendix C: Derivation of Eqs. (6)

We now extract the moments of Ft in the long-time limit starting from Eq. (A12) (which coincides with (4)). These
moments are obtained by expanding the generating function for p→ 0:

〈e−pFt〉 = 1− p〈Ft〉+
p2

2
〈F 2
t 〉+ . . . , (C1)

where . . . denotes higher-order terms that are negligible as p→ 0. From (C1), the temporal Laplace transform is

Lt〈e−pFt〉 =
1

s
− pLt〈Ft〉+

p2

2
Lt 〈F 2

t 〉+ . . . . (C2)

We now straightforwardly expand Eq. (4) in a series in p to give

Lt〈e−pFt〉 =
1

s

[
1− p 〈fe

−sτ 〉1
1− 〈e−sτ 〉1

+
p2

2

(
〈f2e−sτ 〉1

1− 〈e−sτ 〉1
+

2〈fe−sτ 〉21
(1− 〈e−sτ 〉1)

2

)]
+ . . . . (C3)

We identify the first two moments of Ft by comparing Eqs. (C2) and (C3), yielding, in the Laplace domain

Lt〈Ft〉 =
〈fe−sτ 〉1

s (1− 〈e−sτ 〉1)
(C4a)

Lt〈F 2
t 〉 =

1

s

(
〈f2e−sτ 〉1

1− 〈e−sτ 〉1
+

2〈fe−sτ 〉21
(1− 〈e−sτ 〉1)

2

)
. (C4b)

The long-time behavior of the moments is given by the small-s expansion of the above Laplace transforms:

Lt〈Ft〉 =
〈f〉1
s2〈τ〉1

+
1

s

(
〈τ2〉1〈f〉1

2〈τ〉21
− 〈fτ〉1
〈τ〉1

)
+ . . . , (C5a)

Lt〈F 2
t 〉 =

2〈f〉21
s3〈τ〉21

+
1

s2

[
2〈f〉1
〈τ〉1

(
〈τ2〉1〈f〉1
〈τ〉21

− 2
〈fτ〉1
〈τ〉1

)
+
〈f2〉1
〈τ〉1

]
+ . . . , (C5b)

where . . . indicates lower-order terms in s as s→ 0. Note that two orders in s are necessary to calculate the variance
of Ft, as the leading order terms in s for 〈F 2

t 〉 and 〈Ft〉2 cancel. By performing the inverse Laplace transform, we
finally obtain, in the limit t→∞,

〈Ft〉 =
〈f〉1
〈τ〉1

t+

(
〈τ2〉1〈f〉1

2〈τ〉21
− 〈fτ〉1
〈τ〉1

)
+ . . . , (C6a)

〈F 2
t 〉 =

2〈f〉21
〈τ〉21

t2 +

[
2〈f〉1
〈τ〉1

(
〈τ2〉1〈f〉1
〈τ〉21

− 2
〈fτ〉1
〈τ〉1

)
+
〈f2〉1
〈τ〉1

]
t+ . . . . (C6b)
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This yields Eqs. (6), after using τ = T + Z:

〈Ft〉 =
〈f〉1

〈T 〉1 + Z
t+ . . . (C7a)

Var(Ft) =

[
〈f〉21Var(T )

(〈T 〉1 + Z)3
+

Var(f)

〈T 〉1 + Z
− 2〈f〉1Cov(f, T )

(〈T 〉1 + Z)2

]
t+ . . . , (C7b)

where the variance Var(f) and covariance Cov(f, T ) of f and T were defined after Eq. (6).

Appendix D: Derivation of Eqs. (7)

Finally, we obtain 〈f〉1, 〈T 〉1, Var(T ) and 〈fT 〉1 that appear in Eq. (6) by taking the small-p and small-s limits of
the Laplace transform:

〈e−sT−pf 〉1 = 1− s〈T 〉1 − p〈f〉1 + ps〈Tf〉1 +
s2

2
〈T 2〉1 + . . . , (D1)

where . . . denotes higher-order terms in p and s. Substituting Eq. (B10) in this expansion gives

〈e−sT−pf 〉1 =
(

1− sS +
s2

2
S2
)∫ ∞

0

dθ P (θ)
(

1− pπθ
√
S
2

+
(pπθ)2S

4

)(
1 + sSA(θ) + s2S2 2B(θ) +A2(θ)

2

)
+ . . . ,

(D2)

with

A(θ) ≡
∞∑
j=0

∫ θ

0

du
4

u

[(
1 +

u2

(2j + 1)2

)
e−(2j+1)2/u2

− u2

(2j + 1)2

]
,

B(θ) ≡
∞∑
j=0

∫ θ

0

du
4

u

[
u4

(2j + 1)4
−
(

1

2
+

u2

(2j + 1)2
+

u4

(2j + 1)4

)
e−(2j+1)2/u2

]
.

(D3)

Here we have also used the small-s expansion of the expression in the last exponential in Eq. (B10):

1− e−[sS+(2j+1)2/u2]

1 + u2sS/(2j + 1)2
−
(

1− e−(2j+1)2/u2
)

= sS
[(

1 +
u2

(2j+1)2

)
e−(2j+1)2/u2

− u2

(2j+1)2

]
+ s2S2

[
u4

(2j+1)4
−
(

1

2
+

u2

(2j+1)2
+

u4

(2j+1)4

)
e−(2j+1)2/u2

]
. . . ,

From Eq. (D2), the moments of f are simply expressed in terms of the marginal distribution P (θ):

〈f〉1 = π

√
S
2

∫ ∞
0

dθ θ P (θ) ≡ K1

√
S ,

〈f2〉1 =
π2S

2

∫ ∞
0

dθ θ2 P (θ) ,

Var(f) = 〈f2〉1 − 〈f〉21 =
π2S

2

[∫ ∞
0

dθ θ2 P (θ)−
(∫ ∞

0

dθ θ P (θ)

)2
]
≡ K4S.

(D4)

Similarly, identifying (D2) with (D1), we obtain

〈T 〉1 =

[
1−

∫ ∞
0

dθP (θ)A(θ)

]
S ≡ K2S ,

〈T 2〉1 =

[
1 + 2

∫ ∞
0

dθP (θ)

(
B(θ) +

1

2
A2(θ)−A(θ)

)]
S2 ,

Var(T ) =

[∫ ∞
0

dθ P (θ)
(
2B(θ) +A2(θ)

)
−
(∫ ∞

0

dθ P (θ)A(θ)

)2
]
S2.

(D5)
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Equation (D1) also yields

〈fT 〉1 = π

√
S3
2

∫ ∞
0

dθ P (θ) θ (1−A(θ)) ,

Cov(f, T ) ≡ 〈fT 〉1 − 〈f〉1〈T 〉1 = π

√
S3
2

∫ ∞
0

dθ P (θ) θ

[∫ ∞
0

dϕP (ϕ)A(ϕ)−A(θ)

]
.

(D6)

Finally, we substitute these asymptotic expressions for the moments of f and T into Eq. (6) and obtain the constants
K1 to K5 that appear in Eq. (7):

K1 ≡
π√
2

∫ ∞
0

dθ θ P (θ) ' 2.90 . . . ,

K2 ≡ 1−
∫ ∞
0

dθ P (θ)A(θ) ' 3.27 . . . ,

K3 ≡
π2

2

[∫ ∞
0

dψ ψP (ψ)

]2 [∫ ∞
0

dθ P (θ)
(
2B(θ) +A2(θ)

)
−
(∫ ∞

0

dθ P (θ)A(θ)

)2
]
' 16.1 . . . ,

K4 ≡
π2

2

[∫ ∞
0

dθ θ2 P (θ)−
(∫ ∞

0

dθ θP (θ)

)2
]
' 1.78 . . . ,

K5 ≡ π2

∫ ∞
0

dψ ψ P (ψ)

∫ ∞
0

dθ P (θ) θ

[∫ ∞
0

dϕP (ϕ)A(ϕ)−A(θ)

]
' 8.51 . . . ,

(D7)

where the results are quoted to three-digit accuracy.
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